Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (10): 173-179.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0264
Previous Articles Next Articles
TANG Jia-le1,2,3(), XU Hai1,3, YUAN Ping1,3, HE Ke-jia1,3, WANG Ren-cai2(), BU Fan-wen1,3()
Received:
2020-03-11
Online:
2020-10-26
Published:
2020-11-02
Contact:
WANG Ren-cai,BU Fan-wen
E-mail:513108574@qq.com;wangrencai@hunau.net;379444851@qq.com
TANG Jia-le, XU Hai, YUAN Ping, HE Ke-jia, WANG Ren-cai, BU Fan-wen. Advance in Relationship Between Heat Shock Protein 90s and Thermo-Tolerance in Plants[J]. Biotechnology Bulletin, 2020, 36(10): 173-179.
[1] |
Kerr RA. Global warming is changing the world[J]. Science, 2007,316:188-190.
URL pmid: 17431148 |
[2] |
Mittler R, Finka A, Goloubinoff P. How do plants feel the heat?[J]. Trends Biochem Sci, 2012,37:118-125.
URL pmid: 22236506 |
[3] |
Johnson JL, Brown C. Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms[J]. Cell Stress Chaperones, 2009,14:83-94.
URL pmid: 18636345 |
[4] |
Lindquist S, Craig EA. The heat-shock proteins[J]. Annu Rev Genet, 1988,22:631-677.
URL pmid: 2853609 |
[5] |
Wang WX, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci, 2004,9:244-252.
URL pmid: 15130550 |
[6] |
Driedonks N, Xu JM, Peters JL, et al. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat[J]. Front Plant Sci, 2015,6:999.
URL pmid: 26635827 |
[7] | Chen J, Gao T, Wan S, et al. Genome-wide identification, classification and expression analysis of the HSP gene superfamily in tea plant(Camellia sinensis)[J]. International Journal of Molecular Sciences, 2018,19:2633. |
[8] |
Hu W, Hu G, Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J]. Plant Science, 2009,176(4):583-590.
URL pmid: 26493149 |
[9] | 栗振义, 龙瑞才, 张铁军, 等. 植物热激蛋白研究进展[J]. 生物技术通报, 2016,32(2):7-13. |
Li ZY, Long RC, Zhang TJ, et al. Research progress on plant Heat shock protein[J]. Biotechnology Bulletin, 2016,32(2):7-13. | |
[10] |
Sangster TA, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity[J]. Curr Opin Plant Biol, 2005,8:86-92.
URL pmid: 15653405 |
[11] |
Reddy PS, Thirulogachandar V, Vaishnavi CS, et al. Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation[J]. Gene, 2011,474:29-38.
URL pmid: 21185362 |
[12] |
Pearl LH, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery[J]. Annu Rev Biochem, 2006,75:271-294.
URL pmid: 16756493 |
[13] |
Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum:brothers in arms[J]. Mol Cell, 2010,40:238-252.
URL pmid: 20965419 |
[14] | 朱健康, 倪建平. 植物非生物胁迫信号转导及应答[J]. 中国稻米, 2016,22(6):52-60. |
Zhu JK, Ni JP. Abiotic stress signaling and responses in plants[J]. China Rice, 2016,22(6):52-60. | |
[15] |
Zhang J, Li JB, Liu BB. Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses[J]. BMC Genomics, 2013,14:532.
doi: 10.1186/1471-2164-14-532 URL pmid: 23915275 |
[16] |
Oh SE, Yeung C, Babaei-Rad R, et al. Cosuppression of the chloroplast localized molecular chaperone HSP90.5 impairs plant development and chloroplast biogenesis in Arabidopsis[J]. BMC Research Notes, 2014,7(1):1-15.
doi: 10.1186/1756-0500-7-1 URL |
[17] |
Song H, Fan P, Shi W, et al. Expression of five AtHsp90 genes in Saccharomyces cerevisiae reveals functional differences of AtHsp90s under abiotic stresses[J]. Journal of Plant Physiology, 2010,167(14):1172-1178.
URL pmid: 20493581 |
[18] |
Kravats AN, Hoskins JR, Reidy M, et al. Functional and physical interaction between yeast Hsp90 and Hsp70[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(10):E2210-E2219.
URL pmid: 29463764 |
[19] |
Cha JY, Ermawati N, Jung MH, et al. Characterization of orchardgrass p23, a flowering plant Hsp90 cohort protein[J]. Cell Stress & Chaperones, 2009,14(3):233-243.
