Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (12): 220-226.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0162
Previous Articles Next Articles
CHEN Si-qian1(), WU Bian2, LIU Chen-jian1, LI Xiao-ran1()
Received:
2021-02-06
Online:
2021-12-26
Published:
2022-01-19
Contact:
LI Xiao-ran
E-mail:13710537583@sina.cn;LiXR@kust.edu.cn
CHEN Si-qian, WU Bian, LIU Chen-jian, LI Xiao-ran. Research Advances on the Influence of Intestinal Microorganism on the Immune Effect of Vaccine[J]. Biotechnology Bulletin, 2021, 37(12): 220-226.
Fig.1 The possible pathways of affecting vaccine effects in intestinal microorganism by affecting the host immune system BAs:Bile acids. BAMs:Bile acid metabolisms. SCFAs:Short chain fatty acids
[1] |
Yatsunenko T, Rey FE, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222-227.
doi: 10.1038/nature11053 URL |
[2] |
Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota[J]. PLoS Biol, 2007, 5(7):e177.
doi: 10.1371/journal.pbio.0050177 URL |
[3] | John P. Factors influencing the composition of the intestinal microbiota in early infancy[J]. Pediatrics, 2006(118):511-521. |
[4] |
Renz H, Skevaki C. Early life microbial exposures and allergy risks:opportunities for prevention[J]. Nat Rev Immunol, 2021, 21(3):177-191.
doi: 10.1038/s41577-020-00420-y URL |
[5] |
Fassarella M, Blaak EE, Penders J, et al. Gut microbiome stability and resilience:elucidating the response to perturbations in order to modulate gut health[J]. Gut, 2021, 70(3):595-605.
doi: 10.1136/gutjnl-2020-321747 URL |
[6] |
Harris V, Armah G, et al. The infant gut microbiome correlates significantly with rotavirus vaccine response in rural ghana[J]. The Journal of infectious diseases, 2017, 215(1):34-41.
doi: 10.1093/infdis/jiw518 URL |
[7] |
Huda MN, Lewis Z, et al. Stool microbiota and vaccine responses of infants[J]. Pediatrics, 2014, 134(2):e362-e372.
doi: 10.1542/peds.2013-3937 URL |
[8] | 朱群, 常娟, 尹清强, 等. 益生菌对乳仔猪生长性能及肠道免疫和微生物区系的影响[R]. 中国畜牧兽医学会动物营养学分会第十二次动物营养学术研讨会, 武汉, 2015. |
Zhu Q, Chang J, Yi QQ, et al. Effects of probiotics on growth performance, intestinal immunity and microflora of piglets[R]. The 12th animal nutrition Symposium of animal nutrition branch of Chinese society of animal husbandry and veterinary. Wuhan, 2015 | |
[9] |
Liu CJ, Tang XD, Yu J, et al. Gut microbiota alterations from different Lactobacillus probiotic-fermented yoghurt treatments in slow-transit constipation[J]. J Funct Foods, 2017, 38:110-118.
doi: 10.1016/j.jff.2017.08.037 URL |
[10] | Li XR, Liu CJ, et al. Gut microbiota alterations from three-strain yogurt formulation treatments in slow-transit constipation[J]. Can J Infect Dis Med Microbiol, 2020: 4583973. |
[11] | 孟菲, 王春凤, 等. 益生菌与肠上皮细胞间相互作用和免疫调节机制研究进展[J]. 食品科学, 2013, 34(21):394-398. |
Meng F, Wang CF, Yang GL. Mechanisms of interaction between probiotics and intestinal epithelial cells and immune regulation[J]. Food Sci, 2013, 34(21):394-398.
doi: 10.1111/jfds.1969.34.issue-5 URL |
|
[12] |
Galdeano CM, et al. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity[J]. Clin Vaccine Immunol, 2006, 13(2):219-226.
doi: 10.1128/CVI.13.2.219-226.2006 URL |
[13] |
Valdez Y, et al. Influence of the microbiota on vaccine effectiveness[J]. Trends Immunol, 2014, 35(11):526-537.
doi: 10.1016/j.it.2014.07.003 pmid: 25113637 |
[14] |
Donohoe DR, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metab, 2011, 13(5):517-526.
doi: 10.1016/j.cmet.2011.02.018 pmid: 21531334 |
[15] |
Rosshart SP, Herz J, Vassallo BG, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses[J]. Science, 2019, 365(6452):eaaw4361.
doi: 10.1126/science.aaw4361 URL |
[16] |
Ekmekciu I, von Klitzing E, Fiebiger U, et al. Immune responses to broad-spectrum antibiotic treatment and fecal microbiota transplantation in mice[J]. Front Immunol, 2017, 8:397.
doi: 10.3389/fimmu.2017.00397 pmid: 28469619 |
[17] |
Hagan T, Cortese M, Rouphael N, et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans[J]. Cell, 2019, 178(6):1313-1328.e13.
doi: 10.1016/j.cell.2019.08.010 URL |
[18] |
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1):55-71.
