Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (11): 142-157.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1173
Previous Articles Next Articles
WANG Hao(), TANG Lu-xin, MA Hong-fei, QIAN Kun, SI Jing(), CUI Bao-kai()
Received:
2021-09-13
Online:
2021-11-26
Published:
2021-12-03
Contact:
SI Jing,CUI Bao-kai
E-mail:15663733531@163.com;jingsi1788@126.com;cuibaokai@yahoo.com
WANG Hao, TANG Lu-xin, MA Hong-fei, QIAN Kun, SI Jing, CUI Bao-kai. Immobilization of Laccase from Trametes orientalis and Its Application for Decolorization of Multifarious Dyes[J]. Biotechnology Bulletin, 2021, 37(11): 142-157.
染料 Dye | 颜色索引编码 Color index No. | 颜色索引名称 Color index name | 化学结构 Chemical structure | 化学分类 Chemical class | 波长 Wave length /nm |
---|---|---|---|---|---|
活性亮蓝X-BR Reactive brilliant blue X-BR | 61205 | 活性蓝4 Reactive blue 4 | 蒽醌类 Anthraquinone | 603 | |
雷玛唑亮蓝R Remazol brilliant blue R | 61200 | 活性蓝19 Reactive blue 19 | 蒽醌类 Anthraquinone | 592 | |
酸性黑172 Acid black 172 | 15711 | 酸性黑172 Acid black 172 | 偶氮类(含金属) Azo(Metal-containing) | 597 | |
刚果红 Congo red | 22120 | 直接红28 Direct red 28 | 偶氮类 Azo | 497 | |
亚甲基蓝 Methylene blue | 52015 | 碱性蓝9 Basic blue 9 | 菁类 Cyanine | 664 | |
中性红 Neutral red | 50040 | 碱性红5 Basic red 5 | 杂环类 Heterocycle | 553 | |
靛蓝 Indigo blue | 73000 | 还原蓝1 Vat blue 1 | 靛蓝类 Indigo | 610 | |
萘酚绿B Naphthol green B | 10020 | 酸性绿1 Acid green 1 | 亚硝基类 (含金属) Nitroso(Metal-containing) | 714 | |
结晶紫 Crystal violet | 42555 | 碱性紫3 Basic violet 3 | 三苯甲烷类 Triphenylmethane | 595 |
Table 1 Dyes used in this study
染料 Dye | 颜色索引编码 Color index No. | 颜色索引名称 Color index name | 化学结构 Chemical structure | 化学分类 Chemical class | 波长 Wave length /nm |
---|---|---|---|---|---|
活性亮蓝X-BR Reactive brilliant blue X-BR | 61205 | 活性蓝4 Reactive blue 4 | 蒽醌类 Anthraquinone | 603 | |
雷玛唑亮蓝R Remazol brilliant blue R | 61200 | 活性蓝19 Reactive blue 19 | 蒽醌类 Anthraquinone | 592 | |
酸性黑172 Acid black 172 | 15711 | 酸性黑172 Acid black 172 | 偶氮类(含金属) Azo(Metal-containing) | 597 | |
刚果红 Congo red | 22120 | 直接红28 Direct red 28 | 偶氮类 Azo | 497 | |
亚甲基蓝 Methylene blue | 52015 | 碱性蓝9 Basic blue 9 | 菁类 Cyanine | 664 | |
中性红 Neutral red | 50040 | 碱性红5 Basic red 5 | 杂环类 Heterocycle | 553 | |
靛蓝 Indigo blue | 73000 | 还原蓝1 Vat blue 1 | 靛蓝类 Indigo | 610 | |
萘酚绿B Naphthol green B | 10020 | 酸性绿1 Acid green 1 | 亚硝基类 (含金属) Nitroso(Metal-containing) | 714 | |
结晶紫 Crystal violet | 42555 | 碱性紫3 Basic violet 3 | 三苯甲烷类 Triphenylmethane | 595 |
Fig. 1 Effects of concentrations of glutaraldehyde crosslinker on the activity of the immobilized laccase Tolacc-T@Chit@GA from the white rot fungus T. orientalis Different lowercase letters refer to significant difference(P<0.05),the same below
Fig. 5 Effects of pH on the activity of the free laccase Tolacc-T and immobilized laccase Tolacc-T@Chit@GA from the white rot fungus Trametes orientalis
