Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (1): 155-167.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1032
Previous Articles Next Articles
ZHANG Li-xing(), WANG Li-na, KANG Guang-bo, HUANG He()
Received:
2020-08-16
Online:
2021-01-26
Published:
2021-01-15
Contact:
HUANG He
E-mail:zlc@tju.edu.cn;huang@tju.edu.cn
ZHANG Li-xing, WANG Li-na, KANG Guang-bo, HUANG He. Application and Advances of Multi-omics Analysis in Inflammatory Bowel Disease[J]. Biotechnology Bulletin, 2021, 37(1): 155-167.
项目名称 | UC/CD | 数量 | 基因组学 | 转录组学 | 代谢组学 | 蛋白质组学 | 微生物组学 | 文献 |
---|---|---|---|---|---|---|---|---|
HMP | 0/10 | 12 | —— | —— | —— | 宏蛋白质组/粪便标本 | 宏基因组鸟枪法测序/ 粪便标本 | [67] |
iHMP | 36/36 | 90 | 宿主基因组DNA甲基化分析/ 外周血标本 | 宏转录组测序/粪便标本 宿主RNA-Seq/结肠活检标本 | 非靶向代谢组/粪便标本 | 宿主蛋白质组/粪便标本 | 16S rRNA扩增子测序/ 粪便标本和活检标本 宏基因组鸟枪法测序/粪便标本 | [5] |
IBDMDB | 38/67 | 132 | 宿主外显子组测序/血液标本 甲基化分析/活检和血液标本 | 宏转录组测序/粪便标本 宿主RNA-Seq/活检标本 | 非靶向代谢组/粪便匀浆 | 宿主蛋白质组/粪便标本 | 16S rRNA扩增子测序/活检标本 宏基因组鸟枪法测序/粪便标本 | [64] |
1000 IBD Project | 495/615 | 1 215 | 全外显子组测序和IBD易感位点靶向重测序/外周血标本 | 宿主RNA-Seq/肠道活检标本 | —— | —— | 16S rRNA扩增子测序/ 粪便和肠道活检标本 | [48] |
Med into Grad | 0/3 | 6 | 全基因组DNA甲基化分析/ 人肠成纤维细胞 | 宿主RNA-Seq/ 人肠成纤维细胞 | —— | —— | —— | [49] |
IBDGC | 67/115 | 182 | 基因分型 | —— | —— | —— | 16S rRNA扩增子测序/粪便标本 | [50] |
The GEM Project | 0/1561 | 1 561 | 人外显子芯片和免疫芯片/ 外周血标本 | —— | —— | —— | 16S rRNA扩增子测序/粪便标本 | [51] |
Inflammation at Interfaces | 17/19 | 63 | —— | RNA-Seq/活检标本 | —— | —— | 16S rRNA扩增子测序/ 肠粘膜活检标本 | [52] |
—— | 82/50 | 183 | —— | —— | 非靶向代谢组/粪便标本 | —— | 宏基因组鸟枪法测序/粪便标本 | [53] |
—— | 9/0 | 9 | —— | —— | 非靶向代谢组/粪便标本 靶向代谢组(SCAFs)/粪便标本 | —— | 16S rRNA扩增子测序/粪便标本 宏基因组鸟枪法测序/粪便标本 | [54] |
—— | 15/9 | 34 | —— | RNA-Seq/结肠组织标本 | —— | 宿主蛋白质组/结肠组织标本 | —— | [55] |
—— | —— | —— | 甲基化GWAS分析/ 全血白细胞标本 | 基因表达芯片/全血标本 | —— | —— | —— | [56] |
项目名称 | UC/CD | 数量 | 基因组学 | 转录组学 | 代谢组学 | 蛋白质组学 | 微生物组学 | 文献 |
---|---|---|---|---|---|---|---|---|
HMP | 0/10 | 12 | —— | —— | —— | 宏蛋白质组/粪便标本 | 宏基因组鸟枪法测序/ 粪便标本 | [67] |
iHMP | 36/36 | 90 | 宿主基因组DNA甲基化分析/ 外周血标本 | 宏转录组测序/粪便标本 宿主RNA-Seq/结肠活检标本 | 非靶向代谢组/粪便标本 | 宿主蛋白质组/粪便标本 | 16S rRNA扩增子测序/ 粪便标本和活检标本 宏基因组鸟枪法测序/粪便标本 | [5] |
IBDMDB | 38/67 | 132 | 宿主外显子组测序/血液标本 甲基化分析/活检和血液标本 | 宏转录组测序/粪便标本 宿主RNA-Seq/活检标本 | 非靶向代谢组/粪便匀浆 | 宿主蛋白质组/粪便标本 | 16S rRNA扩增子测序/活检标本 宏基因组鸟枪法测序/粪便标本 | [64] |
1000 IBD Project | 495/615 | 1 215 | 全外显子组测序和IBD易感位点靶向重测序/外周血标本 | 宿主RNA-Seq/肠道活检标本 | —— | —— | 16S rRNA扩增子测序/ 粪便和肠道活检标本 | [48] |
Med into Grad | 0/3 | 6 | 全基因组DNA甲基化分析/ 人肠成纤维细胞 | 宿主RNA-Seq/ 人肠成纤维细胞 | —— | —— | —— | [49] |
IBDGC | 67/115 | 182 | 基因分型 | —— | —— | —— | 16S rRNA扩增子测序/粪便标本 | [50] |
The GEM Project | 0/1561 | 1 561 | 人外显子芯片和免疫芯片/ 外周血标本 | —— | —— | —— | 16S rRNA扩增子测序/粪便标本 | [51] |
Inflammation at Interfaces | 17/19 | 63 | —— | RNA-Seq/活检标本 | —— | —— | 16S rRNA扩增子测序/ 肠粘膜活检标本 | [52] |
—— | 82/50 | 183 | —— | —— | 非靶向代谢组/粪便标本 | —— | 宏基因组鸟枪法测序/粪便标本 | [53] |