doi: 10.1038/s41579-020-0433-9 URL |
[19] |
Brown JM, Hazen SL. Microbial modulation of cardiovascular disease[J]. Nat Rev Microbiol, 2018, 16(3):171-181.
doi: 10.1038/nrmicro.2017.149 pmid: 29307889 |
[20] |
Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8):461-478.
doi: 10.1038/s41575-019-0157-3 URL |
[21] |
Chiang JYL. Bile acids:regulation of synjournal:thematic review series:bile acids[J]. J Lipid Res, 2009(10):1955-1966.
doi: 10.1194/jlr.R900010-JLR200 pmid: 19346330 |
[22] |
Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota[J]. Pathogens, 2013, 3(1):14-24.
doi: 10.3390/pathogens3010014 URL |
[23] |
Kuipers F, de Boer JF, Staels B. Microbiome modulation of the host adaptive immunity through bile acid modification[J]. Cell Metab, 2020, 31(3):445-447.
doi: 10.1016/j.cmet.2020.02.006 URL |
[24] | 赵圆圆, 朱云, 高树娟, 等. 胆汁酸与肠道微生物相互影响及其在疾病中的作用[J]. 医学综述, 2020, 26(14):2743-2747, 2752. |
Zhao YY, Zhu Y, Gao SJ, et al. Interaction between bile acids and intestinal microorganisms and its role in disease[J]. Med Recapitul, 2020, 26(14):2743-2747, 2752. | |
[25] |
Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis[J]. Nature, 2020, 577(7790):410-415.
doi: 10.1038/s41586-019-1865-0 URL |
[26] |
Ramanan D, Sefik E, Galván-Peña S, et al. An immunologic mode of multigenerational transmission governs a gut treg setpoint[J]. Cell, 2020, 181(6):1276-1290.e13.
doi: 10.1016/j.cell.2020.04.030 URL |
[27] |
Zimmermann J, et al. Breast milk modulates transgenerational immune inheritance[J]. Cell, 2020, 181(6):1202-1204.
doi: S0092-8674(20)30625-5 pmid: 32497500 |
[28] | 李庆军, 曲新艳. 肠道微生物对疾病发生发展和中药代谢的影响[J]. 生物技术通讯, 2019, 30(4):571-578. |
Li QJ, Qu XY. Effects of gut microbiota on diseases and traditional Chinese medicine action[J]. Lett Biotechnol, 2019, 30(4):571-578.
doi: 10.1007/s10529-007-9594-0 URL |
|
[29] | 曹伟宇, 冯斌, 等. 肠道菌群/肝药酶系对天然皂苷类成分的代谢研究进展[J]. 中国药房, 2016, 27(28):3999-4002. |
Cao WY, Feng B, Wang XJ. Research Progress on metabolism of natural saponins by intestinal flora / hepatic drug enzymes[J]. China Pharm, 2016, 27(28):3999-4002. | |
[30] | 王艳, 舒健, 张宸, 等. 肠道微生物蛋白糖基化修饰的研究进展[J]. 微生物学通报, 2020, 47(1):253-262. |
Wang Y, Shu J, Zhang C, et al. New progress of protein glycosylation modification in gut microbes[J]. Microbiol China, 2020, 47(1):253-262. | |
[31] | Maini Rekdal V, Bess EN, Bisanz JE, et al. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism[J]. Science, 2019, 364(6445). |
[32] |
Zimmermann M, Zimmermann-Kogadeeva M, et al. Separating host and microbiome contributions to drug pharmacokinetics and toxicity[J]. Science, 2019, 363(6427):eaat9931.
doi: 10.1126/science.aat9931 URL |
[33] |
Xu J, Chen HB, Li SL. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota[J]. Med Res Rev, 2017, 37(5):1140-1185.
doi: 10.1002/med.2017.37.issue-5 URL |
[34] | 李康, 聂玉强. 肠道微生物代谢与药物治疗相关性研究进展[J]. 现代消化及介入诊疗, 2017, 22(5):756-759. |
Li K, Nie YQ. Research progress on the relationship between intestinal microbial metabolism and drug therapy[J]. Mod Dig Interv, 2017, 22(5):756-759. | |
[35] |
Mahowald MA, Rey FE, Seedorf H, et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial Phyla[J]. PNAS, 2009, 106(14):5859-5864.
doi: 10.1073/pnas.0901529106 pmid: 19321416 |
[36] |
Liu CJ, Liang X, Niu ZY, et al. Is the delivery mode a critical factor for the microbial communities in the meconium?[J]. EBioMedicine, 2019, 49:354-363.
doi: 10.1016/j.ebiom.2019.10.045 URL |
[37] |
Allaire JM, Crowley SM, Law HT, et al. The intestinal epithelium:central coordinator of mucosal immunity[J]. Trends Immunol, 2018, 39(9):677-696.
doi: 10.1016/j.it.2018.04.002 URL |
[38] |
Richards JL, Yap YA, et al. Dietary metabolites and the gut microbiota:an alternative approach to control inflammatory and autoimmune diseases[J]. Clin Transl Immunology, 2016, 5(5):e82.
