Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (3): 185-197.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0952
Previous Articles Next Articles
QIAO Zi-peng1(), WANG Qi-zhi1(), YANG Dao-mao1, RUAN Li-ping2
Received:
2020-07-31
Online:
2021-03-26
Published:
2021-04-02
Contact:
WANG Qi-zhi
E-mail:qzphqu138@163.com;wqz@hqu.edu.cn
QIAO Zi-peng, WANG Qi-zhi, YANG Dao-mao, RUAN Li-ping. Research Progress in Fungi-mediated Biosynthesis of Sliver Nanoparticles[J]. Biotechnology Bulletin, 2021, 37(3): 185-197.
真菌 | 形状 | 尺寸 | 合成位点 | 参考文献 |
---|---|---|---|---|
粉节皮菌(Arthroderma fulvum) | 球形 | 20.56 | 胞外 | [ |
烟曲霉菌(Aspergillus fumigatus BTCB10) | 球形 | 0.681 | 胞外 | [ |
米曲霉(Aspergillus oryzae MTCC No.1846) | 球形 | 7-27 | 胞外 | [ |
土曲霉(Aspergillus terreus) | 球形 | 45.2 | 胞外 | [ |
可可毛色二孢菌(BotryospHaeria rhodian) | 球形 | 2-50 | 胞外 | [ |
芽枝状枝孢(Cladosporium cladosporioides) | - | 30-60 | 胞外 | [ |
Colletotrichum incarnatum DM16.3 | 球形 | 5-25 | 胞外 | [ |
刺盘孢属(Colleotrichum sp. ALF2-6) | 球形、近球形、三角形、六角形 | 20-50 | 胞外 | [ |
嗜线虫真菌(Duddingtonia flagans) | 球形 | 11.38 | 胞外 | [ |
尖孢镰刀菌(Fusarium oxysporum) | 球形 | 24 | 胞外 | [ |
芒果球座菌(Guignardia mangiferae) | 球形 | 5-30 | 胞外 | [ |
玫烟色棒束孢(Isaria fumosorosea) | 球形 | 51.31-111.02 | 胞外 | [ |
色二孢(Lasiodiplodia theobromae) | 球形 | 62.77103 66.75-111.23 | 胞内 胞外 | [ |
马利亚霉菌(Mariannaea sp. HJ) | 球形、伪球形、棒状 | 15 | 胞内 | [ |
产黄青霉(Penicillium chrysogenum FGCC/BLS1) | 椭球形 | 96.8 | 胞外 | [ |
柑橘青霉菌(Penicillium italicum) | 球形 | 33 | 胞外 | [ |
草酸青霉菌(Penicillium oxalicum) | 球形 | 4 | 胞外 | [ |
草酸青霉菌(Penicillium oxalicum GRS-1) | 球形 | 10-40 | 胞内 | [ |
波兰青霉(Penicillium polonicum ARA 10) | 球形 | 10-15 | 胞外 | [ |
枫香拟茎点霉(Phomopsis liquidambaris) | 球形 | 18.7 | 胞外 | [ |
平菇菌(Pleurotus ostreatus) | 球形 | < 40 | - | [ |
匍枝根霉(Rhizopus stolonifera) | 球形 | 2.86 | 胞外 | [ |
链霉菌属(Streptomyces sp. VSMGT1014) | 球形 | - | 胞外 | [ |
Talaromyces purpureogenus | 球形、三角形 | < 50 | 胞内 | [ |
深绿木霉(Trichoderma atroviride) | 球形 | 10-15 | 胞外 | [ |
钩状木霉(Trichoderma hamatum) | 球形 | 6.69 | 胞外 | [ |
哈茨木霉菌(Trichoderma harzianum) | - | 57.02± 1.75-81.84± 0.67 | 胞外 | [ |
长枝木霉(Trichoderma longibrachiatum) | 球形 | 24.43 | 胞外 | [ |
里氏木霉(Trichoderma reesei) | 球形 | 15-25 | 胞外 | [ |