—— | 9/0 | 9 | —— | —— | 非靶向代谢组/粪便标本 靶向代谢组(SCAFs)/粪便标本 | —— | 16S rRNA扩增子测序/粪便标本 宏基因组鸟枪法测序/粪便标本 | [54] |
—— | 15/9 | 34 | —— | RNA-Seq/结肠组织标本 | —— | 宿主蛋白质组/结肠组织标本 | —— | [55] |
—— | —— | —— | 甲基化GWAS分析/ 全血白细胞标本 | 基因表达芯片/全血标本 | —— | —— | —— | [56] |
模型 | 转录组学 | 代谢组学 | 蛋白质组学 | 微生物组学 | 文献 |
---|---|---|---|---|---|
DSS诱导结肠炎 | 基因表达芯片/肝脏和结肠标本 | 非靶向代谢组/冷冻血浆和肝脏标本 | 宿主蛋白质组/肝脏和结肠标本 | —— | [57] |
DSS诱导结肠炎 | 基因表达芯片/结肠粘膜标本 | —— | 宿主蛋白质组/结肠粘膜标本 | —— | [58] |
DSS诱导结肠炎 | 基因表达芯片/肝脏和结肠标本 | 非靶向代谢组/肝脏和血浆标本 | 宿主蛋白质组/肝脏标本 | 16S rRNA扩增子测序/盲肠内容物 | [59] |
IL-10基因缺陷小鼠 | 基因表达芯片/结肠标本 | —— | 宿主蛋白质组/结肠粘膜标本 | —— | [60] |
T细胞转移性肠炎模型 | 基因表达芯片/结肠标本 | —— | 宿主蛋白质组/结肠标本 | —— | [61] |
DSS诱导结肠炎 | 基因表达芯片/肝脏和结肠标本 | 非靶向代谢组/肝脏标本 | 宿主蛋白质组/肝和结肠标本 | —— | [62] |
Mdr1a(-/-)大鼠模型 | 基因表达芯片/结肠标本 | —— | 宿主蛋白质组/结肠标本 | —— | [63] |
模型 | 转录组学 | 代谢组学 | 蛋白质组学 | 微生物组学 | 文献 |
---|---|---|---|---|---|
DSS诱导结肠炎 | 基因表达芯片/肝脏和结肠标本 | 非靶向代谢组/冷冻血浆和肝脏标本 | 宿主蛋白质组/肝脏和结肠标本 | —— | [57] |
DSS诱导结肠炎 | 基因表达芯片/结肠粘膜标本 | —— | 宿主蛋白质组/结肠粘膜标本 | —— | [58] |
DSS诱导结肠炎 | 基因表达芯片/肝脏和结肠标本 | 非靶向代谢组/肝脏和血浆标本 | 宿主蛋白质组/肝脏标本 | 16S rRNA扩增子测序/盲肠内容物 | [59] |
IL-10基因缺陷小鼠 | 基因表达芯片/结肠标本 | —— | 宿主蛋白质组/结肠粘膜标本 | —— | [60] |
T细胞转移性肠炎模型 | 基因表达芯片/结肠标本 | —— | 宿主蛋白质组/结肠标本 | —— | [61] |
DSS诱导结肠炎 | 基因表达芯片/肝脏和结肠标本 | 非靶向代谢组/肝脏标本 | 宿主蛋白质组/肝和结肠标本 | —— | [62] |
Mdr1a(-/-)大鼠模型 | 基因表达芯片/结肠标本 | —— | 宿主蛋白质组/结肠标本 | —— | [63] |
组学 | 分组 | 潜在的生物标志物 | 参考文献 |
---|---|---|---|
基因组 | IBD vs. controls | CARD 9, RER, XBP1, IL23R, JAK2, TYK2, ICOSLG, TNFSF*15, CUL2, MST1, TNFSF8, IL12B, IL23, PRDM1, IL10, CREM, PUS10, ORMDL3, UTS2, PEX13 | [73] |
CD vs. controls | NOD2, ITLN1, ATG16L1, STAT3, IRGM, LRRK2, MUC19, CCL11, CCL2, CCL7, CCL8, CCR6, NDFIP1, TAGAP, IL2R, ERAP2, LNPEP, DENND1B, IL27, SBNO2, FASLG, THAA, CPEB4, PRDX5, BACH2, ADO, GPC4, GPX1, SLC22A4, LRRK2 | [73] | |
UC vs. controls | SLC11A1, FGR2a*/B, IL21, PARK7, DAP, GNA12, HNF4A, CDH1, ERRFI1, IL8RA, IL8RB, TNFRSF9, PIM3, IL/R, TNFSF8, IGNG, IL23, IL1R1, IL1R2, SERNC3, HSPA6, DLD | [73] | |
表观基因组 (甲基化状态) | IBD vs. controls | THRAP2, FANCC, GBGT1, WDR8, ITGB2, CARD9, CDH1(↑);DOK2, TNFSF4, VMP1, ICAM3(↓) | [73] |
CD vs. controls | CBGT1, IGFBP4, FAM10A4(↑);IFITM1(↓) | [73] | |
转录组 | IBD vs. controls | 乙状结肠:CYLD、 CDH11等 | [74] |
CD vs. controls | 结肠粘膜:19个差异表达基因, CXCL1最为显著 | [74] | |
IBD vs. controls | miRs-3180-3p, miRplus-E1035, miRplusF1159, miR20b, miR-98, miR125b-1*, let-7e*, miRs-103-2*, miR-362-3p, miR-532-3p, miR-98, miR340*, miR-484(↑) | [73] | |
代谢组 | UC vs. controls | 结肠:精氨酸、 葡萄糖、 甘油磷酰胆碱、 赖氨酸(↑);丙氨酸、 胆碱、 甲酸盐、 谷氨酸盐、 谷氨酰胺、 异亮氨酸、 亮氨酸、 缬氨酸、 乳酸盐、 肌醇、 丁二酸盐(↓) 粪便:谷氨酸盐、 赖氨酸(↑)甲胺、 三甲胺(↓) 尿液:柠檬酸盐、 甘氨酸、 乙醇酸盐、 胍基乙酸酯、 甲基组氨酸(↑);马尿酸盐、 三甲基赖氨酸(↓) 血清:天冬氨酸、 甘氨酸、 延胡索酸(↑);天冬酰胺、 谷氨酸、 谷氨酰胺、 组氨酸、 色氨酸(↓) | [75-76] |