URL pmid: 18800239 |
[20] |
Moran Luengo T, Kityk R, Mayer MP, et al. Hsp90 breaks the deadlock of the Hsp70 chaperone system[J]. Molecular Cell, 2018,70(3):545-552.
URL pmid: 29706537 |
[21] |
Herrenkohl LR, Politch JA. Effects of prenatal stress on the estrous cycle of female off spring as adults[J]. Experientia, 1978,34:1240-1241.
URL pmid: 569073 |
[22] |
Grover A, Mittal D, Negi M, et al. Generating high temperature tolerant transgenic plants:achievements and challenges[J]. Plant Sci, 2013,205:38-47.
URL pmid: 23498861 |
[23] | Chang CC, Huang PS, Lin HR, et al. Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation[J]. Plant Cell Physio, 2007,48:1098-1107. |
[24] |
Chang HC, Tang YC, Hayer-Hartl M, et al. SnapShot:molecular chaperones. Part I.[J] Cell, 2007,128(1):212.
URL pmid: 17990378 |
[25] | 李冰, 刘宏涛, 孙大业, 等. 植物热激反应的信号转导机理[J]. 植物生理与分子生物学学报, 2002,28(1):1-10. |
lLi B, Liu HT, Sun DY, et al. Signal transduction mechanism of plant heat shock response[J]. Journal of Plant Physiology and Molecular Biology, 2002,28(1):1-10. | |
[26] | 张海. 水稻OsHSP90基因家族功能研究[D]. 成都:四川农业大学, 2016. |
Zhang H. Function analysis of the OsHSP90 family in rice[D]. Chengdu:Sichuan Agricultural University, 2016. | |
[27] |
Mendonca YA, Ramos CH. Cloning, purification and characterization of a 90kDa heat shock protein from Citrus sinensis(sweet orange)[J]. Plant Physiology and Biochemistry, 2012,50(1):87-94.
URL pmid: 21873074 |
[28] | Ramachandra KR, Chaudhary S, Patil P, et al. The 90 kDa heat shock protein(hsp90)is expressed throughout Brassica napus seed development and germination[J]. Plant Science, 1998,131(2):131-137. |
[29] |
Sable A, Rai KM, Choudhary A, et al. Inhibition of Heat Shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development[J]. Scientific Reports, 2018,8:3620.
URL pmid: 29483524 |
[30] |
Wang GF, Wei X, Fan R, et al. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90(Hsp90):functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance[J]. New Phytol, 2011,191:418-431.
URL pmid: 21488877 |
[31] | Kozeko LY. The role of HSP90 chaperones in stability and plasticity of ontogenesis of plants under normal and stressful conditions(Arabidopsis thaliana)[J]. Cytology and Genetics, 2019,53(2):143-161. |
[32] |
Prasinos C, Krampis K, Samakovli D, et al. Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development[J]. Journal of Experimental Botany, 2005,56(412):633-644.
URL pmid: 15582930 |
[33] |
Samakovli D, Thanou A, Valmas C, et al. Hsp90 canalizes developmental perturbation[J]. Journal of Experimental Botany, 2007,58(13):3513-3524.
URL pmid: 18057034 |
[34] |
Song YH, Estrada DA, Johnson RS, et al. Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering[J]. Proceedings of the National Academy of Sciences of the United States of America 2014,111(49):17672-17677.
URL pmid: 25422419 |
[35] | Inoue H, Li M, Schnell DJ. An essential role for chloroplast heat shock protein 90(Hsp90C)in protein import into chloroplasts[J]. Proceedings of the National Academy of Sciences, 2013,110(8):3173-3178. |
[36] |
Ishiguro S, Watanabe Y, Ito N, et al. SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins[J]. The EMBO Journal, 2002,21(5):898-908.
URL pmid: 11867518 |
[37] |
Samakovli D, Ticha T, Vavrdova T, et al. YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis[J]. Molecular Plant, 2020. DOI: https://doi.org/10.1016/j.molp.2020.01.001.
URL pmid: 32956899 |
[38] |
Sangster TA, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity[J]. Curr Opin Plant Biol, 2005,8:86-92.
URL pmid: 15653405 |
[39] |
Xu J, Xue C, Xue D, et al. Overexpression of GmHsp90s, a heat shock protein 90(Hsp90)gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana[J]. PLoS One, 2013,8:e69810.
URL pmid: 23936107 |
[40] |
Neuwald AF, Aravind L, Spouge JL, et al. A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes[J]. Genome Res, 1999,9:27-43.
URL pmid: 9927482 |
[41] |
Sangster TA, Bahrami A, Wilczek A, et al. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels[J]. PLoS One, 2007,2(7):e648.