绿色木霉菌(Trichoderma viride) | 球形 | 3-16 | 胞外 | [ |
真菌 | 形状 | 尺寸 | 合成位点 | 参考文献 |
---|---|---|---|---|
粉节皮菌(Arthroderma fulvum) | 球形 | 20.56 | 胞外 | [ |
烟曲霉菌(Aspergillus fumigatus BTCB10) | 球形 | 0.681 | 胞外 | [ |
米曲霉(Aspergillus oryzae MTCC No.1846) | 球形 | 7-27 | 胞外 | [ |
土曲霉(Aspergillus terreus) | 球形 | 45.2 | 胞外 | [ |
可可毛色二孢菌(BotryospHaeria rhodian) | 球形 | 2-50 | 胞外 | [ |
芽枝状枝孢(Cladosporium cladosporioides) | - | 30-60 | 胞外 | [ |
Colletotrichum incarnatum DM16.3 | 球形 | 5-25 | 胞外 | [ |
刺盘孢属(Colleotrichum sp. ALF2-6) | 球形、近球形、三角形、六角形 | 20-50 | 胞外 | [ |
嗜线虫真菌(Duddingtonia flagans) | 球形 | 11.38 | 胞外 | [ |
尖孢镰刀菌(Fusarium oxysporum) | 球形 | 24 | 胞外 | [ |
芒果球座菌(Guignardia mangiferae) | 球形 | 5-30 | 胞外 | [ |
玫烟色棒束孢(Isaria fumosorosea) | 球形 | 51.31-111.02 | 胞外 | [ |
色二孢(Lasiodiplodia theobromae) | 球形 | 62.77103 66.75-111.23 | 胞内 胞外 | [ |
马利亚霉菌(Mariannaea sp. HJ) | 球形、伪球形、棒状 | 15 | 胞内 | [ |
产黄青霉(Penicillium chrysogenum FGCC/BLS1) | 椭球形 | 96.8 | 胞外 | [ |
柑橘青霉菌(Penicillium italicum) | 球形 | 33 | 胞外 | [ |
草酸青霉菌(Penicillium oxalicum) | 球形 | 4 | 胞外 | [ |
草酸青霉菌(Penicillium oxalicum GRS-1) | 球形 | 10-40 | 胞内 | [ |
波兰青霉(Penicillium polonicum ARA 10) | 球形 | 10-15 | 胞外 | [ |
枫香拟茎点霉(Phomopsis liquidambaris) | 球形 | 18.7 | 胞外 | [ |
平菇菌(Pleurotus ostreatus) | 球形 | < 40 | - | [ |
匍枝根霉(Rhizopus stolonifera) | 球形 | 2.86 | 胞外 | [ |
链霉菌属(Streptomyces sp. VSMGT1014) | 球形 | - | 胞外 | [ |
Talaromyces purpureogenus | 球形、三角形 | < 50 | 胞内 | [ |
深绿木霉(Trichoderma atroviride) | 球形 | 10-15 | 胞外 | [ |
钩状木霉(Trichoderma hamatum) | 球形 | 6.69 | 胞外 | [ |
哈茨木霉菌(Trichoderma harzianum) | - | 57.02± 1.75-81.84± 0.67 | 胞外 | [ |
长枝木霉(Trichoderma longibrachiatum) | 球形 | 24.43 | 胞外 | [ |
里氏木霉(Trichoderma reesei) | 球形 | 15-25 | 胞外 | [ |
绿色木霉菌(Trichoderma viride) | 球形 | 3-16 | 胞外 | [ |
[1] |
Ovais M, Khaliy AT, Islam NU, et al. Role of plant phytochemicals and microbial enzymes in biosynjournal of metallic nanoparticles[J]. Applied Microbiology and Biotechnology, 2018,102:6799-6814.
doi: 10.1007/s00253-018-9146-7 URL pmid: 29882162 |
[2] |
Yaqoob AA, Parveen T, Umar K, et al. Role of nanomaterials in the treatment of wastewater:A review[J]. Water, 2020,12(2):495.