CD vs. controls | 结肠:葡萄糖、 甘油磷酰胆碱(↑);丙氨酸、 胆碱、 甲酸盐、 谷氨酸盐、 谷氨酰氨、 异亮氨酸、 亮氨酸、 缬氨酸、 乳酸盐、 肌醇、 丁二酸盐(↓) 粪便:丙氨酸、 甘油、 异亮氨酸、 亮氨酸、 缬氨酸、 赖氨酸(↑);乙酸盐、 丁酸盐、 甲胺、 三甲胺(↓) 尿液:甲酸盐、 甘氨酸、 乙醇酸盐、 胍基乙酸酯、 甲基组氨酸(↑);4-甲酚硫酸盐、 柠檬酸盐、 马尿酸盐(↓) 血清:天冬氨酸、 甘氨酸、 蛋氨酸、 脯氨酸、 延胡索酸、 羟基丁二酸、 丁二酸(↑);丙氨酸、 谷氨酰胺、 组氨酸、 色氨酸(↓) | [75-76] | |
蛋白质组 | CD vs. controls | 血清:ALCA、 gASCA、 anti-OmpC、 PAB、 S100A12、 钙卫蛋白、 TNF-RI、 TNF-RII、 IL-8、 IL-18、 半乳糖凝集素-3、 CXCL16、 C-反应蛋白、 视黄醇结合蛋白4、 胰岛素(↑);脂连素(↓) 粪便:钙卫蛋白、 S100A12、 乳铁蛋白(↑);结肠粘膜:S100A12、 钙卫蛋白(↑) | [77] |
UC vs. controls | 血清:atypical pANCA、 GAB、 S100A12、 钙卫蛋白、 TNF-RI、 TNF-RII、 IL-8、 IL-18、 CXCL16、 半乳糖凝集素-3、 C-反应蛋白、 视黄醇结合蛋白4、 胰岛素(↑);脂连素(↓) 粪便:钙卫蛋白、 S100A12、 乳铁蛋白(↑) 结肠粘膜:S100A12、 钙卫蛋白(↑) | [77] | |
CD vs. UC | 血清:ALCA、 ACCA、 gASCA、 anti-OmpC、 AMCA、 antichitin、 antilaminarin、 PAB、 IL-18、 CXCL16(↑) | [77] | |
UC vs. CD | 血清:atypical pANCA、 IL-8(↑) 粪便:乳铁蛋白(↑) | [77] | |
微生物组 | IBD vs. controls(上调) | 变形菌门Phylum proteobacteria、 大肠杆菌Escherichia coli、 简明弯曲杆菌Campylobacter concisus、 艰难梭菌Clostridium difficil、 脆弱拟杆菌Bacteroides fragilis、 普通拟杆菌Bacteroides vulgatus、 肺炎克雷伯菌Klebsiella pneumoniae、 变形梭杆菌Fusobacterium varium、 活泼瘤胃球菌Ruminococcus gnavus、 产肠毒素性脆弱拟杆菌Enterotoxigenic Bacteroides fragilis 克罗恩病:副结核分枝杆菌Mycobacterium avium paratuberculosis | [75] |
IBD vs. controls(下调) | 厚壁菌门Phylum Firmicutes、 产丁酸盐菌(如人罗斯拜瑞氏菌Roseburia hominis和粪杆菌属 Faecalibacterium)、 普拉氏梭杆菌Fusobacterium prausnitzii、 青春双歧杆菌Bifidobacterium adolescentis、 浑浊戴阿利斯特菌Dialister invisus、 微生物多样性 | [75] |
组学 | 分组 | 潜在的生物标志物 | 参考文献 |
---|---|---|---|
基因组 | IBD vs. controls | CARD 9, RER, XBP1, IL23R, JAK2, TYK2, ICOSLG, TNFSF*15, CUL2, MST1, TNFSF8, IL12B, IL23, PRDM1, IL10, CREM, PUS10, ORMDL3, UTS2, PEX13 | [73] |
CD vs. controls | NOD2, ITLN1, ATG16L1, STAT3, IRGM, LRRK2, MUC19, CCL11, CCL2, CCL7, CCL8, CCR6, NDFIP1, TAGAP, IL2R, ERAP2, LNPEP, DENND1B, IL27, SBNO2, FASLG, THAA, CPEB4, PRDX5, BACH2, ADO, GPC4, GPX1, SLC22A4, LRRK2 | [73] | |
UC vs. controls | SLC11A1, FGR2a*/B, IL21, PARK7, DAP, GNA12, HNF4A, CDH1, ERRFI1, IL8RA, IL8RB, TNFRSF9, PIM3, IL/R, TNFSF8, IGNG, IL23, IL1R1, IL1R2, SERNC3, HSPA6, DLD | [73] | |
表观基因组 (甲基化状态) | IBD vs. controls | THRAP2, FANCC, GBGT1, WDR8, ITGB2, CARD9, CDH1(↑);DOK2, TNFSF4, VMP1, ICAM3(↓) | [73] |
CD vs. controls | CBGT1, IGFBP4, FAM10A4(↑);IFITM1(↓) | [73] | |
转录组 | IBD vs. controls | 乙状结肠:CYLD、 CDH11等 | [74] |
CD vs. controls | 结肠粘膜:19个差异表达基因, CXCL1最为显著 | [74] | |
IBD vs. controls | miRs-3180-3p, miRplus-E1035, miRplusF1159, miR20b, miR-98, miR125b-1*, let-7e*, miRs-103-2*, miR-362-3p, miR-532-3p, miR-98, miR340*, miR-484(↑) | [73] | |
代谢组 | UC vs. controls | 结肠:精氨酸、 葡萄糖、 甘油磷酰胆碱、 赖氨酸(↑);丙氨酸、 胆碱、 甲酸盐、 谷氨酸盐、 谷氨酰胺、 异亮氨酸、 亮氨酸、 缬氨酸、 乳酸盐、 肌醇、 丁二酸盐(↓) 粪便:谷氨酸盐、 赖氨酸(↑)甲胺、 三甲胺(↓) 尿液:柠檬酸盐、 甘氨酸、 乙醇酸盐、 胍基乙酸酯、 甲基组氨酸(↑);马尿酸盐、 三甲基赖氨酸(↓) 血清:天冬氨酸、 甘氨酸、 延胡索酸(↑);天冬酰胺、 谷氨酸、 谷氨酰胺、 组氨酸、 色氨酸(↓) | [75-76] |
CD vs. controls | 结肠:葡萄糖、 甘油磷酰胆碱(↑);丙氨酸、 胆碱、 甲酸盐、 谷氨酸盐、 谷氨酰氨、 异亮氨酸、 亮氨酸、 缬氨酸、 乳酸盐、 肌醇、 丁二酸盐(↓) 粪便:丙氨酸、 甘油、 异亮氨酸、 亮氨酸、 缬氨酸、 赖氨酸(↑);乙酸盐、 丁酸盐、 甲胺、 三甲胺(↓) 尿液:甲酸盐、 甘氨酸、 乙醇酸盐、 胍基乙酸酯、 甲基组氨酸(↑);4-甲酚硫酸盐、 柠檬酸盐、 马尿酸盐(↓) 血清:天冬氨酸、 甘氨酸、 蛋氨酸、 脯氨酸、 延胡索酸、 羟基丁二酸、 丁二酸(↑);丙氨酸、 谷氨酰胺、 组氨酸、 色氨酸(↓) | [75-76] | |