Fig. 7 Effects of temperature on the activity of the free laccase Tolacc-T and immobilized laccase Tolacc-T@Chit@GA from the white rot fungus T. orientalis
Fig. 8 Effects of temperature on the stability of the free laccase Tolacc-T and immobilized laccase Tolacc-T@Chit@GA from the white rot fungus T. orientalis
Fig. 11 Decolorization of multifarious dyes by the free lacc-ase Tolacc-T and immobilized laccase Tolacc-T@Chit@GA from the white rot fungus T. orientalis
编号 No. | 主要片段m/z Main fragment | 化合物 Compound | 化学式 Chemical formula | CAS编码 CAS No. |
---|---|---|---|---|
1 | 143 | 1-萘胺 1-naphthylamine | 134-32-7 | |
2 | 144 | 2-萘酚 2-naphthol | 135-19-3 | |
3 | 159 | 1-氨基-2-萘酚 1-amino-2-naphthol | 2834-92-6 | |
4 | 173 | 1-亚硝基-2-萘酚 1-nitroso-2-naphthol | 131-91-9 | |
5 | 253 | 1-亚硝基-2-萘酚-6-磺酸 1-nitroso-2-naphthol-6-sulfonate | — |
Table 2 Partially metabolic by-products of naphthol green B after degradation by the immobilized laccase Tolacc-T@Chit@GA from the white rot fungus T. orientalis
编号 No. | 主要片段m/z Main fragment | 化合物 Compound | 化学式 Chemical formula | CAS编码 CAS No. |
---|---|---|---|---|
1 | 143 | 1-萘胺 1-naphthylamine | 134-32-7 | |
2 | 144 | 2-萘酚 2-naphthol | 135-19-3 | |
3 | 159 | 1-氨基-2-萘酚 1-amino-2-naphthol | 2834-92-6 | |
4 | 173 | 1-亚硝基-2-萘酚 1-nitroso-2-naphthol | 131-91-9 | |
5 | 253 | 1-亚硝基-2-萘酚-6-磺酸 1-nitroso-2-naphthol-6-sulfonate | — |
[1] |
Shakerian F, Zhao J, Li SP. Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants - A review[J]. Chemosphere, 2020, 239: 124716.
doi: S0045-6535(19)31946-0 pmid: 31521938 |
[2] | 司静, 崔宝凯, 贺帅, 等. 微酸多年卧孔菌产漆酶条件优化及其在染料脱色中的应用[J]. 应用与环境生物学报, 2011, 17(5): 736-741. |
Si J, Cui BK, He S, et al. Optimization of conditions for laccase production by Perenniporia subacida and its application in dye decolorization[J]. Chin J Appl Environ Biol, 2011, 17(5): 736-741. | |
[3] | 司静, 李伟, 崔宝凯, 等. 真菌漆酶性质、分子生物学及其应用研究进展[J]. 生物技术通报, 2011(2): 48-55. |
Si J, Li W, Cui BK, et al. Advances of research on characteristic, molecular biology and applications of laccase from fungi[J]. Biotechnol Bull, 2011(2): 48-55. | |
[4] |
吴怡, 马鸿飞, 曹永佳, 等. 真菌漆酶的性质、生产、纯化及固定化研究进展[J]. 生物技术通报, 2019, 35(9): 1-10.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0614 |
Wu Y, Ma HF, Cao YJ, et al. Advances on properties, production, purification and immobilization of fungal laccase[J]. Biotechnol Bull, 2019, 35(9): 1-10. | |
[5] |
吴怡, 马鸿飞, 曹永佳, 等. 白腐真菌落叶松锈迷孔菌产漆酶液体培养基的优化及其对染料的脱色作用[J]. 生物技术通报, 2020, 36(1): 45-59.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0974 |
Wu Y, Ma HF, Cao YJ, et al. Medium optimization for the laccase production by white rot fungus Porodaedalea laricis and its dye decolorizing capacity[J]. Biotechnol Bull, 2020, 36(1): 45-59. | |
[6] |
Thurston CF. The structure and function of fungal laccases[J]. Microbiology, 1994, 140(1): 19-26.