URL pmid: 17653275 |
[42] |
Song Z, Pan F, Yang C, et al. Genome-wide identification and expression analysis of HSP90 gene family in Nicotiana tabacum[J]. BMC Genetics, 2019,20(1):35.
URL pmid: 30890142 |
[43] |
Agarwal G, Garg V, Kudapa H, et al. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea[J]. Plant Biotechnology Journal, 2016,14(7):1563-1577.
doi: 10.1111/pbi.12520 URL pmid: 26800652 |
[44] | Chaudhary R, Baranwal VK, Kumar R, et al. Genome-wide identification and expression analysis of Hsp70, Hsp90, and Hsp100 heat shock protein genes in barley under stress conditions and reproductive development[J]. Functional & Integrative Genomic, 2019,19(6):1007-1022. |
[45] |
Gong Z, Xiong L, Shi H, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020,63(5):635-674.
URL pmid: 32246404 |
[46] |
Li WH, Wei ZW, Qiao ZH, et al. Proteomics analysis of alfalfa response to heat stress[J]. PLoS One, 2013,8(12):e82725.
doi: 10.1371/journal.pone.0082725 URL pmid: 24324825 |
[47] |
Hu WH, Hu GC, Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J]. Plant Science, 2009,176, 583-590.
URL pmid: 26493149 |
[48] |
Prasad BD, Goel S, Krishna P. In silico identification of carboxylate clamp type tetratricopeptide repeat proteins in Arabidopsis and Rice as putative co-chaperones of Hsp90/Hsp70[J]. PLoS One, 2010,5:e12761.
URL pmid: 20856808 |
[49] | Zhang H, Li L, Ye T, et al. Molecular characterization, expression pattern and function analysis of the OsHSP90 family in rice[J]. Biotechnology & Biotechnological Equipment, 2016,30(4):669-676. |
[50] |
Huang Y, Xuan H, Yang C, et al. GmHsp90A2 is involved in soybean heat stress as a positive regulator[J]. Plant Science, 2019,285:26-33.
URL pmid: 31203891 |
[51] | Kim SH, Lee JH, Seo KI, et al. Characterization of a Novel DWD protein that participates in heat stress response in Arabidop-sis[J]. Molecules and Cells, 2014,37(11):833-840. |
[52] |
Xu X, Song H, Zhou Z, et al. Functional characterization of AtHsp90.3 in Saccharomyces cerevisiae and Arabidopsis thaliana under heat stress[J]. Biotechnology Letters, 2010,32(7):979-987.
URL pmid: 20229063 |
[53] |
Yamada K, Fukao Y, Hayashi M, et al. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2007,282(52):37794-37804.
doi: 10.1074/jbc.M707168200 URL pmid: 17965410 |
[1] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[2] | PANG Qiang-qiang, SUN Xiao-dong, ZHOU Man, CAI Xing-lai, ZHANG Wen, WANG Ya-qiang. Cloning of BrHsfA3 in Chinese Flowering Cabbage and Its Responses to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(2): 107-115. |
[3] | LIU Min, FANG Yu-lin. Overexpression of Grape ERECTA Enhances Growth and Thermo-tolerance of Arabidopsis [J]. Biotechnology Bulletin, 2020, 36(6): 46-53. |
[4] | LI Ze-qing, LIU Cai-xian, XING Wen, WEN Ya-feng. Research Progress on Regulation of miRNA in the Heat Stress Response of Plants [J]. Biotechnology Bulletin, 2020, 36(2): 149-157. |
[5] | ZHANG Rui-ping, YANG Feng, CHEN Le-zhang, DENG Xing-guang, ZHANG Da-wei. Role of Alternative Respiratory Pathway in Brassinosteroids Inducing Heat Stress Response in Nicotiana benthamiana [J]. Biotechnology Bulletin, 2020, 36(10): 8-14. |
[6] | WANG Yan-qin, SHI Xin-jian, LI Zhi-jun. An Evaluation on Heat Tolerance of a Desert Plant Karelinia caspia Seedlings [J]. Biotechnology Bulletin, 2017, 33(4): 157-163. |
[7] | Zhang Ke, Weng Qunfang, Fu Haohao. Research Progress on Heat Shock Protein 90 of Insects [J]. Biotechnology Bulletin, 2014, 0(2): 15-23. |
[8] | Luo Yiqiu, Chi Daming, Li Siqi, Wang Fei, Li Yansen, Li Chunmei. Effects of Heat Stress on the Architecture and Caspase-3 Expression in the Duodenum of Mice [J]. Biotechnology Bulletin, 2013, 0(12): 84-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||