Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (3): 78-87.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0871
Previous Articles Next Articles
ZHANG Chen1, LEI Zhan1, LI Kai2, 3, SHANG Ying1, XU Wen-tao2, 3
Received:
2019-09-19
Online:
2020-03-26
Published:
2020-03-17
ZHANG Chen, LEI Zhan, LI Kai, SHANG Ying, XU Wen-tao. Research Progress on Off-target Effects and Detection Techniques in CRISPR/Cas9 Systems[J]. Biotechnology Bulletin, 2020, 36(3): 78-87.
[1] Ishino Y, Shinagawa H, Makino K, et al.Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12):5429-5433. [2] Jansen R, Embden JDAV, Gaastra W, et al.Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2010, 43(6):1565-1575. [3] Barrangou R, Fremaux C, Deveau H, et al.CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712. [4] Le C, Ran FA, Cox D, et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2015, 1239(11):197. [5] Jiang W, Bikard D, Cox D, et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nat Biotechnol, 2013, 31(3):233-239. [6] Horvath P, Barrangou R.CRISPR/Cas, the immune system of bacteria and archaea[J]. Science, 2010, 327(5962):167-170. [7] Koonin EV, Makarova KS, Zhang F.Diversity, classification and evolution of CRISPR-Cas systems[J]. Curr Opin Microbiol, 2017, 37:67-78. [8] Ishino Y, Krupovic M, Forterre P.History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology[J]. Journal of Bacteriology, 2018, 200(7):1-16. [9] Cong L, Ran FA, Cox D, et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. [10] Javed MR, Sadaf M, Ahmed T, et al.CRISPR-Cas system:history and prospects as a genome editing tool in microorganisms[J]. Curr Microbiol, 2018, 75(12):1675-1683. [11] Gasiunas G, Siksnys V.RNA-dependent DNA endonuclease Cas9 of the CRISPR system:holy grail of genome editing?[J]. Trends in Microbiology, 2013, 21(11):562-567. [12] Yin H, Xue W, Anderson DG.CRISPR-Cas:a tool for cancer research and therapeutics[J]. Nature Reviews Clinical Oncology, 2019, 16(5):281-295. [13] Shrock E, Guell M.CRISPR in animals and animal models[J]. Progress in Molecular Biology and Translational Science, 2017, 152:95-114. [14] Yin K, Gao C, Qiu JL.Progress and prospects in plant genome editing[J]. Nature Plants, 2017, 3:17107. [15] Bolukbasi MF, Gupta A, Wolfe SA.Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery[J]. Nat Methods, 2016, 13(1):41-50. [16] Fu Y, Foden JA, Khayter C, et al.High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9):822-826. [17] Cradick TJ, Fine EJ, Antico CJ, et al.CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity[J]. Nucleic Acids Res, 2013, 41(20):9584-9592. [18] Lin Y, Cradick TJ, Brown MT, et al.CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences[J]. Nucleic Acids Research, 2014, 42(11):7473-7485. [19] Zhang XH, Tee LY, Wang XG, et al.Off-target effects in CRISPR/Cas9-mediated genome engineering[J]. Molecular Therapy-Nucleic Acids, 2015, 4(11):e264. [20] Doench JG, Fusi N, Sullender M, et al.Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J]. Nat Biotechnol, 2016, 34(2):184. [21] Hruscha A, Krawitz P, Rechenberg A, et al.Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish[J]. Development, 2013, 140(24):4982-4987. [22] Zhu LJ.Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology[J]. Frontiers in Biology, 2015, 10(4):289-296. [23] Gilbert LA, Horlbeck MA, Adamson B, et al.Genome-scale CRISPR-mediated control of gene repression and activation[J]. Cell, 2014, 159(3):647-661. [24] Cho SW, Kim S, Kim Y, et al.Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Research, 2014, 24(1):132-141. [25] Hsu PD, Scott DA, Weinstein JA, et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9):827. [26] Yin H, Song CQ, Suresh S, et al.Partial DNA-guided Cas9 enables genome editing with reduced off-target activity[J]. Nature Chemical Biology, 2018, 14(3):311-316. [27] Frock RL, Hu J, Meyers RM, et al.Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases[J]. Nat Biotechnol, 2015, 33(2):179. [28] Guilinger JP, Thompson DB, Liu DR.Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nat Biotechnol, 2014, 32(6):577-582. [29] Zhu X, Clarke R, Puppala AK, et al.Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9[J]. Nature Structural & Molecular Biology, 2019, 26(8):679-685. [30] Kleinstiver BP, Pattanayak V, Prew MS, et al.High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587):490-495. [31] Slaymaker IM, Gao L, Zetsche B, et al.Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268):84-88. [32] Chen JS, Dagdas YS, Kleinstiver BP, et al.Enhanced proofreading governs CRISPR-Cas9 targeting accuracy[J]. Nature, 2017, 550(7676):407-410. [33] Casini A, Olivieri M, Petris G, et al.A highly specific SpCas9 variant is identified by in vivo screening in yeast[J]. Nat Biotechnol, 2018, 36(3):265-271. [34] Hu JH, Miller SM, Geurts MH, et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699):57-63. [35] Lee JK, Jeong E, Lee J, et al.Directed evolution of CRISPR-Cas9 to increase its specificity[J]. Nature Communications, 2018, 9 (1):3048. [36] Vakulskas CA, Dever DP, Rettig GR, et al.A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells[J]. Nature Medicine, 2018, 24(8):1216-1224. [37] Nishimasu H, Cong L, Yan WX, et al.Crystal structure of Staphylococcus aureus Cas9[J]. Cell, 2015, 162(5):1113-1126. [38] Müller M, Lee CM, Gasiunas G, et al.Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome[J]. Molecular Therapy, 2016, 24(3):636-644. [39] Xu K, Ren C, Liu Z, et al.Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus[J]. Cellular and Molecular Life Sciences, 2015, 72(2):383-399. [40] Lee CM, Cradick TJ, Bao G.The neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells[J]. Molecular Therapy, 2016, 24(3):645-654. [41] Murovec J, Pirc Z, Yang B.New variants of CRISPR RNA-guided genome editing enzymes[J]. Plant Biotechnology Journal, 2017, 15(8):917-926. [42] Kim E, Koo T, Park SW, et al.In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J]. Nature Communications, 2017, 8:14500. [43] Knott GJ, Thornton BW, Lobba MJ, et al.Broad-spectrum enzymatic inhibition of CRISPR-Cas12a[J]. Nature Structural & Molecular Biology, 2019, 26(4):315-321. [44] Watters KE, Fellmann C, Bai HB, et al.Systematic discovery of natural CRISPR-Cas12a inhibitors[J]. Science, 2018, 362(6411):236-239. [45] Strecker J, Jones S, Koopal B, et al.Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications, 2019, 10(1):212. [46] Ran FA, Cong L, Yan WX, et al.In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546):186-191. [47] Kleinstiver BP, Prew MS, Tsai SQ, et al.Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition[J]. Nat Biotechnol, 2015, 33(12):1293-1298. [48] Pawluk A, Amrani N, Zhang Y, et al.Naturally occurring off-switches for CRISPR-Cas9[J]. Cell, 2016, 167(7):1829-1838. [49] Chen F, Ding X, Feng Y, et al.Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting[J]. Nature Communications, 2017, 8:14958. [50] Gao Z, Herrera Carrillo E, Berkhout B.A single H1 promoter can drive both guide RNA and endonuclease expression in the CRISPR-Cas9 system[J]. Molecular Therapy Nucleic Acids, 2019, 14:32-40. [51] Hendel A, Fine EJ, Bao G, et al.Quantifying on- and off-target genome editing[J]. Trends Biotechnol, 2015, 33(2):132-140. [52] Cho SW, Kim S, Kim Y, et al.Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Res, 2014, 24(1):132-141. [53] Bae S, Park J, Kim JS.Cas-OFFinder:a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases[J]. Bioinformatics, 2014, 30(10):1473-1475. [54] Tsai SQ, Joung JK.Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases[J]. Nature Reviews Genetics, 2016, 17(5):300-312. [55] Lee CM, Cradick TJ, Fine EJ, et al.Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing[J]. Molecular Therapy:the Journal of the American Society of Gene Therapy, 2016, 24(3):475-487. [56] Osborn MJ, Webber BR, Knipping F, et al.Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases[J]. Molecular Therapy:the Journal of the American Society of Gene Therapy, 2016, 24(3):570-581. [57] Tsai SQ, Zongni Z, Nguyen NT, et al.GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases[J]. Nat Biotechnol, 2015, 33(2):187-197. [58] Kim D, Kim S, Kim S, et al.Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq[J]. Genome Res, 2016, 26(3):406-415. [59] Tsai SQ, Nguyen NT, Malagon Lopez J, et al.CIRCLE-seq:a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets[J]. Nat Methods, 2017, 14(6):607-614. [60] Cameron P, Fuller CK, Donohoue PD, et al.Mapping the genomic landscape of CRISPR-Cas9 cleavage[J]. Nat Methods, 2017, 14(6):600-606. [61] Daesik K, Sangsu B, Jeongbin P, et al.Digenome-seq:genome-wide profiling of CRISPR-Cas9 off-target effects in human cells[J]. Nature Methods, 2015, 12(3):237-243. [62] Wienert B, Wyman SK, Richardson CD, et al.Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq[J]. Science, 2019, 364(6437):286-289. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[5] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[6] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[7] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[8] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[9] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[10] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[11] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[12] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
[13] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[14] | ZHONG Jing, SUN Ling-ling, ZHANG Shu, MENG Yuan, ZHI Yi-fei, TU Li-qing, XU Tian-peng, PU Li-ping, LU Yang-qing. Effect of Knocking Out the Mda5 Gene by CRISPR/Cas9 Technology on the Replication of Newcastle Disease and Infectious Bursal Virus [J]. Biotechnology Bulletin, 2022, 38(11): 90-96. |
[15] | ZONG Mei, HAN Shuo, GUO Ning, DUAN Meng-meng, LIU Fan, WANG Gui-xiang. Production of Marker-free Mutants of Brassica campestris Mediated by CRISPR/Cas9 Through Vacuum Infiltration [J]. Biotechnology Bulletin, 2022, 38(10): 159-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||