doi: 10.1099/13500872-140-1-19 URL |
[7] |
Baldrian P. Fungal laccases - occurrence and properties[J]. FEMS Microbiol Rev, 2006, 30(2): 215-242.
pmid: 16472305 |
[8] |
Claus H. Laccases:structure, reactions, distribution[J]. Micron, 2004, 35(1/2): 93-96.
doi: 10.1016/j.micron.2003.10.029 URL |
[9] |
Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, et al. Fungal laccases[J]. Fungal Biol Rev, 2013, 27(3/4): 67-82.
doi: 10.1016/j.fbr.2013.07.001 URL |
[10] |
Senthivelan T, Kanagaraj J, Panda RC. Recent trends in fungal laccase for various industrial applications:an eco-friendly approach - A review[J]. Biotechnol Bioprocess Eng, 2016, 21(1): 19-38.
doi: 10.1007/s12257-015-0278-7 URL |
[11] |
Mate DM, Alcalde M. Laccase:a multi-purpose biocatalyst at the forefront of biotechnology[J]. Microb Biotechnol, 2017, 10(6): 1457-1467.
doi: 10.1111/mbt2.2017.10.issue-6 URL |
[12] |
Cañas AI, Camarero S. Laccases and their natural mediators:biotechnological tools for sustainable eco-friendly processes[J]. Biotechnol Adv, 2010, 28(6): 694-705.
doi: 10.1016/j.biotechadv.2010.05.002 pmid: 20471466 |
[13] |
Si J, Peng F, Cui BK. Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens[J]. Bioresour Technol, 2013, 128: 49-57.
doi: 10.1016/j.biortech.2012.10.085 URL |
[14] |
Si J, Ma HF, Cao YJ, et al. Introducing a thermo-alkali-stable, metallic ion-tolerant laccase purified from white rot fungus Trametes hirsuta[J]. Front Microbiol, 2021, 12: 670163. DOI: 10.3389/fmicb.2021.670163.
doi: 10.3389/fmicb.2021.670163 URL |
[15] |
Si J, Wu Y, Ma HF, et al. Selection of a pH- and temperature-stable laccase from Ganoderma australe and its application for bioremediation of textile dyes[J]. J Environ Manag, 2021, 299: 113619.
doi: 10.1016/j.jenvman.2021.113619 URL |
[16] |
Pezzella C, Guarino L, Piscitelli A. How to enjoy laccases[J]. Cell Mol Life Sci, 2015, 72(5): 923-940.
doi: 10.1007/s00018-014-1823-9 pmid: 25577278 |
[17] |
Bilal M, Rasheed T, Nabeel F, et al. Hazardous contaminants in the environment and their laccase-assisted degradation - A review[J]. J Environ Manage, 2019, 234: 253-264.
doi: 10.1016/j.jenvman.2019.01.001 URL |
[18] |
Singh G, Arya SK. Utility of laccase in pulp and paper industry:a progressive step towards the green technology[J]. Int J Biol Macromol, 2019, 134: 1070-1084.
doi: 10.1016/j.ijbiomac.2019.05.168 URL |
[19] | 曹永佳, 马鸿飞, 崔宝凯, 等. 不同固体发酵培养基下三种白腐真菌分泌的木质纤维素酶活性[J]. 菌物学报, 2021, 40(5): 1123-1139. |
Cao YJ, Ma HF, Cui BK, et al. Lignocellulolytic enzyme activities of three white rot fungi under different solid-state fermentation media[J]. Mycosystema, 2021, 40(5): 1123-1139. | |
[20] |
Mikolasch A, Schauer F. Fungal laccases as tools for the synjournal of new hybrid molecules and biomaterials[J]. Appl Microbiol Biotechnol, 2009, 82(4): 605-624.
doi: 10.1007/s00253-009-1869-z pmid: 19183983 |
[21] |
Bilal M, Asgher M, Parra-Saldivar R, et al. Immobilized ligninolytic enzymes:an innovative and environmental responsive technology to tackle dye-based industrial pollutants - A review[J]. Sci Total Environ, 2017, 576: 646-659.
