Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (11): 188-197.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0250
Previous Articles Next Articles
YE Zhou-jie1,2,3(), WANG Xin-rui2,3,4()
Received:
2020-03-10
Online:
2020-11-26
Published:
2020-11-20
Contact:
WANG Xin-rui
E-mail:1036776502@qq.com;wanxiru@sjtu.edu.cn
YE Zhou-jie, WANG Xin-rui. Research Progress of CRISPR System in Translational Medicine[J]. Biotechnology Bulletin, 2020, 36(11): 188-197.
[1] | Yang F, Ge X, Gu F. Progress of next-generation targeted gene-editing techniques[J]. China Biotechnology, 2014,34(2):98-103. |
[2] |
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007,315(5819):1709-1712.
doi: 10.1126/science.1138140 URL pmid: 17379808 |
[3] |
Jackson RN, Lavin M, Carter J, et al. Fitting CRISPR-associated Cas3 into the helicase family tree[J]. Current Opinion in Structural Biology, 2014,24:106-114.
doi: 10.1016/j.sbi.2014.01.001 URL pmid: 24480304 |
[4] |
Terns MP. CRISPR-Based Technologies:Impact of RNA-Targeting systems[J]. Molecular Cell, 2018,72(3):404-412.
doi: 10.1016/j.molcel.2018.09.018 URL pmid: 30388409 |
[5] | Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms[J]. Annual Review of Biophysics, 2017, 46(1):annurev-biophys-062215-010822. |
[6] | Horii T, Hatada I. Genome engineering using the CRISPR/Cas system[J]. World Journal of Medical Genetics, 2014,4(3):69-76. |
[7] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012,337(6096):816-821.
doi: 10.1126/science.1225829 URL pmid: 22745249 |
[8] |
Heler R, Samai P, Modell JW, et al. Cas9 specifies functional viral targets during CRISPR-Cas adaptation[J]. Nature, 2015,519(7542):199-202.
doi: 10.1038/nature14245 URL pmid: 25707807 |
[9] |
Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nature Biotechnology, 2014,32(6):577-582.
doi: 10.1038/nbt.2909 URL |
[10] |
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013,152(5):1173-1183.
doi: 10.1016/j.cell.2013.02.022 URL |
[11] |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1229223 URL |
[12] |
Luo X, He YX, Zhang C, et al. Trio deep-sequencing does not reveal unexpected off-target and on-target mutations in Cas9-edited rhesus monkeys[J]. Nature Communications, 2019,10(1):1-7.
doi: 10.1038/s41467-018-07882-8 URL pmid: 30602773 |
[13] |
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea:versatile small RNAs for adaptive defense and regulation.[J]. Annual Review of Genetics, 2011,45(45):273-297.
doi: 10.1146/annurev-genet-110410-132430 URL |
[14] |
Ran F, Hsu P, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013,154(6):1380-1389.
doi: 10.1016/j.cell.2013.08.021 URL pmid: 23992846 |
[15] |
Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease[J]. The Journal of Clinical Investigation, 2017,127(7):2719-2724.
doi: 10.1172/JCI92087 URL pmid: 28628038 |
[16] |
Zhou Y, Sharma J, Ke Q, et al. Atypical behaviour and connectivity in SHANK3-mutant macaques[J]. Nature, 2019,570(7761):326-331.
doi: 10.1038/s41586-019-1278-0 URL pmid: 31189958 |
[17] |
Wu D, Hu D, Chen H, et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer[J]. Nature 2018,559(7715):637-641
doi: 10.1038/s41586-018-0350-5 URL pmid: 30022161 |
[18] |
Fraietta JA, Nobles CL, Sammons MA, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells[J]. Nature, 2018,558(7709):307-312.
doi: 10.1038/s41586-018-0178-z URL pmid: 29849141 |
[19] |
Wang L, Li L, Ma Y, et al. Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies[J]. Cell Research, 2020: 1-3.
doi: 10.1038/cr.1998.1 URL pmid: 9570012 |
[20] |
Hille F, Richter H, Wong SP, et al. The biology of CRISPR-Cas:backward and forward[J]. Cell, 2018,172(6):1239-1259.
doi: 10.1016/j.cell.2017.11.032 URL pmid: 29522745 |
[21] |
Ma E, Harrington LB, O’Connell MR, et al. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes[J]. Molecular Cell, 2015,60(3):398-407.