蛋白质组 | CD vs. controls | 血清:ALCA、 gASCA、 anti-OmpC、 PAB、 S100A12、 钙卫蛋白、 TNF-RI、 TNF-RII、 IL-8、 IL-18、 半乳糖凝集素-3、 CXCL16、 C-反应蛋白、 视黄醇结合蛋白4、 胰岛素(↑);脂连素(↓) 粪便:钙卫蛋白、 S100A12、 乳铁蛋白(↑);结肠粘膜:S100A12、 钙卫蛋白(↑) | [77] |
UC vs. controls | 血清:atypical pANCA、 GAB、 S100A12、 钙卫蛋白、 TNF-RI、 TNF-RII、 IL-8、 IL-18、 CXCL16、 半乳糖凝集素-3、 C-反应蛋白、 视黄醇结合蛋白4、 胰岛素(↑);脂连素(↓) 粪便:钙卫蛋白、 S100A12、 乳铁蛋白(↑) 结肠粘膜:S100A12、 钙卫蛋白(↑) | [77] | |
CD vs. UC | 血清:ALCA、 ACCA、 gASCA、 anti-OmpC、 AMCA、 antichitin、 antilaminarin、 PAB、 IL-18、 CXCL16(↑) | [77] | |
UC vs. CD | 血清:atypical pANCA、 IL-8(↑) 粪便:乳铁蛋白(↑) | [77] | |
微生物组 | IBD vs. controls(上调) | 变形菌门Phylum proteobacteria、 大肠杆菌Escherichia coli、 简明弯曲杆菌Campylobacter concisus、 艰难梭菌Clostridium difficil、 脆弱拟杆菌Bacteroides fragilis、 普通拟杆菌Bacteroides vulgatus、 肺炎克雷伯菌Klebsiella pneumoniae、 变形梭杆菌Fusobacterium varium、 活泼瘤胃球菌Ruminococcus gnavus、 产肠毒素性脆弱拟杆菌Enterotoxigenic Bacteroides fragilis 克罗恩病:副结核分枝杆菌Mycobacterium avium paratuberculosis | [75] |
IBD vs. controls(下调) | 厚壁菌门Phylum Firmicutes、 产丁酸盐菌(如人罗斯拜瑞氏菌Roseburia hominis和粪杆菌属 Faecalibacterium)、 普拉氏梭杆菌Fusobacterium prausnitzii、 青春双歧杆菌Bifidobacterium adolescentis、 浑浊戴阿利斯特菌Dialister invisus、 微生物多样性 | [75] |
[1] | Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease[J]. Journal of Clinical Investigation, 2007,117(3):514-521. |
[2] | Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review[J]. Gastroenterology, 2012,142(1):46-e30. |
[3] | Human Microbiome Project Consortium. A framework for human microbiome research[J]. Nature, 2012,486(7402):215-221. |
[4] | Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012,486(7402):207-214. |
[5] | Integrative HMP(iHMP)Research Network Consortium. The integrative human microbiome project:dynamic analysis of microbiome-host omics profiles during periods of human health and disease[J]. Cell Host & Microbe, 2014,16(3):276-289. |
[6] | 周峰, 吴开春, 冉志华, 等. 中国炎症性肠病基因组学研究进展[C]. 中国消化系疾病学术大会, 2012. |
Zhou F, Wu KC, Ran ZH, et al. Progress of whole genome wide association study of inflammatory bowel disease in han Chinese in China[C]. The Congress of Gastroenterology China, 2012. | |
[7] | Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease[J]. Nature, 2001,411(6837):599-603. |
[8] |
Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease[J]. Nature, 2001,411(6837):603-606.
doi: 10.1038/35079114 URL pmid: 11385577 |
[9] | Ogura Y, Inohara N, Benito A, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB[J]. Journal of Biological Chemistry, 2001,276(7):4812-4818. |
[10] |
Hu S, Vich Vila A, Gacesa R, et al. Whole exome sequencing analyses reveal gene-microbiota interactions in the context of IBD[J]. Gut, 2020. DOI: 10.1136/gutjnl-2019-319706.
URL pmid: 33443020 |
[11] |