doi: 10.3390/w12020495 URL |
[3] |
Sang J, Aisawa S, Hirahara H, et al. Self-reduction and size controlled synjournal of silver nanoparticles on carbon nanospheres by grafting triazine-based molecular layer for conductivity improvement[J]. Applied Surface Science, 2016,364:110-116.
doi: 10.1016/j.apsusc.2015.11.233 URL |
[4] |
Bhattarai B, Chakraborty I, Conn BE, et al. High-yield paste-based synjournal of thiolate-protected silver nanoparticles[J]. Journal of Physical Chemistry C, 2017,121(20):10964-10970.
doi: 10.1021/acs.jpcc.6b12427 URL |
[5] | Sarkar AK, Saha A, Midya L, et al. Cross-linked biopolymer stabilized exfoliated titanate nanosheet-supported AgNPs:A green sustainable ternary nanocomposite hydrogel for catalytic and antimicrobial activity[J]. Acs Sustainable Chemistry, 2017,5(2):1881-1891. |
[6] | Grand View Research. Silver nanoparticles market by application(electronics and electrical, healthcare, food and beverages, textiles)and segment forecasts to 2022[R]. San Francisco, 2015. |
[7] |
Ahmed S, Ahmad M, Swami BL, et al. Review on plants extract mediated synjournal of silver nanoparticles for antimicrobial applications:a green expertise[J]. Journal of Advanced Research, 2016,7(1):17-28.
doi: 10.1016/j.jare.2015.02.007 URL pmid: 26843966 |
[8] |
Al-Dhabi NA, Ghilan A-KM, Esmail GA, et al. Environmental friendly synjournal of silver nanomaterials from the promising Streptomyces parvus strain Al-Dhabi-91 recovered from the saudi arabian marine regions for antimicrobial and antioxidant properties[J]. Journal of Photochemistry and Photobiology B:Biology, 2019,197:111529.
doi: 10.1016/j.jphotobiol.2019.111529 URL |
[9] | 朱炯霖, 李红, 秦圆, 等. 棉织物的纳米银多功能整理[J]. 精细化工, 2020,37(6):1274-1281. |
Zhu JH, Li H, Qin Y, et al. Nano-silver multifunctional finishing of cotton fabric[J]. Fine Chemicals, 2020,37(6):1274-1281. | |
[10] |
Shah A, Lutfullah G, Ahmad K, et al. Daphne mucronata -mediated phytosynjournal of silver nanoparticles and their novel biological applications, compatibility and toxicity studies[J]. Green Chemistry Letters and Reviews, 2018,11(3):318-333.
doi: 10.1080/17518253.2018.1502365 URL |
[11] |
Durán N, Marcato PD, Durán M, et al. Mechanistic aspects in the biogenic synjournal of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants[J]. Applied Microbiology and Biotechnology, 2011,90(5):1609-1624.
doi: 10.1007/s00253-011-3249-8 URL |
[12] |
Jiménez Pérez ZE, Mathiyalagan R, Markus J, et al. Ginseng-berry-mediated gold and silver nanoparticle synjournal and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines[J]. International Journal of Nanomedicine, 2017,12:709-723.
doi: 10.2147/IJN.S118373 URL pmid: 28260881 |
[13] |
Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts:scope an application[J]. Nanoscale Research Letters, 2016,11(1):98.
doi: 10.1186/s11671-016-1311-2 URL |
[14] |
Guilger-Casagrande M, Lima RD. Synjournal of silver nanoparticles mediated by fungi:A review[J]. Frontiers in Bioengineering and Biotechnology, 2019,7:287.
URL pmid: 31696113 |
[15] |
Alghuthaymi MA, Almoammar H, Rai M, et al. Myconanoparticles:synjournal and their role in phytopathogens management[J]. Biotechnology & Biotechnological Equipment, 2015,29(2):221-236.
doi: 10.1080/13102818.2015.1008194 URL pmid: 26019636 |
[16] |
Prasad R, Pandey R, Barman I. Engineering tailored nanoparticles with microbes:quo vadis?[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2015,8(2):316-330.
doi: 10.1002/wnan.1363 URL pmid: 26271947 |
[17] |
Netala V, Bethu M, Pushpalatha B, et al. Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities[J]. International Journal of Nanomedicine, 2016,11:5683-5696.
doi: 10.2147/IJN.S112857 URL pmid: 27826190 |
[18] |
Rahman S, Rahman L, Khalil AT, et al. Endophyte-mediated synjournal of silver nanoparticles and their biological applications[J]. Applied Microbiology and Biotechnology, 2019,103:2551-2569.