doi: 10.1016/j.scitotenv.2016.10.137 URL |
[22] |
Deska M, Kończak B. Immobilized fungal laccase as “green catalyst” for the decolourization process - State of the art[J]. Process Biochem, 2019, 84: 112-123.
doi: 10.1016/j.procbio.2019.05.024 URL |
[23] |
Cao SL, Xu P, Ma YZ, et al. Recent advances in immobilized enzymes on nanocarriers[J]. Chin J Catal, 2016, 37(11): 1814-1823.
doi: 10.1016/S1872-2067(16)62528-7 URL |
[24] |
Ashkan Z, Hemmati R, Homaei A, et al. Immobilization of enzymes on nanoinorganic support materials:an update[J]. Int J Biol Macromol, 2021, 168: 708-721.
doi: 10.1016/j.ijbiomac.2020.11.127 pmid: 33232698 |
[25] |
Daronch NA, Kelbert M, Pereira CS, et al. Elucidating the choice for a precise matrix for laccase immobilization:a review[J]. Chem Eng J, 2020, 397: 125506.
doi: 10.1016/j.cej.2020.125506 URL |
[26] |
Aggarwal S, Chakravarty A, Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies[J]. Int J Biol Macromol, 2021, 167: 962-986.
doi: 10.1016/j.ijbiomac.2020.11.052 pmid: 33186644 |
[27] |
Arica MY, Salih B, Celikbicak O, et al. Immobilization of laccase on the fibrous polymer-grafted film and study of textile dye degradation by MALDI-ToF-MS[J]. Chem Eng Res Des, 2017, 128: 107-119.
doi: 10.1016/j.cherd.2017.09.023 URL |
[28] |
Lellis B, Fávaro-Polonio CZ, Pamphile JA, et al. Effects of textile dyes on health and the environment and bioremediation potential of living organisms[J]. Biotechnol Res Innov, 2019, 3(2): 275-290.
doi: 10.1016/j.biori.2019.09.001 URL |
[29] |
Rovira J, Domingo JL. Human health risks due to exposure to inorganic and organic chemicals from textiles:a review[J]. Environ Res, 2019, 168: 62-69.
doi: 10.1016/j.envres.2018.09.027 URL |
[30] | Stoll VS, Blanchard JS. Buffers:principles and practice[J]. Methods Enzymol, 1990, 182: 24-38. |
[31] |
Lima VMG, Krieger N, Mitchell DA, et al. Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents[J]. Biochem Eng J, 2004, 18(1): 65-71.
doi: 10.1016/S1369-703X(03)00165-7 URL |
[32] |
Kalyani DC, Patil PS, Jadhav JP, et al. Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1[J]. Bioresour Technol, 2008, 99(11): 4635-4641.
doi: 10.1016/j.biortech.2007.06.058 URL |
[33] | 司静, 崔宝凯, 戴玉成. 栓孔菌属漆酶高产菌株的初步筛选及其产酶条件的优化[J]. 微生物学通报, 2011, 38(3): 405-416. |
Si J, Cui BK, Dai YC. Primary screening of effective Trametes strains with high laccase-productivity and optimization of conditions on laccase production[J]. Microbiol China, 2011, 38(3): 405-416. | |
[34] |
Zheng F, An Q, Meng G, et al. A novel laccase from white rot fungus Trametes orientalis:Purification, characterization, and application[J]. Int J Biol Macromol, 2017, 102: 758-770.
doi: S0141-8130(16)31601-4 pmid: 28455255 |
[35] |
Zheng F, Cui BK, Wu XJ, et al. Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes[J]. Int Biodeterior Biodegrad, 2016, 110: 69-78.
doi: 10.1016/j.ibiod.2016.03.004 URL |
[36] |
Aricov L, Leonties AR, Gîfu IC, et al. Enhancement of laccase immobilization onto wet chitosan microspheres using an iterative protocol and its potential to remove micropollutants[J]. J Environ Manage, 2020, 276: 111326.
doi: 10.1016/j.jenvman.2020.111326 URL |
[37] |
Yoshida H. —chemistry of lacquer(urushi). part I. communication from the chemical society of tokio[J]. J Chem Soc, Trans, 1883, 43: 472-486.