Huang H, Fang M, Jostins L, et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution[J]. Nature, 2017,547(7662):173-178.
doi: 10.1038/nature22969 URL pmid: 28658209 |
[12] |
Shaw KA, Cutler DJ, Okon D, et al. Genetics and pathogenesis of inflammatory bowel disease[J]. Nature, 2011,474:307-317.
doi: 10.1038/nature10209 URL pmid: 21677747 |
[13] |
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014,505(7484):559-563.
URL pmid: 24336217 |
[14] |
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes[J]. Science, 2011,334(6052):105-108.
doi: 10.1126/science.1208344 URL pmid: 21885731 |
[15] |
Legaki E, Gazouli M. Influence of environmental factors in the development of inflammatory bowel diseases[J]. World Journal of Gastrointestinal Pharmacology & Therapeutics, 2016,7(1):112-125.
doi: 10.4292/wjgpt.v7.i1.112 URL pmid: 26855817 |
[16] |
Van Speybroeck L. From epigenesis to epigenetics:the case of C. H. Waddington[J]. Annals of the New York Academy of Sciences, 2002,981:61-81.
URL pmid: 12547674 |
[17] |
Nimmo ER, Prendergast JG, Aldhous MC, et al. Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway[J]. Inflammatory Bowel Diseases, 2012,18(5):889-899.
URL pmid: 22021194 |
[18] | Kelly D, Kotliar M, Woo V, et al. Microbiota-sensitive epigenetic signature predicts inflammation in Crohn’s disease[J]. JCI Insight, 2018,3(18):1-14. |
[19] | Kim TO, Park DI, Han YK, et al. Genome-wide analysis of the DNA methylation profile identifies the fragile Histidine Triad(FHIT)gene as a new promising biomarker of crohn’s disease[J]. Journal of Clinical Medicine, 2020,9(5):1338. |
[20] | Clark PM, Dawany N, Dampier W, et al. Bioinformatics analysis reveals transcriptome and microRNA signatures and drug repositioning targets for IBD and other autoimmune diseases[J]. Inflammatory Bowel Diseases, 2012,18(12):2315-2333. |
[21] | Momozawa Y, Dmitrieva J, Théâtre E, et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes[J]. Nature Communications, 2018,9(1):2427. |
[22] |
Lin J, Welker NC, Zhao Z, et al. Novel specific microRNA biomarkers in idiopathic inflammatory bowel disease unrelated to disease activity[J]. Modern Pathology, 2014,27(4):602-608.
URL pmid: 24051693 |
[23] |
Seeley EH, Washington MK, Caprioli RM, et al. Proteomic patterns of colonic mucosal tissues delineate Crohn’s colitis and ulcerative colitis[J]. Proteomics Clinical Applications, 2013,7(7-8):541-549.
doi: 10.1002/prca.201200107 URL pmid: 23382084 |
[24] | Manfredi M, Conte E, Barberis E, et al. Integrated serum proteins and fatty acids analysis for putative biomarker discovery in inflammatory bowel disease[J]. Journal of Proteomics, 2019,195:138-149. |
[25] |
Di Narzo AF, Brodmerkel C, Telesco SE, et al. High-throughput identification of the plasma proteomic signature of inflammatory bowel disease[J]. J Crohns Colitis, 2019,13(4):462-471.