URL pmid: 30721330 |
[19] |
Azmath P, Baker S, Rakshith D, et al. Mycosynjournal of silver nanoparticles bearing antibacterial activity[J]. Saudi Pharmaceutical Journal, 2016,24(2):140-146.
doi: 10.1016/j.jsps.2015.01.008 pmid: 27013906 |
[20] | Prasad R. Fungal nanotechnology:applications in agriculture, industry, and medicine[M]. Singapore:Springer Nature, 2017, 35-55. |
[21] |
Wang L, He D, Gao S, et al. Biosynjournal of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium[J]. International Journal of Nanomedicine, 2016,11:1899-1906.
doi: 10.2147/IJN.S98339 URL pmid: 27217752 |
[22] | Shahzad A, Saeed H, Iqtedar M, et al. Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10:likely antibacterial and cytotoxic effects[J]. Journal of Nanomaterials, 2019: 5168698. |
[23] | Phanjom P, Ahmed G. Effect of different physicochemical conditions on the synjournal of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae(MTCC No. 1846)and their antibacterial effect[J]. Advances in Natural Sciences Nanoscience and Nanotechnology, 2017,8(4):1-13. |
[24] | Ali AAM, Mohamed MA, Hussein HM. Antifungal activity of different size controlled stable silver nanoparticles biosynthesized by the endophytic fungus Aspergillus terreus[J]. Journal of Phytopathology and Pest Management, 2018,5(2):88-107. |
[25] |
Akther T, Mathipi V, Kumar NS, et al. Fungal-mediated synjournal of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis[J]. Environmental Science and Pollution Research, 2019,26:13649-13657.
doi: 10.1007/s11356-019-04718-w URL pmid: 30919178 |
[26] |
Hulikere MM, Joshi CG. Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus-Cladosporium cladosporioides[J]. Process Biochemistry, 2019,82:199-204.
doi: 10.1016/j.procbio.2019.04.011 URL |
[27] |
Chandankere R, Chelliah J, Subban K, et al. Pleiotropic functions and biological potentials of silver nanoparticles synthesized by an endophytic fungus[J]. Frontiers in Bioengineering and Biotechnology, 2020,8:95.
doi: 10.3389/fbioe.2020.00095 pmid: 32154230 |
[28] |
Costa Silva LP, Oliveira JP, Keijok WJ, et al. Extracellular biosynjournal of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans[J]. International Journal of Nanomedicine, 2017,12:6373-6381.
doi: 10.2147/IJN.S137703 URL pmid: 28919741 |
[29] |
Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, et al. Controlled biosynjournal of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2016,45(8):1588-1596.
doi: 10.1080/21691401.2016.1267011 URL pmid: 27966375 |
[30] |
Balakumaran MD, Ramachandran R, Kalaichelvan PT. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synjournal of silver nanoparticles and their in vitro biological activities[J]. Microbiological Research, 2015,178:9-17.
doi: 10.1016/j.micres.2015.05.009 pmid: 26302842 |
[31] |
Banu AN, Balasubramanian C. Optimization and synjournal of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes[J]. Parasitology Research, 2014,113(10):3843-3851.