doi: 10.1039/CT8834300472 URL |
[38] | Bertrand G. Sur la presence simultanee de la laccase et de la tyrosinase dans le suc de quelques champignons[J]. Comptes Rendus Hebdomadaires des Seances de I'Academie des Sciences, 1896, 123: 463-465. |
[39] |
Tosa T, Mori T, Fuse N, et al. Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase[J]. Enzymologia, 1966, 31(4): 214-224.
pmid: 6005325 |
[40] |
Fernández-Fernández M, Sanromán MÁ, Moldes D. Recent developments and applications of immobilized laccase[J]. Biotechnol Adv, 2013, 31(8): 1808-1825.
doi: 10.1016/j.biotechadv.2012.02.013 pmid: 22398306 |
[41] |
Durán N, Rosa MA, D’Annibale A, et al. Applications of laccases and tyrosinases(phenoloxidases)immobilized on different supports:a review[J]. Enzyme Microb Technol, 2002, 31(7): 907-931.
doi: 10.1016/S0141-0229(02)00214-4 URL |
[42] |
Muxika A, Etxabide A, Uranga J, et al. Chitosan as a bioactive polymer:Processing, properties and applications[J]. Int J Biol Macromol, 2017, 105(pt 2): 1358-1368.
doi: S0141-8130(17)31757-9 pmid: 28735006 |
[43] |
Philibert T, Lee BH, Fabien N. Current status and new perspectives on chitin and chitosan as functional biopolymers[J]. Appl Biochem Biotechnol, 2017, 181(4): 1314-1337.
doi: 10.1007/s12010-016-2286-2 URL |
[44] |
Nunes YL, de Menezes FL, de Sousa IG, et al. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts:How to choose the best strategy?[J]. Int J Biol Macromol, 2021, 181: 1124-1170.
doi: 10.1016/j.ijbiomac.2021.04.004 pmid: 33864867 |
[45] |
Migneault I, Dartiguenave C, Bertrand MJ, et al. Glutaraldehyde:behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking[J]. Biotechniques, 2004, 37(5): 790-6, 798.
pmid: 15560135 |
[46] |
Rodrigues RC, Berenguer-Murcia Á, Carballares D, et al. Stabilization of enzymes via immobilization:Multipoint covalent attachment and other stabilization strategies[J]. Biotechnol Adv, 2021, 52: 107821.
doi: 10.1016/j.biotechadv.2021.107821 URL |
[47] |
Chen H, Zhang QH, Dang YC, et al. The effect of glutaraldehyde cross-linking on the enzyme activity of immobilized & beta-galactosidase on chitosan bead[J]. Adv J Food Sci Technol, 2013, 5(7): 932-935.
doi: 10.19026/ajfst.5.3185 URL |
[48] | 付文力, 杨学山, 杨孝朴, 等. 壳聚糖固定化羊血超氧化物歧化酶工艺条件优化及酶学性质比较研究[J]. 食品科学, 2013, 34(19): 219-223. |
Fu WL, Yang XS, Yang XP, et al. Optimization of process conditions for chitosan-immobilized SOD from sheep blood and its enzymatic characteristics[J]. Food Sci, 2013, 34(19): 219-223. | |
[49] |
Sun J, Yang L, Jiang M, et al. Stability and activity of immobilized trypsin on carboxymethyl chitosan-functionalized magnetic nanoparticles cross-linked with carbodiimide and glutaraldehyde[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1054: 57-63.
doi: 10.1016/j.jchromb.2017.04.016 URL |
[50] |
Gür SD, İdil N, Aksöz N. Optimization of enzyme co-immobilization with sodium alginate and glutaraldehyde-activated chitosan beads[J]. Appl Biochem Biotechnol, 2018, 184(2): 538-552.
doi: 10.1007/s12010-017-2566-5 URL |
[51] | Kaushal J, Seema, Singh G, et al. Immobilization of catalase onto chitosan and chitosan-bentonite complex:a comparative study[J]. Biotechnol Rep:Amst, 2018, 18: e00258. |
[52] |
Urrutia P, Bernal C, Wilson L, et al. Use of chitosan heterofunctionality for enzyme immobilization:β-galactosidase immobilization for galacto-oligosaccharide synjournal[J]. Int J Biol Macromol, 2018, 116: 182-193.
