[1] Zhou WJ, Wan YJ, Guo RH, et al.Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9[J]. PLoS One, 2017, 12(10):e0186056. [2] 汤波, 孙照霖, 戴蕴平. 牛的基因编辑技术研究进展[J]. 生物技术通报, 2018, 34(05):41-47. [3] Hu R, Fan ZY, Wang BY, et al.RAPID COMMUNICATION:Generation of FGF5 knockout sheep via the CRISPR/Cas9 system[J]. J Anim Sci, 2017, 95(5):2019-2024. [4] Saedeh K, Shokoufeh F, Roozbeh AM, et al.CRISPR-Cas9 in genome editing:Its function and medical applications[J]. J Cell Physiol, 2019, 234:5751-5761. [5] Cong L, Ran FA, Cox D, et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. [6] Mali P, Yang L, Esvelt KM, et al.RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. [7] Ishino Y, Shinagawa H, Makino K, et al.Nucleotide-sequence of the IAP gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia-coli, and identification of the geneproduct[J]. J Bacteriol, 1987, 169(12):5429-5433. [8] Jansen R, Embden JD, Gaastra W, et al.Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol, 2002, 43(6):1565-1575. [9] Deltcheva E, Chylinski K, Sharma CM, et al.CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature, 2011, 471(7340):602. [10] Slaymaker IM, Gao L, Zetsche B, et al.Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268):84-88. [11] 宋绍征, 朱孟敏, 袁玉国, 等. 转录激活因子样效应物核酸酶介导的山羊β-乳球蛋白基因敲除和人乳铁蛋白基因定点整合[J]. 生物工程学报, 2016, 32(3):329-338. [12] Crispo M, Mulet AP, Tesson L, et al.Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J]. PLoS One, 2015, 10(8):e0136690. [13] Li WR, Liu CX, Zhang XM, et al.CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep[J]. FEBS J, 2017, 284(17):2764-2773. [14] Zhang X, Li W, Liu C, et al.Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9[J]. Sci Rep, 2017, 7(1):8149. [15] 刘畅. CRISPR/CAS9与TALENs介导奶山羊β-酪蛋白位点基因打靶效率的比较研究[D]. 呼和浩特:内蒙古大学, 2016. [16] 周文君, 郭日红, 邓明田, 等. RS-1提高CRISPR-Cas9系统介导的人乳铁蛋白基因敲入效率[J]. 生物工程学报, 2017, 33(08):1224-1234. [17] Yuan YG, Song SZ, Zhu MM, et al.Human lactoferrin efficiently targeted into caprine beta-lactoglobulin locus with transcription activator-like effector nucleases[J]. Asian-Australas J Anim Sci, 2017, 30:1175-1182. [18] 田雨晨. CRISPR/Cas9介导的hLf基因打靶牛β-酪蛋白位点方法的建立[J].杨凌:西北农林科技大学, 2015. [19] Alessio A, Pericuesta E, Llamas-Toranzo I, et al.203 genome modifications by sleeping beauty transposition and CRISPR/Cas9 to improve cow Milk composition for human consumption[J]. Reprod Fert Develop, 2018, 30(1):242-242. [20] 魏海霞, 罗健, 郭延华, 等. CRISPR/Cas9介导绵羊成纤维细胞MSTN基因突变系统的构建[J]. 农业生物技术学报, 2018, 26(08):1440-1448. [21] Deng S, Li K, Wang F, et al.One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system[J]. Frontiers Agricultural Science and Engineering, 2014, 1(1):2-5. [22] Ni W, Qiao J, Hu S, et al.Efficient gene knockout in goats using CRISPR/Cas9 system[J]. PLoS One, 2014, 9(9):e106718. [23] Wang X, Cai B, Zhou J, et al.Correction:Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers[J]. PLoS One, 2016, 11(11):e0167322. [24] Wang X, Niu Y, Zhou J, et al.CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass[J]. Anim Genet, 2018, 49(1):43-51. [25] Aiello D, Patel K, Lasagna E.The myostatin gene:an overview of mechanisms of action and its relevance to livestock animals[J]. Anim Genet, 2018, 49(6):505-519. [26] Yu BL, Lu R, Yuan Y, et al.Efficient TALEN-mediated myostatin gene editing in goats[J]. BMC Dev Biol, 2016, 16(1):26. [27] 梅珺琰. CRISPR/Cas9技术对山羊MSTN基因的靶向敲除研究[D]. 扬州:扬州大学, 2017. [28] 阿力玛, 高原, 苏小虎, 等. CRISPR/Cas9编辑绒山羊FGF5基因细胞株的建立[J]. 中国生物工程杂志, 2016, 36(07):41-47. [29] Wang X, Yu H, Lei A, et al.Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J]. Sci Rep, 2015, 5:13878. [30] 呼啸. 利用CRISPR/Cas9技术制备FGF5位点定点整合VEGF基因绒山羊[D]. 呼和浩特:内蒙古大学, 2018. [31] 梁红宇. CRISPR/Cas9技术介导绒山羊VEGF基因定点整合的研究[D]. 呼和浩特:内蒙古大学, 2018. [32] Niu Y, Zhao X, Zhou J, et al.Efficient generation of goats with defined point mutation(I397V)in GDF9 through CRISPR/Cas9[J]. Reprod Fertil Dev, 2018, 30(2):307-312. [33] 郝斐. 利用CRISPR-Cas9系统与体细胞核移植技术制备EDAR基因打靶绒山羊的研究[D]. 呼和浩特:内蒙古大学, 2018. [34] Wan Y, Guo R, Deng M, et al.Efficient generation of CLPG1-edited rabbits using the CRISPR/Cas9 system[J]. Reprod Domest Anim, 2019, 54(3):538-544. [35] Wu M, Wei C, Lian Z, et al.Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system[J]. Sci Rep, 2016, 6:24360. [36] Zhang J, Cui ML, Nie YW, et al.CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus[J]. FEBS J, 2018, 285(15):2828-2839. [37] Li X, Hao F, Hu X, et al.Generation of Tβ4 knock-in Cashmere goat using CRISPR/Cas9[J]. Int J Biol Sci, 2019, 15(8):1743-1754. [38] Hryhorowicz M, Lipiński D, Zeyland J, et al.CRISPR/Cas9 Immune System as a Tool for Genome Engineering[J]. Arch Immunol Ther Exp(Warsz), 2017, 65(3):233-240. [39] Sato M, Miyoshi K, Nagao Y, et al.The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology-enables efficient biallelic knockout of the α-1, 3-galactosyltran-sferase gene in porcine embryonicfibroblasts[J]. Xenotranspla-ntation, 2014, 21(3):291-300. [40] Yin H, Xue W, Chen S, et al.Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype[J]. Nat Biotechnol, 2014, 32(6):551-553. |