URL pmid: 25085201 |
[32] |
Vardhana J, Kathiravan G, Magesh CR. Biosynjournal of silver nanoparticles from endophytic fungi, and its cytotoxic activity[J]. Bionanoscience, 2019,9(3):573-57.
doi: 10.1007/s12668-019-00631-1 URL |
[33] | 杨婧, 林宇星, 刘莘轶, 等. 利用Mariannaea sp. HJ菌株胞内提取物合成纳米银及其抗菌特性研究[J]. 微生物学报, 2020,60(4):749-758. |
Yang J, Lin YX, Liu XY, et al. Biosynjournal of silver nanoparticles by the cell-free extracts of Mariannaea sp. HJ and their antimicrobial characteristics research[J]. Acta Microbiologica Sinica, 2020,60(4):749-758. | |
[34] |
Saxena J, Sharma P, Singh A. Biomimetic synjournal of silver nanoparticles from Penicillium chrysogenum strain FGCC/BLS1 by optimizing physico-cultural conditions and assessment of their antimicrobial potential[J]. IET Nanobiotechnology, 2016,11(5):576-583.
doi: 10.1049/iet-nbt.2016.0097 URL pmid: 28745292 |
[35] |
Nayak BK, Nanda A, Prabhakar V. Biogenic synjournal of silver nanoparticle from wasp nest soil fungus, Penicillium italicum and its analysis against multi drug resistance pathogens[J]. Biocatalysis and Agricultural Biotechnology, 2018,16:412-418.
doi: 10.1016/j.bcab.2018.09.014 URL |
[36] |
Du L, Xu Q, Huang M, et al. Synjournal of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue[J]. Materials Chemistry and Physics, 2015,160:40-47.
doi: 10.1016/j.matchemphys.2015.04.003 URL |
[37] | Rose GK, Soni R, Rishi P, et al. Optimization of the biological synjournal of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens[J]. Green Processing and Synjournal, 2019,8(1):144-156. |
[38] |
Neethu S, Midhun SJ, Sunil MA, et al. Efficient visible light induced synjournal of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium[J]. Journal of Photochemistry and Photobiology B:Biology, 2018,180:175-185.
doi: 10.1016/j.jphotobiol.2018.02.005 URL |
[39] |
Seetharaman PK, Chandrasekaran R, Gnanasekar S, et al. Antimicrobial and larvicidal activity of eco-friendly silver nanoparticles synthesized from endophytic fungi Phomopsis liquidambaris[J]. Biocatalysis and Agricultural Biotechnology, 2018,16:22-30.
doi: 10.1016/j.bcab.2018.07.006 URL |
[40] |
Al-Bahrani R, Raman J, Lakshmanan H, et al. Green synjournal of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria[J]. Materials Letters, 2017,186:21-25.
doi: 10.1016/j.matlet.2016.09.069 URL |
[41] |
AbdelRahim K, Mahmoud SY, Ali AM. Extracellular biosynjournal of silver nanoparticles using Rhizopus stolonifer[J]. Saudi Journal of Biological Sciences, 2017,24(1):208-216.
doi: 10.1016/j.sjbs.2016.02.025 pmid: 28053592 |
[42] | Shanmugaiah V, Harikrishnan H, Al-harbi, NS, et al. Facile synjournal of silver nanoparticles using streptomyces sp. vsmgt1014 and their antimicrobial efficiency[J]. Digest Journal of Nanomaterials and Biostructures, 2015,10(1):179-187. |
[43] |
Hu X, Saravanakumar K, Jin T, et al. Mycosynjournal, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus[J]. International Journal of Nanomedicine, 2019,14:3427-3438.
doi: 10.2147/IJN.S200817 URL pmid: 31190801 |
[44] |
Abdel-Azeem A, Nada AA, O’Donovan A, et al. Mycogenic silver nanoparticles from endophytic Trichoderma atroviride with antimicrobial activity[J]. Journal of Renewable Materials, 2020,8(2):171-185.
doi: 10.32604/jrm.2020.08960 URL |
[45] |
张杰, 张映, 郭瑞, 等. 钩状木霉生物合成纳米银及其杀菌性能[J]. 微生物学通报, 2016,43(2):386-393.
doi: 10.13344/j.microbiol.china.150328 URL |
Zhang J, Zhang Y, Guo R, et al. Biosynjournal of silver nanoparticles using Trichoderma hamatum and antibacterial activity[J]. Microbiology China, 2016,43(2):386-393. | |
[46] |
Guilger-Casagrande M, Germano-Costa T, Pasquoto-Stigliani T, et al. Biosynjournal of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum[J]. Scientific Reports, 2019,9(1):14351.