URL pmid: 30445421 |
[26] | Meuwis MA, Fillet M, Geurts P, et al. Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling[J]. Biochemical Pharmacology, 2007,73(9):1422-1433. |
[27] |
Vucelić B, Milicić D, Krznarić Z, et al. Serum acute phase proteins for determining disease activity of ulcerative colitis and Crohn disease[J]. Acta medica Austriaca, 1991,18(4):100-105.
URL pmid: 1722373 |
[28] | 赵芯梅, 智发朝, 杨小明, 等. 结肠vimentin降解在溃疡性结肠炎发病机制中的作用[J]. 现代消化及介入诊疗, 2009(3):145-147. |
Zhao XM, Zhi FC, Yang XM, et al. Degradation of vimentin in colonic musoca may participate in pathogenesis of ulcerative colitis[J]. Modern Digestion & Intervention, 2009(3):145-147. | |
[29] |
Kanmura S, Uto H, Numata M, et al. Human neutrophil peptides 1-3 are useful biomarkers in patients with active ulcerative colitis[J]. Inflammatory Bowel Diseases, 2009,15(6):909-917.
doi: 10.1002/ibd.20854 URL pmid: 19107772 |
[30] | Titz B, Gadaleta RM, Lo Sasso G, et al. Proteomics and lipidomics in inflammatory bowel disease research:From mechanistic insights to biomarker identification[J]. International Journal of Molecular Sciences, 2018,19(9):2775. |
[31] | Jansson J, Willing B, Lucio M, et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease[J]. PLoS One, 2009,4(7):e6386. |
[32] | Patti GJ, Yanes O, Siuzdak G. Innovation:Metabolomics:the apogee of the omics trilogy[J]. Nat Rev Mol Cell Biol, 2012,13(4):263-269. |
[33] |
Schicho R, Shaykhutdinov R, Ngo J, et al. Quantitative metabolomic profiling of serum, plasma, and urine by 1H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals[J]. Journal of Proteome Research, 2012,11(6):3344-3357.
URL pmid: 22574726 |
[34] | Wilson A, Teft WA, Morse BL, et al. Trimethylamine-N-oxide:A novel biomarker for the identification of inflammatory bowel disease[J]. Digestive Diseases and Ences, 2015,60(12):3620-3630. |
[35] |
Marchesi JR, Holmes E, Khan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease[J]. J Proteome Res, 2007,6(2):546-551.
doi: 10.1021/pr060470d URL pmid: 17269711 |
[36] |
Ananthakrishnan AN. Epidemiology and risk factors for IBD[J]. Nat Rev Gastroenterol Hepatol, 2015,12(4):205-217.
doi: 10.1038/nrgastro.2015.34 URL pmid: 25732745 |
[37] | Zhang S, Cao X, Huang H. Sampling strategies for three-dimensional spatial community structures in IBD microbiota research[J]. Frontiers in Cellular and Infection Microbiology, 2017,7:51. |
[38] | Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease[J]. Am J Gastroenterol, 2010,105(12):2687-2692. |
[39] | McGovern DP, Kugathasan S, Cho JH. Genetics of inflammatory bowel diseases[J]. Gastroenterology, 2015,149(5):1163-1176. |
[40] | De Souza HS, Fiocchi C. Immunopathogenesis of IBD:current state of the art[J]. Nat Rev Gastroenterol Hepatol, 2016,13(1):13-27. |
[41] | Acinas SG, Marcelino LA, Klepac-Ceraj V, et al. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons[J]. Journal of Bacteriology, 2004,186(9):2629-2635. |
[42] |
Zhou Y, Xu ZZ, He Y, et al. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction[J]. mSystems, 2018,3(1):e00188-17.
doi: 10.1128/mSystems.00188-17 URL pmid: 29404425 |
[43] |
Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chemistry & Biology, 1998,5(10):R245-R249.
URL pmid: 9818143 |
[44] | Douglas GM, Hansen R, Jones CMA, et al. Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn’s disease[J]. Microbiome, 2018,6(1):13. |
[45] | Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach[J]. Gut, 2006,55(2):205-211. |
[46] | Wasielewski H, Alcock J, Aktipis A. Resource conflict and cooperation between human host and gut microbiota:implications for nutrition and health[J]. Annals of the New York Academy of Sciences, 2016,1372(1):20-28. |
[47] | Wang Q, Liu X, Jiang L, et al. Interrogation of internal workings in microbial community assembly:play a game through a behavioral network[J]. mSystems, 2019,4(5):e00550-19. |
[48] |
Imhann F, Van der Velde KJ, Barbieri R, et al. The 1000IBD project:multi-omics data of 1000 inflammatory bowel disease patients;data release 1[J]. BMC Gastroenterol, 2019,19(1):5.
URL pmid: 30621600 |
[49] | Sadler T, Bhasin JM, Xu Y, et al. Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn’s disease-associated fibrosis[J]. Clin Epigenetics, 2016,8(1):30. |
[50] | Aschard H, Laville V, Tchetgen ET, et al. Genetic effects on the commensal microbiota in inflammatory bowel disease patients[J]. PLoS Genet, 2019,15(3):e1008018. |
[51] |
Turpin W, Espin-Garcia O, Xu W, et al. Association of host genome with intestinal microbial composition in a large healthy cohort[J]. Nat Genet, 2016,48(11):1413-1417.