doi: 10.1016/j.ijbiomac.2018.04.112 URL |
[53] | 周蕊, 邢炎华, 王燕. 以壳聚糖-戊二醛为载体柔性固定假丝酵母脂肪酶Candida rugosa lipase[J]. 当代化工, 2019, 48(8): 1686-1689. |
Zhou R, Xing YH, Wang Y. Immobilization of Candida rugosa lipase by using chitosan-glutaraldehyde as support[J]. Contemp Chem Ind, 2019, 48(8): 1686-1689. | |
[54] |
Işık M. High stability of immobilized acetylcholinesterase on chitosan beads[J]. ChemistrySelect, 2020, 5(15): 4623-4627.
doi: 10.1002/slct.v5.15 URL |
[55] |
Mo H, Qiu J, Yang C, et al. Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde[J]. Enzyme Microb Technol, 2020, 138: 109561.
doi: 10.1016/j.enzmictec.2020.109561 URL |
[56] |
Soares AMBF, Gonçalves LMO, Ferreira RDS, et al. Immobilization of papain enzyme on a hybrid support containing zinc oxide nanoparticles and chitosan for clinical applications[J]. Carbohydr Polym, 2020, 243: 116498.
doi: 10.1016/j.carbpol.2020.116498 URL |
[57] | 李黎, 马力. 磁性壳聚糖微球固定化乳糖酶及其酶学性质[J]. 中国组织工程研究, 2021, 25(4): 576-581. |
Li L, Ma L. Immobilization of lactase on magnetic chitosan microspheres and its effect on enzymatic properties[J]. Chin J Tissue Eng Res, 2021, 25(4): 576-581. | |
[58] |
Lopes LA, Dias LP, da Costa HPS, et al. Immobilization of a peroxidase from Moringa oleifera Lam. roots(MoPOX)on chitosan beads enhanced the decolorization of textile dyes[J]. Process Biochem, 2021, 110: 129-141.
doi: 10.1016/j.procbio.2021.07.022 URL |
[59] |
Mohd Syukri MS, Rahman RA, Mohamad Z, et al. Optimization strategy for laccase immobilization on polyethylene terephthalate grafted with maleic anhydride electrospun nanofiber mat[J]. Int J Biol Macromol, 2021, 166: 876-883.
doi: 10.1016/j.ijbiomac.2020.10.244 URL |
[60] |
Maryšková M, Ardao I, García-González CA, et al. Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals[J]. Enzyme Microb Technol, 2016, 89: 31-38.
doi: 10.1016/j.enzmictec.2016.03.001 URL |
[61] |
Yang J, Lin Y, Yang X, et al. Degradation of tetracycline by immobilized laccase and the proposed transformation pathway[J]. J Hazard Mater, 2017, 322(pt b): 525-531.
doi: S0304-3894(16)30916-5 pmid: 27776862 |
[62] |
Ma HF, Meng G, Cui BK, et al. Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes:Laccase immobilization and characterization[J]. Chem Eng Res Des, 2018, 132: 664-676.
doi: 10.1016/j.cherd.2018.02.008 URL |
[63] |
Fortes CCS, Daniel-Da-silva AL, Xavier AMRB, et al. Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions[J]. Chem Eng Process:Process Intensif, 2017, 117: 1-8.
doi: 10.1016/j.cep.2017.03.009 URL |
[64] |
Silva C, Silva CJ, Zille A, et al. Laccase immobilization on enzymatically functionalized polyamide 6, 6 fibres[J]. Enzyme Microb Technol, 2007, 41(6/7): 867-875.
doi: 10.1016/j.enzmictec.2007.07.010 URL |
[65] |
Alver E, Metin AÜ. Chitosan based metal-chelated copolymer nanoparticles:Laccase immobilization and phenol degradation studies[J]. Int Biodeterior Biodegrad, 2017, 125: 235-242.
doi: 10.1016/j.ibiod.2017.07.012 URL |
[66] |
Muthuvelu KS, Rajarathinam R, Selvaraj RN, et al. A novel method for improving laccase activity by immobilization onto copper ferrite nanoparticles for lignin degradation[J]. Int J Biol Macromol, 2020, 152: 1098-1107.