doi: 10.1038/s41598-019-50871-0 pmid: 31586116 |
[47] |
Elamawi RM, Al-Harbi RE, Hendi AA. Biosynjournal and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi[J]. Egyptian Journal of Biological Pest Control, 2018,28:28.
doi: 10.1186/s41938-018-0028-1 URL |
[48] |
Gemishev O, Panayotova MI, Mintcheva N, et al. A green approach for silver nanoparticles preparation by cell-free extract from Trichoderma reesei fungi and their characterization[J]. Materials Research Express, 2019,6(9):95040.
doi: 10.1088/2053-1591/ab2e6a URL |
[49] |
Othman AM, Elsayed MA, Elshafei AM, et al. Application of response surface methodology to optimize the extracellular fungal mediated nanosilver green synjournal[J]. Journal of Genetic Engineering and Biotechnology, 2017,15(2):497-504.
doi: 10.1016/j.jgeb.2017.08.003 URL pmid: 30647692 |
[50] |
Ganesh Babu MM, Gunasekaran P. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate[J]. Colloids and Surfaces B:Biointerfaces, 2009,74(1):191-195.
doi: 10.1016/j.colsurfb.2009.07.016 URL pmid: 19660920 |
[51] | Deobagkar D, Kulkarni R, Shaiwale N, et al. Synjournal and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity[J]. International Journal of Nanomedicine, 2015(10):963-974. |
[52] |
Rajput S, Werezuk R, Lange RM, et al. Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability[J]. Langmuir, 2016,32(34):8688-8697.
doi: 10.1021/acs.langmuir.6b01813 pmid: 27466012 |
[53] |
Ma L, Su W, Liu JX, et al. Optimization for extracellular biosynjournal of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions[J]. Materials Science and Engineering C, 2017,77:963-971.
doi: 10.1016/j.msec.2017.03.294 URL pmid: 28532117 |
[54] |
Ahluwalia V, Kumar J, Sisodia R, et al. Green synjournal of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia[J]. Industrial Crops and Products, 2014,55:202-206.
doi: 10.1016/j.indcrop.2014.01.026 URL |
[55] |
Husseiny SM, Salah TA, Anter HA. Biosynjournal of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities[J]. Beni Suef University Journal of Basic and Applied Sciences, 2015,4(3):225-231.
doi: 10.1016/j.bjbas.2015.07.004 URL |
[56] |
Hasnain MS, Javed MN, Alam MS, et al. Purple heart plant leaves extract-mediated silver nanoparticle synjournal:optimization by box-behnken design[J]. Materials Science & Engineering C, 2019,99:1105-1114.
doi: 10.1016/j.msec.2019.02.061 URL pmid: 30889643 |
[57] |
Birla SS, Gaikwad SC, Gade AK, et al. Rapid synjournal of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions[J]. Scientific World Journal, 2013. DOI: 10.1155/2013/796018.
doi: 10.1155/2021/8891563 URL pmid: 33628142 |
[58] |
Ashrafi SJ, Rastegar MF, Ashrafi M, et al. Influence of external factors on the production and morphology of biogenic silver nanocrystallites[J]. Journal of Nanoscience and Nanotechnology, 2013,13(3):2295-2301.
doi: 10.1166/jnn.2013.6791 URL pmid: 23755682 |
[59] |
Zomorodian K, Pourshahid S, Sadatsharifi A, et al. Biosynjournal and characterization of silver nanoparticles by Aspergillus species[J]. Biomed Research International, 2016. DOI: 10.1155/2016/5435397.
doi: 10.1155/2021/5543520 URL pmid: 33778065 |
[60] | 张青山, 岳秀萍. 纳米银粒子的生物制备及应用研究进展[J]. 材料导报, 2014,28(1):53-58. |
Zhang QS, Yue XP. Research progress of biological preparation and application of silver nanoparticles[J]. Materials Reports, 2014,28(1):53-58. | |
[61] |
Lee S, Jun B. Silver Nanoparticles:Synjournal and application for nanomedicine[J]. International Journal of Molecular Sciences, 2019,20(4):865.