URL pmid: 26545076 |
[22] |
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015,163(3):759-771.
doi: 10.1016/j.cell.2015.09.038 URL pmid: 26422227 |
[23] |
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018,360(6387):436-439.
doi: 10.1126/science.aar6245 URL pmid: 29449511 |
[24] |
Woodman CBJ, Collins SI, Young LS. The natural history of cervical HPV infection:unresolved issues[J]. Nature Reviews Cancer, 2007,7(1):11-22.
doi: 10.1038/nrc2050 URL pmid: 17186016 |
[25] |
Zuo X, Fan C, Chen HY. Biosensing:CRISPR-powered diagnostics[J]. Nature Biomedical Engineering, 2017,1(6):1-2.
doi: 10.1038/s41551-016-0001 URL |
[26] |
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):aaf5573.
doi: 10.1126/science.aaf5573 URL pmid: 27256883 |
[27] |
East-Seletsky A, O’Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016,538(7624):270-273.
doi: 10.1038/nature19802 URL pmid: 27669025 |
[28] |
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017,356(6336):438-442.
doi: 10.1126/science.aam9321 URL pmid: 28408723 |
[29] |
Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018,360(6387):444-448.
doi: 10.1126/science.aas8836 URL pmid: 29700266 |
[30] |
Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018,360(6387):439-444.
doi: 10.1126/science.aaq0179 URL pmid: 29449508 |
[31] |
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. The Lancet Respiratory Medicine, 2020,8:420-422.
doi: 10.1016/S2213-2600(20)30076-X URL pmid: 32085846 |
[32] |
Freije CA, Myhrvold C, Boehm CK, et al. Programmable inhibition and detection of RNA viruses using Cas13[J]. Molecular cell, 2019,76(5):826-837.
doi: 10.1016/j.molcel.2019.09.013 URL pmid: 31607545 |
[33] |
Nguyen TM, Zhang Y, Pandolfi PP. Virus against virus:a potent-ial treatment for 2019-nCov(SARS-CoV-2)and other RNA viru-ses[J]. Cell Research, 2020. Doi: 1038/s41422-020-0290-0.
doi: 10.1038/s41422-020-00422-4 URL pmid: 33051594 |
[34] |
Zhou Y, Zhu S, Cai C, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells[J]. Nature, 2014,509(7501):487-491.
doi: 10.1038/nature13166 URL pmid: 24717434 |
[35] |
Yang X, Boehm JS, Yang X, et al. A public genome-scale lentiviral expression library of human ORFs[J]. Nature Methods, 2011,8(8):659-661.
doi: 10.1038/nmeth.1638 URL pmid: 21706014 |
[36] |
Mohr SE, Smith JA, Shamu CE, et al. RNAi screening comes of age:improved techniques and complementary approaches[J]. Nature Reviews Molecular Cell Biology, 2014,15(9):591-600.
doi: 10.1038/nrm3860 URL pmid: 25145850 |
[37] |
Rana TM. Illuminating the silence:understanding the structure and function of small RNAs[J]. Nature Reviews Molecular Cell Biology, 2007,8(1):23-36.
doi: 10.1038/nrm2085 URL pmid: 17183358 |
[38] | Sachse C, Krausz E, Krönke A, et al. High-throughput RNA interference strategies for target discovery and validation by using synthetic short interfering RNAs:functional genomics investigations of biological pathways[M] //Methods in enzymology. Academic Press, 2005,392:242-277. |
[39] |
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 2014,343(6166):84-87.
doi: 10.1126/science.1247005 URL pmid: 24336571 |
[40] |
Han J, Perez JT, Chen C, et al. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication[J]. Cell Reports, 2018,23(2):596-607.
doi: 10.1016/j.celrep.2018.03.045 URL pmid: 29642015 |
[41] |
Balboa D, Weltner, Eurola S, et al. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation[J]. Stem Cell Reports, 2015,5(3):448-459.
doi: 10.1016/j.stemcr.2015.08.001 URL pmid: 26352799 |
[42] |
Fujita T, Fujii H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation(enChIP)using CRISPR[J]. Biochemical and Biophysical Research Communications, 2013,439(1):132-136.
doi: 10.1016/j.bbrc.2013.08.013 URL pmid: 23942116 |
[43] |
Moosmann P, Georgiev O, Thiesen HJ, et al. Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Krüppel-type zinc finger factor[J]. Biological Chemistry, 1997,378(7):669-678.
doi: 10.1515/bchm.1997.378.7.669 URL pmid: 9278146 |
[44] | Liu SJ, Horlbeck MA, Cho SW, et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells[J]. Science, 2017, 355(6320):eaah7111. |
[45] |
Kearns NA, Pham H, Tabak B, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion[J]. Nature Methods, 2015,12(5):401-403.