URL pmid: 27694960 |
[52] |
Häsler R, Sheibani-Tezerji R, Sinha A, et al. Uncoupling of mucosal gene regulation, mRNA splicing and adherent microbiota signatures in inflammatory bowel disease[J]. Gut, 2017,66(12):2087-2097.
URL pmid: 27694142 |
[53] |
Santoru ML, Piras C, Murgia A, et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients[J]. Sci Rep, 2017,7(1):9523.
URL pmid: 28842640 |
[54] | Nusbaum DJ, Sun F, Ren J, et al. Gut microbial and metabolomic profiles after fecal microbiota transplantation in pediatric ulcerative colitis patients[J]. FEMS Microbiol Ecol, 2018, 94(9):fiy133. |
[55] |
Jin L, Li L, Hu C, et al. Integrative analysis of transcriptomic and proteomic profiling in inflammatory bowel disease colon biopsies[J]. Inflamm Bowel Dis, 2019,25(12):1906-1918.
URL pmid: 31173627 |
[56] |
Dai Y, Pei G, Zhao Z, et al. A convergent study of genetic variants associated with crohn’s disease:evidence from GWAS, gene expression, methylation, eQTL and TWAS[J]. Front Genet, 2019,10:318.
URL pmid: 31024628 |
[57] |
Aw W, Jia H, Lyu W, et al. Integrated omics profiling of dextran sodium sulfate-induced colitic mice supplemented with Wolfberry(Lycium barbarum)[J]. NPJ Sci Food, 2020,4:5.
URL pmid: 32258419 |
[58] | Lyu W, Jia H, Deng C, et al. Zeolite-containing mixture supplementation ameliorated dextran sodium sulfate-induced colitis in mice by suppressing the inflammatory bowel disease pathway and improving apoptosis in colon mucosa[J]. Nutrients, 2017,9(5):467. |
[59] |
Jia H, Hanate M, Aw W, et al. Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis[J]. Sci Rep, 2017,7:43993.
URL pmid: 28272447 |
[60] |
Knoch B, Barnett MP, Cooney J, et al. Dietary oleic acid as a control fatty acid for polyunsaturated fatty acid intervention studies:a transcriptomics and proteomics investigation using interleukin-10 gene-deficient mice[J]. Biotechnol J, 2010,5(11):1226-1240.
doi: 10.1002/biot.201000066 URL pmid: 20872728 |
[61] | Lyons J, Brubaker DK, Ghazi PC, et al. Integrated in vivo multiomics analysis identifies p21-activated kinase signaling as a driver of colitis[J]. Sci Signal, 2018,44(519):eaan3580. |
[62] | Jia H, Aw W, Hanate M, et al. Multi-faceted integrated omics analysis revealed parsley(Petroselinum crispum)as a novel dietary intervention in dextran sodium sulphate induced colitic mice[J]. Journal of Functional Foods, 2014,11:438-448. |
[63] |
Cooney JM, Barnett MP, Dommels YE, et al. A combined omics approach to evaluate the effects of dietary curcumin on colon inflammation in the Mdr1a(-/-)mouse model of inflammatory bowel disease[J]. J Nutr Biochem, 2016,27:181-192.
doi: 10.1016/j.jnutbio.2015.08.030 URL pmid: 26437580 |
[64] |
Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019,569(7758):655-662.
doi: 10.1038/s41586-019-1237-9 URL pmid: 31142855 |
[65] |
Alenghat T, Osborne LC, Saenz SA, et al. Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis[J]. Nature, 2013,504(7478):153-157.
doi: 10.1038/nature12687 URL |
[66] |
Li D, Achkar JP, Haritunians T, et al. A pleiotropic missense variant in SLC39A8 is associated with crohn’s disease and human gut microbiome composition[J]. Gastroenterology, 2016,151(4):724-732.
doi: 10.1053/j.gastro.2016.06.051 URL pmid: 27492617 |
[67] |
Erickson AR, Cantarel BL, Lamendella R, et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease[J]. PLoS One, 2012,7(11):e49138.
doi: 10.1371/journal.pone.0049138 URL pmid: 23209564 |
[68] |
Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease:current status and the future ahead[J]. Gastroenterology, 2014,146(6):1489-1499.
URL pmid: 24560869 |
[69] |
Weersma RK, Xavier RJ, Vermeir S, et al. Multiomics analyses to deliver the most effective treatment to every patient with inflammatory bowel disease[J]. Gastroenterology, 2018,155(5):e1-e4.
doi: 10.1053/j.gastro.2018.07.039 URL pmid: 30077628 |
[70] | Mills R, Dulai P, Vázquez-Baeza Y, et al. OP31 Meta-omics reveals microbiome-driven proteolysis as a contributing factor to the severity of ulcerative colitis disease activity[J]. Journal of Crohn’s and Colitis, 2020,14(S1):S30-31. |
[71] |
Heap GA, Weedon MN, Bewshea CM, et al. HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants[J]. Nature Genetics, 2014,46(10):1131-1134.
doi: 10.1038/ng.3093 URL pmid: 25217962 |
[72] |
Rueedi R, Ledda M, Nicholls AW, et al. Genome-wide association study of metabolic traits reveals novel gene-metabolite-disease links[J]. PLoS Genetics, 2014,10(2):e1004132.
doi: 10.1371/journal.pgen.1004132 URL pmid: 24586186 |
[73] |
Annese V. Genetics and epigenetics of IBD[J]. Pharmacological Research, 2020,159:104892.