doi: 10.1038/cti.2016.29 URL |
[39] |
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease[J]. Nature, 2008, 453(7195):620-625.
doi: 10.1038/nature07008 URL |
[40] |
Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota[J]. Science, 2011, 332(6032):974-977.
doi: 10.1126/science.1206095 pmid: 21512004 |
[41] |
Schluter J, Peled JU, Taylor BP, et al. The gut microbiota is associated with immune cell dynamics in humans[J]. Nature, 2020, 588(7837):303-307.
doi: 10.1038/s41586-020-2971-8 URL |
[1] | WANG Xiang-kun, SONG Xue-hong, LIU Jin-long, GUO Pei-hong, ZHUANG Xiao-feng, WEI Liang-meng, ZHOU Fan, ZHANG Shu-yu, GAO Pan-pan, WEI Kai. Novel Coronavirus Subunit Vaccine and Screening of Its Efficient Immune Enhancer [J]. Biotechnology Bulletin, 2023, 39(1): 305-314. |
[2] | WEN Ya-ya, SONG Li, WANG Qiao-ju, PAN Zhi-ming, JIAO Xin-an. Research Status and Challenges of COVID-19 Vaccine [J]. Biotechnology Bulletin, 2022, 38(7): 136-145. |
[3] | MA Fang-fang, KANG Bi-jing, MA Chun-ying, LIU Zhen-bin, YANG Di, QIAO Zi-lin, WANG Ming-ming, MA Zhong-ren, WANG Jia-min. Research Progress in Vero Cell-based Influenza Vaccine [J]. Biotechnology Bulletin, 2022, 38(12): 137-143. |
[4] | ZHANG Ai-lian, BA Xue-li, WANG Dan-yang, ZHAO Bing. Effects of Crude Polysaccharide from Cistanche deserticola in Xinjiang on Foot-and-Mouth Disease Viral Vaccine Antibody and T cell Subgroup [J]. Biotechnology Bulletin, 2021, 37(9): 212-218. |
[5] | YIN Jun-lei, ZHANG Yan-fang, ZOU Fan-yu, PAN Peng-tao, DUAN Yan-hong, QIU Shu-xing. Construction and Immunoprotection of sptP Deletion Mutant of Salmonella Pullorum [J]. Biotechnology Bulletin, 2021, 37(2): 122-128. |
[6] | LIANG Wang-wang, LI Cheng-long, CHEN Wen-zhi, FENG Zhi-hua, CAI Shao-li, CHEN Qi. Construction of Recombinant Pseudorabies Virus Expressing CD2v and P12 Proteins of African Swine Fever Virus [J]. Biotechnology Bulletin, 2021, 37(12): 132-140. |
[7] | HU Feng, WANG Qing, LI Ying-ying, ZENG Wei-wei, WANG Gao-xue, ZHU Bin, WANG Ying-ying, YIN Ji-yuan. Construction of Single-walled Carbon Nanotube-loaded Koi Herpes Virus ORF149 Nucleic Acid Vaccine [J]. Biotechnology Bulletin, 2020, 36(2): 206-213. |
[8] | LIU Shi-xu ,WANG Qing ,FANG Zhen-zhen ,CHANG Ou-qin ,ZENG Wei-wei ,HUANG Zhi-bin. Research Advance on Oral Vaccine for Aquatic Animals [J]. Biotechnology Bulletin, 2018, 34(6): 30-37. |
[9] | LIU Rong-rong. Research and Development Progress on Plant-made Pharmaceuticals [J]. Biotechnology Bulletin, 2017, 33(9): 17-22. |
[10] | LIU Xiang-meng, YU Ya-dong, WANG Shao-wei, YU Xiao-lin, WANG Rui-ming. Preparation of a Novel Aβ42 Oligomer Mimotope Vaccine [J]. Biotechnology Bulletin, 2017, 33(12): 87-92. |
[11] | MA Xiao-ling, LIU Hong-chun, LI Jiang-wei. Development of a Lentivirus Vector-based Vaccine Carrying Follicle-stimulating Hormone Receptor and Assay of Its Immunological Effect [J]. Biotechnology Bulletin, 2016, 32(3): 148-154. |
[12] | Wang Zhongliang, Wang Bei, Lu Yishan, Wu Zaohe. Development Status and Trend Analysis in Aquaculture Vaccines [J]. Biotechnology Bulletin, 2015, 31(6): 55-59. |
[13] | Zhang Jialin, Li Yang, Li Qiang. Advances of Glycoprotein of Spring Viremia of Carp Virus(SVCV) [J]. Biotechnology Bulletin, 2014, 0(5): 20-24. |
[14] | Han Qinggong, Zheng Yushu. Research Advance of RNAi in Anti-influenza Virus [J]. Biotechnology Bulletin, 2014, 0(12): 55-60. |
[15] | Tian Yuanyuan, Ye Xing, Zhang Lili . Purification,Tag and Method for Detection of Grass Carp Serum IgM [J]. Biotechnology Bulletin, 2013, 0(4): 194-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||