doi: S0141-8130(19)35419-4 pmid: 31751696 |
[67] |
Jankowska K, Zdarta J, Grzywaczyk A, et al. Electrospun poly(methyl methacrylate)/polyaniline fibres as a support for laccase immobilisation and use in dye decolourisation[J]. Environ Res, 2020, 184: 109332.
doi: 10.1016/j.envres.2020.109332 URL |
[68] |
Keshvardoostchokami M, Majidi M, Zamani A, et al. Adsorption of phenol on environmentally friendly Fe3O4/ chitosan/ zeolitic imidazolate framework-8 nanocomposite:Optimization by experimental design methodology[J]. J Mol Liq, 2021, 323: 115064.
doi: 10.1016/j.molliq.2020.115064 URL |
[69] |
Tischer W, Kasche V. Immobilized enzymes:crystals or carriers?[J]. Trends Biotechnol, 1999, 17(8): 326-335.
pmid: 10407405 |
[70] |
Qiu X, Qin J, Xu M, et al. Organic-inorganic nanocomposites fabricated via functional ionic liquid as the bridging agent for laccase immobilization and its application in 2, 4-dichlorophenol removal[J]. Colloids Surf B Biointerfaces, 2019, 179: 260-269.
doi: 10.1016/j.colsurfb.2019.04.002 URL |
[71] |
Zhang K, Yang WZ, Liu Y, et al. Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol[J]. J Mol Struct, 2020, 1220: 128769.
doi: 10.1016/j.molstruc.2020.128769 URL |
[72] |
Xu R, Cui JY, Tang RZ, et al. Removal of 2, 4, 6-trichlorophenol by laccase immobilized on nano-copper incorporated electrospun fibrous membrane-high efficiency, stability and reusability[J]. Chem Eng J, 2017, 326: 647-655.
doi: 10.1016/j.cej.2017.05.083 URL |
[73] |
Mohammadi M, As’habi MA, Salehi P, et al. Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds[J]. Int J Biol Macromol, 2018, 109: 443-447.
doi: S0141-8130(17)33680-2 pmid: 29274421 |
[74] |
Zdarta J, Jankowska K, Wyszowska M, et al. Robust biodegradation of naproxen and diclofenac by laccase immobilized using electrospun nanofibers with enhanced stability and reusability[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109789.
doi: 10.1016/j.msec.2019.109789 URL |
[75] |
Zhang C, You S, Liu Y, et al. Construction of Luffa sponge-based magnetic carbon nanocarriers for laccase immobilization and its application in the removal of bisphenol A[J]. Bioresour Technol, 2020, 305: 123085.
doi: 10.1016/j.biortech.2020.123085 URL |
[76] |
Jankowska K, Grzywaczyk A, Piasecki A, et al. Electrospun biosystems made of nylon 6 and laccase and its application in dyes removal[J]. Environ Technol Innov, 2021, 21: 101332.
doi: 10.1016/j.eti.2020.101332 URL |
[77] |
Kashefi S, Borghei SM, Mahmoodi NM. Covalently immobilized laccase onto graphene oxide nanosheets:Preparation, characterization, and biodegradation of azo dyes in colored wastewater[J]. J Mol Liq, 2019, 276: 153-162.
doi: 10.1016/j.molliq.2018.11.156 |
[78] |
Aslam S, Asgher M, Khan NA, et al. Immobilization of Pleurotus nebrodensis WC 850 laccase on glutaraldehyde cross-linked chitosan beads for enhanced biocatalytic degradation of textile dyes[J]. J Water Process Eng, 2021, 40: 101971.
doi: 10.1016/j.jwpe.2021.101971 URL |
[79] |
Morsi R, Bilal M, Iqbal HMN, et al. Laccases and peroxidases:The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants[J]. Sci Total Environ, 2020, 714: 136572.