doi: 10.3390/ijms20040865 URL |
[62] |
Salunke BK, Sawant SS, Lee SI, et al. Microorganisms as efficient biosystem for the synjournal of metal nanoparticles:current scenario and future possibilities[J]. World Journal of Microbiology and Biotechnology, 2016,32(5):88.
doi: 10.1007/s11274-016-2044-1 URL |
[63] |
Barabadi H, Ovais M, Shinwari ZK, et al. Anti-cancer green bionanomaterials:present status and future prospects[J]. Green Chemistry Letters and Reviews, 2017,10(4):285-314.
doi: 10.1080/17518253.2017.1385856 URL |
[64] |
Zhao X, Zhou L, Riaz Rajoka MS, et al. Fungal silver nanoparticles:synjournal, application and challenges[J]. Critical Reviews in Biotechnology, 2018,38(6):817-835.
doi: 10.1080/07388551.2017.1414141 URL pmid: 29254388 |
[65] |
Korbekandi H, Ashari Z, Iravani S, et al. Optimization of biological synjournal of silver nanoparticles using Fusarium oxysporum[J]. Iranian Journal of Pharmaceutical Research Ijpr, 2013,12(3):289-298.
URL pmid: 24250635 |
[66] |
Mukherjee P, Roy M, Mandal BP, et al. Green synjournal of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum[J]. Nanotechnology, 2008,19(7):75103.
doi: 10.1088/0957-4484/19/7/075103 URL |
[67] |
Chowdhury S, Basu A, Kundu S. Green synjournal of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina(Tassi)Goid with antimicrobial properties against multidrug-resistant bacteria[J]. Nanoscale Research Letters, 2014,9(1):365.
doi: 10.1186/1556-276X-9-365 URL pmid: 25114655 |
[68] |
Zhang XF, Liu ZG, Shen W, et al. Silver nanoparticles:synjournal, characterization, properties, applications, and therapeutic approaches[J]. International Journal of Molecular Sciences, 2016,17(9):1534.
doi: 10.3390/ijms17091534 URL |
[69] |
Singh T, Jyoti K, Patnaik A, et al. Biosynjournal, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus[J]. Journal of Genetic Engineering and Biotechnology, 2017,15(1):31-39.
URL pmid: 30647639 |
[70] |
Arun G, Eyini M, Gunasekaran P. Green synjournal of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications[J]. Biotechnology and Bioprocess Engineering, 2014,19(6):1083-1090.
doi: 10.1007/s12257-014-0071-z URL |
[71] |
Tamayo LA, Zapata PA, Vejar ND, et al. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes[J]. Materials Science and Engineering C, 2014,40:24-31.
doi: 10.1016/j.msec.2014.03.037 URL pmid: 24857461 |
[72] |
Dakal TC, Kumar A, Majumdar RS, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles[J]. Frontiers in Microbiology, 2016,7:1831.
doi: 10.3389/fmicb.2016.01831 URL pmid: 27899918 |
[73] |
Vijayakumar PS, Prasad BLV. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents[J]. Langmuir:the Acs Journal of Surfaces and Colloids, 2009,25(19):11741-11747.
doi: 10.1021/la901024p URL pmid: 19746940 |
[74] | Narasimha G. Antiviral activity of silver nanoparticles synthesized by fungal strain Aspergillus niger[J]. Journal of Nanoscience & Nanotechnology, 2012,6(1):18-20. |
[75] | Gaikwad S, Ingle A, Gade A, et al. Antiviral activity of mycosynth-esized silver nanoparticles against Herpes Simplex virus and Human Parainfluenza virus type 3[J]. International Journal of Nanomedicine, 2013,8(1):4303-4314. |
[76] |
Ortega FG, Fernández-Baldo M, Fernández J, et al. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast[J]. International Journal of Nanomedicine, 2015,10:2021-2031.