doi: 10.1038/nmeth.3325 URL pmid: 25775043 |
[46] |
Pfister SX, Ashworth A. Marked for death:targeting epigenetic changes in cancer[J]. Nature Reviews Drug Discovery, 2017,16(4):241.
doi: 10.1038/nrd.2016.256 URL pmid: 28280262 |
[47] |
Liao HK, Hatanaka F, Araoka T, et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation[J]. Cell, 2017,171(7):1495-1507.
doi: 10.1016/j.cell.2017.10.025 URL pmid: 29224783 |
[48] |
Heerboth S, Lapinska K, Snyder N, et al. Use of epigenetic drugs in disease:an overview[J]. Genetics & Epigenetics, 2014, 6:GEG. S12270. 9-19.
doi: 10.4137/GEG.S12270 URL pmid: 25512710 |
[49] |
Maeder ML, Linder SJ, Cascio VM, et al. CRISPR RNA-guided activation of endogenous human genes[J]. Nature Methods, 2013,10(10):977-979.
doi: 10.1038/NMETH.2598 URL pmid: 23892898 |
[50] |
Hsu P, Lander E, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014,157(6):1262-1278.
doi: 10.1016/j.cell.2014.05.010 URL pmid: 24906146 |
[51] |
Ji H, Jiang Z, Lu P, et al. Specific reactivation of latent HIV-1 by dCas9-SunTag-VP64-mediated guide RNA targeting the HIV-1 promoter[J]. Molecular Therapy, 2016,24(3):508-521.
doi: 10.1038/mt.2016.7 URL pmid: 26775808 |
[52] |
Liao HK, Hatanaka F, Araoka T, et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation[J]. Cell, 2017,171(7):1495-1507.
doi: 10.1016/j.cell.2017.10.025 URL pmid: 29224783 |
[53] |
Dahlman JE, Abudayyeh OO, Joung J, et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease[J]. Nature Biotechnology, 2015,33(11):1159-1161.
doi: 10.1038/nbt.3390 URL pmid: 26436575 |
[54] |
Matharu N, Rattanasopha S, Tamura S, et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency[J]. Science, 2019, 363(6424):eaau0629.
doi: 10.1126/science.aau0629 URL pmid: 30545847 |
[55] |
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 2015,517(7536):583-588.
doi: 10.1038/nature14136 URL pmid: 25494202 |
[56] |
Johannessen CM, Boehm JS, Kim SY, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation[J]. Nature, 2010,468(7326):968-972.
doi: 10.1038/nature09627 URL pmid: 21107320 |
[57] |
Musgrove EA, Sutherland RL . Biological determinants of endocrine resistance in breast cancer[J]. Nature Reviews Cancer, 2009,9(9):631-643.
doi: 10.1038/nrc2713 URL pmid: 19701242 |
[58] |
Heaton BE, Kennedy EM, Dumm RE, et al. A CRISPR activation screen identifies a pan-avian influenza virus inhibitory host factor[J]. Cell Reports, 2017,20(7):1503-1512.
doi: 10.1016/j.celrep.2017.07.060 URL pmid: 28813663 |
[59] |
Dahlman JE, Abudayyeh OO, Joung J, et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease[J]. Nature Biotechnology, 2015,33(11):1159-1163.
doi: 10.1038/nbt.3390 URL pmid: 26436575 |
[60] |
Schaefer KA, Wu WH, Colgan DF, et al. Unexpected mutations after CRISPR-Cas9 editing in vivo[J]. Nature Methods, 2017,14(6):547-548.
doi: 10.1038/nmeth.4293 URL pmid: 28557981 |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[5] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[6] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[7] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[8] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[9] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[10] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[11] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[12] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
[13] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[14] | ZHONG Jing, SUN Ling-ling, ZHANG Shu, MENG Yuan, ZHI Yi-fei, TU Li-qing, XU Tian-peng, PU Li-ping, LU Yang-qing. Effect of Knocking Out the Mda5 Gene by CRISPR/Cas9 Technology on the Replication of Newcastle Disease and Infectious Bursal Virus [J]. Biotechnology Bulletin, 2022, 38(11): 90-96. |
[15] | ZONG Mei, HAN Shuo, GUO Ning, DUAN Meng-meng, LIU Fan, WANG Gui-xiang. Production of Marker-free Mutants of Brassica campestris Mediated by CRISPR/Cas9 Through Vacuum Infiltration [J]. Biotechnology Bulletin, 2022, 38(10): 159-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||