URL pmid: 32464322 |
[74] |
Chan SN, Low END, Raja Ali RA, et al. Delineating inflammatory bowel disease through transcriptomic studies:current review of progress and evidence[J]. Intest Res, 2018,16(3):374-383.
doi: 10.5217/ir.2018.16.3.374 URL pmid: 30090036 |
[75] | Ahmed I, Roy BC, Khan SA, et al. Microbiome, metabolome and inflammatory bowel disease[J]. Microorganisms, 2016,4(2):20. |
[76] | Yoshida M, Hatano N, Nishiumi S, et al. Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography-mass spectrometry[J]. Journal of Gastroenterol, 2012,47(1):9-20. |
[77] | Nanau RM, Neuman MG. Metabolome and inflammasome in inflammatory bowel disease[J]. Transl Research, 2012,160(1):1-28. |
[78] | 翁文浩, 龙吟, 潘伟洁. 炎症性肠病生物标志物的研究进展[J]. 中华检验医学杂志, 2018,41(10):712-715. |
Weng WH, Long Y, Pan WJ. Biomarkers for inflammatory bowel disease:current updates and future outlook[J]. Chinese Journal of Laboratory Medicine, 2018,41(10):712-715. |
[1] | CHEN Cai-ping, REN Hao, LONG Teng-fei, HE Bing, LU Zhao-xiang, SUN Jian. Research Advances in the Treatment of Inflammation Bowel Disease Using Escherichia coli Nissle 1917 [J]. Biotechnology Bulletin, 2023, 39(6): 109-118. |
[2] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[3] | LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics [J]. Biotechnology Bulletin, 2022, 38(9): 17-27. |
[4] | WANG Ning, LI Hui-xiu, LI Ji, DING Guo-chun. Advances in Compost Regulation of Rhizospheric Microbiome to Suppress Plant Diseases [J]. Biotechnology Bulletin, 2022, 38(5): 4-12. |
[5] | YAN Cong-wen, SU Dai-fa, DAI Qing-zhong, ZHANG Zhen-rong, TIAN Yun-xia, DONG Qiong-e, ZHOU Wen-xing, CHEN Shan-yan, TONG Jiang-yun, CUI Xiao-long. Advances in Biological Control of Strawberry Diseases [J]. Biotechnology Bulletin, 2022, 38(12): 73-87. |
[6] | GAO Peng-fei, XI Fei-hu, ZHANG Ze-yu, HU Kai-qiang, CHEN Kai, WEI Wen-tao, DING Jia-zhi, GU Lian-feng. Research Progress of Plant VIGS Technology and Its Application in Forestry Science [J]. Biotechnology Bulletin, 2021, 37(5): 141-153. |
[7] | CHEN Si-qian, WU Bian, LIU Chen-jian, LI Xiao-ran. Research Advances on the Influence of Intestinal Microorganism on the Immune Effect of Vaccine [J]. Biotechnology Bulletin, 2021, 37(12): 220-226. |
[8] | LU Yu-fang, SHI Wei-ming. Rhizospheric Chemical Signals and Soil Nutrient Transformation [J]. Biotechnology Bulletin, 2020, 36(9): 14-24. |
[9] | SUN Yu, CHANG Jing-jing, TIAN Chun-jie. Technical Systems of Reorganization and Construction of Crop Rhizosphere Microbiome [J]. Biotechnology Bulletin, 2020, 36(9): 25-30. |
[10] | WANG Pan-pan, YANG Ye, LIU Di-qiu, CUI Xiu-ming, LIU Yuan. Application of Metagenomics in Plant Diseases Research [J]. Biotechnology Bulletin, 2020, 36(12): 146-154. |
[11] | WANG Dan-rui, SHEN Wen-li, WEI Zi-yan, WANG Shang, DENG Ye. Applications of Single-cell Sequencing Technology in Microbial Ecology [J]. Biotechnology Bulletin, 2020, 36(10): 237-246. |
[12] | LIU Ji-ai, SHU Ai-ping, LIU Guang-rong, LI Zu-zhang, LIU Zeng-bing, GAO Zheng. Research Progress on Effect of Fertilization on Soil Properties and Microbiome [J]. Biotechnology Bulletin, 2019, 35(9): 21-28. |
[13] | WU Qin-qin, SUN Min, CHEN Yu, FU Ya-qin, ZENG Bin, HE Bin. Strategies and Advances in Functional Genomics of Aspergillus oryzae [J]. Biotechnology Bulletin, 2019, 35(8): 186-192. |
[14] | YUAN Xue, QIAN Wan-qiang, GUO Xi-chuan, LU Yao, YAN Yun. Development Trend Analysis of Crop Genome Research Based on Bibliometrics [J]. Biotechnology Bulletin, 2019, 35(12): 118-128. |
[15] | LU Hong-sheng ZHANG Xue GAO Yu-ting SUN Pei-ming QIU Meng-meng. Identification,Fermentation and Biocontrol Efficiency of Trichoderma harzianum SKD-ZX-1 [J]. Biotechnology Bulletin, 2019, 35(11): 132-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||