Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (2): 169-177.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0744
Previous Articles Next Articles
WANG Yong-ping, REN Wei, WANG Run-juan, SHAO Kun-zhong, GAO Hui-juan, ZHANG Jin-lin
Received:
2019-08-20
Online:
2020-02-26
Published:
2020-02-23
WANG Yong-ping, REN Wei, WANG Run-juan, SHAO Kun-zhong, GAO Hui-juan, ZHANG Jin-lin. Research Advances on Functions of SUMO E3 Ligase in Plant Abiotic Stress Adaptation[J]. Biotechnology Bulletin, 2020, 36(2): 169-177.
[1] Castro PH, Tavares RM, Bejarano ER, et al.SUMO, a heavyweight player in plant abiotic stress responses[J]. Cellular and Molecular Life Sciences, 2012, 69(19):3269-3283. [2] Tomanov K, Nukarinen E, Vicente J, et al.Sumoylation and phosphorylation:hidden and overt links[J]. Journal of Experimental Botany, 2018, 69(19):4583-4590. [3] He Z, Huang T, Ao K, et al.Sumoylation, phosphorylation, and acetylation fine-tune the turnover of plant immunity components mediated by ubiquitination[J]. Front Plant Sci, 2017, 8:1682. [4] Vertegaal AC.Uncovering ubiquitin and ubiquitin-like signaling networks[J]. Chemical Reviews, 2011, 111(12):7923-7940. [5] Elrouby N.Regulation of plant cellular and organismal development by SUMO[J]. Advances in Experimental Medicine and Biology, 2017, 963:227-247. [6] Kurepa J, Walker JM, Smalle J, et al.The small ubiquitin-like modifier(SUMO)protein modification system in Arabidopsis - Accumulation of SUMO1 and -2 conjugates is increased by stress[J]. Journal of Biological Chemistry, 2003, 278(9):6862-6872. [7] Benlloch R, Lois LM.Sumoylation in plants:mechanistic insights and its role in drought stress[J]. Journal of Experimental Botany, 2018, 69(19):4539-4554. [8] Zhang ZY, Li JH, Liu HH, et al.Roles of ubiquitination-mediated protein degradation in plant responses to abiotic stresses[J]. Environmental and Experimental Botany, 2015, 114:92-103. [9] Ouyang J, Gill G.SUMO engages multiple corepressors to regulate chromatin structure and transcription[J]. Epigenetics, 2009, 4(7):440-444. [10] Garvin AJ, Morris JR.SUMO, a small, but powerful, regulator of double-strand break repair[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 28(372):20160281. [11] Melchior F, Schergaut M, Pichler A.SUMO:ligases, isopeptidases and nuclear pores[J]. Trends in Biochemical Sciences, 2003, 28(11):612-618. [12] Enserink JM.SUMO and the cellular stress response[J]. Cell Div, 2015, 10:4. [13] Elrouby N.Analysis of small ubiquitin-like modifier(SUMO)targets reflects the essential nature of protein sumoylation and provides insight to elucidate the role of SUMO in plant development[J]. Plant Physiology, 2015, 169(2):1006-1017. [14] Conti L, Price G, O’Donnell E, et al. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis[J]. Plant Cell, 2008, 20(10):2894-2908. [15] Kim JY, Song JT, Seo HS.Post-translational modifications of Arabidopsis E3 SUMO ligase AtSIZ1 are controlled by environmental conditions[J]. FEBS Open Bio, 2017, 7(10):1622-1634. [16] Yoo CY, Miura K, Jin JB, et al.SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid[J]. Plant Physiology, 2006, 142(4):1548-1558. [17] Miura K, Jin JB, Lee J, et al.SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. The Plant Cell, 2007, 19(4):1403-1414. [18] Miura K, Nozawa R.Overexpression of SIZ1 enhances tolerance to cold and salt stresses and attenuates response to abscisic acid in Arabidopsis thaliana[J]. Plant Biotechnology, 2014, 31(2):167-172. [19] Castro PH, Couto D, Freitas S, et al.SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana[J]. Plant Mol Biol, 2016, 92(1/2):143-159. [20] Catala R, Ouyang J, Abreu IA, et al.The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses[J]. The Plant Cell, 2007, 19(9):2952-2966. [21] Chen CC, Chen YY, Tang IC, et al.Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance[J]. Plant Physiology, 2011, 156(4):2225-2234. [22] Miller MJ, Barrett-Wilt GA, Hua Z, et al.Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis[J]. Proc Natl Acad Sci USA, 2010, 107(38):16512-16517. [23] Miller MJ, Scalf M, Rytz TC, et al.Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in Arabidopsis[J]. Molecular & Cellular Proteomics, 2013, 12(2):449-463. [24] Chaikam V, Karlson DT.Response and transcriptional regulation of rice SUMOylation system during development and stress conditions[J]. BMB Rep, 2010, 43(2):103-109. [25] Srivastava AK, Zhang C, Caine RS, et al.Rice SUMO protease overly tolerant to salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice[J]. Plant Journal, 2017, 92(6):1031-1043. [26] Srivastava AK, Zhang C, Yates G, et al.SUMO is a critical regulator of salt stress responses in rice[J]. Plant Physiology, 2016, 170 (4):2378-2391. [27] Augustine RC, York SL, Rytz TC, et al.Defining the SUMO system in maize:SUMOylation is up-regulated during endosperm development and rapidly induced by stress[J]. Plant Physiology, 2016, 171(3):2191-2210. [28] Wang H, Wang M, Xia Z.Overexpression of a maize SUMO conjugating enzyme gene(ZmSCE1e)increases Sumoylation levels and enhances salt and drought tolerance in transgenic tobacco[J]. Plant Science, 2019, 281:113-121. [29] Zhang S, Wang S, Lv J, et al.SUMO E3 ligase SlSIZ1 facilitates heat tolerance in tomato[J]. Plant Cell Physiol, 2018, 59(1):58-71. [30] Zhang S, Zhuang K, Wang S, et al.A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco[J]. J Integr Plant Biol, 2017, 59(2):102-117. [31] Cai B, Kong X, Zhong C, et al.SUMO E3 ligases GmSIZ1a and GmSIZ1b regulate vegetative growth in soybean[J]. J Integr Plant Biol, 2017, 59(1):2-14. [32] Li Y, Wang G, Xu Z, et al.Organization and regulation of soybean SUMOylation system under abiotic stress conditions[J]. Front Plant Sci, 2017, 8:1458. [33] Zhou LJ, Li YY, Zhang RF, et al.The SUMO E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low temperature conditions in apple[J]. Plant, Cell & Environment, 2017, 40:2068-2080. [34] Panglian X, Chengwei Y.Emerging role of SUMOylation in plant development[J]. Plant Signaling & Behavior, 2013, 8(7):e24727. [35] Park HJ, Yun DJ.SUMO proteins grapple with biotic and abiotic stresses in Arabidopsis[J]. Journal of Plant Biology, 2013, 56(2):77-84. [36] Maria N, Konstantin T, Kay H, et al.Update on sumoylation:defining core components of the plant SUMO conjugation system by phylogenetic comparison[J]. New Phytologist, 2012, 195(1):23-31. [37] Johnson ES, Blobel G.Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p[J]. Journal of Biological Chemistry, 1997, 272(43):26799-26802. [38] Yunus AA, Lima CD.Structure of the Siz/PIAS SUMO E3 ligase SIZ1 and determinants required for SUMO modification of PCNA[J]. Molecular Cell, 2009, 35(5):669-682. [39] Miura K, Jin JB, Hasegawa PM.Sumoylation, a post-translational regulatory process in plants[J]. Current Opinion in Plant Biology, 2007, 10(5):495-502. [40] Reindle A, Belichenko I, Bylebyl GR, et al.Multiple domains in Siz SUMO ligases contribute to substrate selectivity[J]. Journal of Cell Science, 2006, 119(Pt 22):4749-4757. [41] Cheong MS, Park HC, Hong MJ, et al.Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes[J]. Plant Physiology, 2009, 151(4):1930-1942. [42] Ishida T, Yoshimura M, Miura K, et al.MMS21/HPY2 and SIZ1, two Arabidopsis SUMO E3 ligases, have distinct functions in development[J]. PLoS One, 2012, 7(10):e46897. [43] Liu M, Shi SF, Zhang SC, et al.SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis[J]. BMC Plant Biology, 2014, 14(1):153. [44] Miura K, Okamoto H, Okuma E, et al.SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis[J]. Plant Journal, 2013, 73(1):91-104. [45] Li Z, Hu Q, Zhou M, et al.Heterologous expression of OsSIZ1, a rice SUMO E3 ligase, enhances broad abiotic stress tolerance in transgenic creeping bentgrass[J]. Plant Biotechnology Journal, 2013, 11(4):432-445. [46] Mishra N, Sun L, Zhu X, et al.Overexpression of the rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions[J]. Plant & Cell Physiology, 2017, 58(4):735-746. [47] Mishra N, Srivastava AP, Esmaeili N, et al.Overexpression of the rice gene OsSIZ1 in Arabidopsis improves drought-, heat-, and salt-tolerance simultaneously[J]. PLoS One, 2018, 13(8):e0201716. [48] Esmaeili N, Yang X, Cai Y, et al.Co-overexpression of AVP1 and OsSIZ1 in Arabidopsis substantially enhances plant tolerance to drought, salt, and heat stresses[J]. Sci Rep, 2019, 9(1):7642. [49] Zhang S, Qi Y, Liu M, et al.SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana(F)[J]. J Integr Plant Biol, 2013, 55(1):83-95. [50] Zhu JK.Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2):313-324. [51] Miura K, Sato A, Ohta M, et al.Increased tolerance to salt stress in the phosphate-accumulating Arabidopsis mutants siz1 and pho2[J]. Planta, 2011, 234(6):1191-1199. [52] Miura K, Rus A, Sharkhuu A, et al.The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses[J]. Proc Natl Acad Sci USA, 2005, 102(21):7760-7765. [53] Rytz TC, Miller MJ, McLoughlin F, et al. SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress[J]. The Plant Cell, 2018, 30(5):1077-1099. [54] Miura K, Hasegawa PM.Regulation of cold signaling by sumoylation of ICE1[J]. Plant Signal Behav, 2008, 3(1):52-53. [55] Miura K, Ohta M.SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation[J]. Journal of Plant Physiology, 2010, 167(7):555-560. [56] Park BS, Song JT, Seo HS.Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1[J]. Nat Commun, 2011, 2:400. [57] Park BS, Kim SI, Seo HS.AtSIZ1 regulates expression of nitrite reductase but not its activity[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(2):243-245. [58] Wang H, Sun R, Cao Y, et al.OsSIZ1, a SUMO E3 ligase gene, is involved in the regulation of the responses to phosphate and nitrogen in rice[J]. Plant & Cell Physiology, 2015, 56(12):2381-2395. [59] Pei W, Jain A, Sun Y, et al.OsSIZ2 exerts regulatory influences on the developmental responses and phosphate homeostasis in rice[J]. Sci Rep, 2017, 7(1):12280. [60] Zhang RF, Zhou LJ, Li YY, et al.Apple SUMO E3 ligase MdSIZ1 is involved in the response to phosphate deficiency[J]. Journal of Plant Physiology, 2019, 232:216-225. [61] Wu Y, Yu F, Xie Q.Abscisic acid:Metabolism, transport and signaling[M]. New York:Springer, 2014. [62] Miura K, Lee J, Jin JB, et al.Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling[J]. Proc Natl Acad Sci USA, 2009, 106(13):5418-5423. [63] Miura K, Hasegawa PM.Sumoylation and abscisic acid signaling[J]. Plant Signal Behav, 2009, 4(12):1176-1178. [64] Zheng Y, Schumaker KS, Guo Y.Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2012, 109(31):12822-12827. [65] Chen CC, Chen YY, Yeh KC.Effect of Cu content on the activity of Cu/ZnSOD1 in the Arabidopsis SUMO E3 ligase siz1 mutant[J]. Plant Signal Behav, 2011, 6(10):1428-1430. |
[1] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[2] | ZHANG Xiao-yan, YANG Shu-hua, DING Yang-lin. Molecular Mechanism of Cold Signal Perception and Transduction in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 28-35. |
[3] | ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 36-43. |
[4] | JIA Hai-hong, LI Bing-qing. Research Progress in the Post-translational Modification of Superoxide Dismutase [J]. Biotechnology Bulletin, 2022, 38(2): 237-244. |
[5] | FAN Yu-chen, LU Yao, LIU Xiang-nan, ZHAO Bo. Construction of Mutants Swapping Ubiquitin E3 Ligase CHIP and E4B U-box Domain and Verification of Ubiquitination Activity [J]. Biotechnology Bulletin, 2021, 37(12): 191-197. |
[6] | LIU Jing, LI Ya-chao, ZHOU Meng-yan, WU Peng-fei, MA Xiang-qing, LI Ming. Advances in the Studies of Plant Protein Post-translational Modification [J]. Biotechnology Bulletin, 2021, 37(1): 67-76. |
[7] | MU Yong-ying,GU Pei-ming,MA Bo,YAN Wen-xiu,WANG Dao-ping,PAN Ying-hong. Advancements in Quantitative Proteomics Technologies Based on Mass Spectrometry [J]. Biotechnology Bulletin, 2017, 33(9): 73-84. |
[8] | ZHOU Wen-fei, BAI Juan ,GONG Chun-mei. Research Progress on the Oxidative Modification of Plant Proteins Mediated by Reactive Oxygen Species [J]. Biotechnology Bulletin, 2017, 33(4): 8-18. |
[9] | Jiang Nan, Pan Xuefeng. The Developments of Epigenetics and Epigenetics-based Modern Biomedicine and Pharmaceutics [J]. Biotechnology Bulletin, 2015, 31(4): 105-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||