URL pmid: 25844035 |
[77] |
Han J, Gurunathan S, Jeong JK, et al. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial[J]. Nanoscale Research Letters, 2014,9:459-473.
doi: 10.1186/1556-276X-9-459 URL pmid: 25242904 |
[78] |
Taha ZK, Hawar SN, Sulaiman GM. Extracellular biosynjournal of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities[J]. Biotechnology Letters, 2019,41:899-914.
URL pmid: 31201601 |
[79] |
Sulaiman GM, Hussein HT, Saleem MMNM. Biosynjournal of silver nanoparticles synthesized by Aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties[J]. Bulletin of Materials Science, 2015,38(3):639-644.
doi: 10.1007/s12034-015-0905-0 URL |
[80] | Kim SH, Lee HS, Ryu DS. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli[J]. Korean Journal of Microbiology and Biotechnology, 2011,39:77-85. |
[81] | Chen D, Qiao X, Qiu X, et al. Synjournal and electrical properties of uniform silver nanoparticles for electronic applications[J]. Journal of Materials Science, 2009,44:1076-1081. |
[82] | Abd El-Aziz ARM, Al-Othman MR, Mahmoud MA, et al. Biosynjournal of silver nanoparticles using Fusarium solani and its impact on grain borne fungi[J]. Digest Journal of Nanomaterials and Biostructures, 2015,10(2):655-662. |
[83] | 曲明星, 姚薇, 高增贵, 等. 木霉菌辅助合成纳米银对甜瓜的防病促生作用研究[J]. 生态环境学报, 2020,29(1):149-155. |
Qu MX, Yao W, Gao ZG, et al. Effects of Trichoderma strains biosynthetic silver nanoparticles on the growth-promotion and disease-control for melon[J]. Ecology and Environmental sciences, 2020,29(1):149-155. | |
[84] | Gherbawy Y, Shalaby I, El-sadek M, et al. The anti-fasciolasis properties of silver nanoparticles produced by Trichoderma harzianum and their improvement of the anti-fasciolasis drug triclabendazole[J]. International Journal of Molecular Sciences, 2013,14(11):21887-21898. |
[85] | Fouda A, Hassan SE-D, Abdo AM, et al. Antimicrobial, antioxidant and larvicidal cctivities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp.[J]. Biological Trace Element Research, 2019,195(2):707-724. |
[86] | Mishra S, Yang X, Singh HB. Evidence for positive response of soil bacterial community structure and functions to biosynthesized silver nanoparticles:An approach to conquer nanotoxicity?[J]. Journal of Environmental Management, 2020,253:109584. |
[87] | Różalska S, Soliwoda K, Dlugonski J. Synjournal of silver nanopar-ticle by Metarhizium robertsii waste biomass extract after nonylph-enol degradation and its antimicrobial and catalytic potential[J]. RSC Advances, 2016,6(26):21475-21485. |
[88] | Rajegaonkar PS, Deshpande BA, More MS, et al. Catalytic reduction of p-nitrophenol and methylene blue by microbiologically synthesized silver nanoparticles[J]. Materials Science and Engineering C, 2018,93:623-629. |
[89] | Zhao X, Zhang J, Wang B, et al. Biochemical synjournal of Ag/AgCl nanoparticles for visible-light-driven photocatalytic removal of colored dyes[J]. Materials, 2015,8(5):2043-2053. |
[90] |
Fayaz M, Tiwary CS, Kalaichelvan PT, et al. Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride[J]. Colloids and Surfaces B:Biointerfaces, 2010,75(1):175-178.
URL pmid: 19783414 |
[91] | Zheng D, Hu C, Gan T, et al. Preparation and application of a novel vanillin sensor based on biosynjournal of Au-Ag alloy nanoparticles[J]. Sensors and Actuators B-chemical, 2010,148(1):247-252. |
[92] |
Mohanta YK, Panda SK, Bastia AK, et al. Biosynjournal of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control[J]. Frontiers in Microbiology, 2017,8:626.
URL pmid: 28458659 |
[1] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[2] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[3] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[4] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[5] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[6] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[7] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[8] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[9] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[10] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[11] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[12] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[13] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[14] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[15] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||