doi: 10.1016/j.scitotenv.2020.136572 URL |
[1] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[2] | WANG Yu-chen, DING Zun-dan, GUAN Fei-fei, TIAN Jian, LIU Guo-an, WU Ning-feng. Identification of the Thermostable Laccase Gene ba4 and Characterization of Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(8): 252-260. |
[3] | JIA Chen-bo, SU Yi-huang, MA Xiu-mei, WANG Chun-li, XU Chun-yan. Medium Optimization for Laccase Production by Acrophialophora sp. Z45 and Its Decolorization of Dyes [J]. Biotechnology Bulletin, 2022, 38(6): 252-260. |
[4] | MAO Guo-tao, WANG Jie, WANG Kai, WANG Fang-yuan, CAO Le-yan, ZHANG Hong-sen, SONG An-dong. Characterization of Laccase TaLac from Thermus aquaticus and Its Application in Removing Malachite Green Dye [J]. Biotechnology Bulletin, 2022, 38(4): 261-268. |
[5] | FU Ya-li, PENG Wan-li, LIN Shuang-jun, DENG Zi-xin, LIANG Ru-bing. Gene Cloning and Enzymatic Properties of the Short Chain Dehydrogenase SDR-X1 from Pseudomonas citronellolis SJTE-3 [J]. Biotechnology Bulletin, 2022, 38(3): 121-129. |
[6] | TIAN Jia-hui, FENG Jia-li, LU Jun-hua, MAO Lin-jing, HU Zhu-ran, WANG Ying, CHU Jie. Isolation,Purification and Characterization of Laccase LacT-1 from Cerrena unicolor [J]. Biotechnology Bulletin, 2021, 37(8): 186-194. |
[7] | SUN Bao-ting, QIU Meng-xia, WANG Zi-chen, WANG Zi-yuan, CUI Jian-dong, JIA Shi-ru. Preparation of @ZIF-8 Immobilized Enzyme by Using Cysteine as Auxiliary Reagent and Its Characterization [J]. Biotechnology Bulletin, 2021, 37(8): 221-232. |
[8] | CHEN Ming-yu, NI Xuan, SI You-bin, SUN Kai. Advances in the Application of Immobilized Fungal Laccase for the Bioremediation of Environmental Organic Contamination [J]. Biotechnology Bulletin, 2021, 37(6): 244-258. |
[9] | LU Shang-de, LIU Jing-jing, FENG Yi-ping, ZHAO Peng, XU Yang-cang. Study on Oxygen Release and Photosynthetic Rate of Immobilized Chlorella [J]. Biotechnology Bulletin, 2021, 37(3): 92-98. |
[10] | XIONG Xue, LI Peng, ZHANG Gui-he, XIANG Zhun, TAO Wen-Guang, ZHOU Guang-yan, HE Yao-wei. Effects of Different Cultivation Substrates on the Laccase Activities of Lentinula edodes During Liquid Fermentation [J]. Biotechnology Bulletin, 2021, 37(12): 50-59. |
[11] | WU Min, TANG Jie, HU Qiong, LEI Dan, ZHANG Qing. Effects of Surfactants on Deltamethrin Degradation by Acinetobacter junii LH-1-1 [J]. Biotechnology Bulletin, 2021, 37(1): 215-222. |
[12] | YUE Li-xiao, LI Deng-yun, ZHANG Jing-jing, TONG Lei. Isolation and Application Potential Exploration of a Diuron-degrading Bacterium [J]. Biotechnology Bulletin, 2020, 36(6): 110-119. |
[13] | CHEN Rui, QU Jia, SUN Xiao-yu, DENG Yuan, MEN Xin, ZHAO Ling-xia, SHEN Wei-rong. Isolation and Identification of Penicillium oxalicum SSCL-5 Degrading Cypermethrin and Its Biodegradation [J]. Biotechnology Bulletin, 2020, 36(6): 120-127. |
[14] | WANG Hui-lan, WU Jin-yong, CHEN Xiang-song, YUAN Li-xia, ZHU Wei-wei, YAO Jian-ming. Immobilization of N-acetylneuraminic Acid Aldolaseand Properties of the Immobilized Enzyme [J]. Biotechnology Bulletin, 2020, 36(6): 165-173. |
[15] | CHEN Hui-ling, ZHANG Qing-yun, SUN Kai. Laccase-Mediated Oxidative Coupling of Phenolic Compounds in vivo:from Fundamentals to Multifunctional Applications in Green Synthesis [J]. Biotechnology Bulletin, 2020, 36(5): 193-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||