Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (4): 224-233.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0863
Previous Articles Next Articles
TIAN Lu(), WU Mi, GOU Jing-xuan, GONG Guo-li()
Received:
2020-07-13
Online:
2021-04-26
Published:
2021-05-13
Contact:
GONG Guo-li
E-mail:tianlu@sust.edu.cn;guoligong@sust.edu.cn
TIAN Lu, WU Mi, GOU Jing-xuan, GONG Guo-li. Research and Application Progress of Bacteriocin[J]. Biotechnology Bulletin, 2021, 37(4): 224-233.
Class | 细菌素的特征Characteristics of bacteriocins | 举例Examples | 参考文献Reference | |
---|---|---|---|---|
I | Ia | 羊毛硫细菌素(<5 kD含有羊毛硫氨酸和β-甲基羊毛硫氨酸的肽) Lantibiotics(< 5 kD peptides containing lanthionine and β - methyllanthionine) | Nisin | [5] |
Ib | 含有labyrinthin和labionin的碳环羊毛硫细菌素 Carbacyclic lantibiotics containing labyrinthin and labionin | Labyrinthopeptin A1 | [15] | |
Ic | Sactibiotics(发夹结构和硫键) Sactibiotics(hairpin structure and disulfide bond) | Thuricin CD | [16] | |
II | IIa | 主要由Pediococcus、Lactobacillus、Leuconostoc和Enterococcus菌株产生,热稳定性小分子多肽,具有抗单核细胞增生李斯特菌活性 Small heat-stable peptides with anti Listeria monocytogenes activity, mainly produced by strains of Pediococcus, Lactobacillus, Leuconostoc and Enterococcus | Acidocin A, bavaricin A and pediocin PA-1 | [17-18] |
IIb | 两肽细菌素,其活性取决于两种肽的互补作用 The activity of dipeptide bacteriocin depends on the complementary action of the two peptides | Lactococcin G, lactacin F and plantaricin J/K | [19-20] | |
IIc | N和C末端共价连接的环状细菌素 N-terminal and C-terminal covalently linked circular bacteriocins | Acidocin B, gassericin A and uberolysin | [21-22] | |
IId | 未修饰的,线性的,非类片菌素 Unmodified, linear, non pediocin-like bacteriocins | Lacticin Z, carnobacteriocin A and enterocin Q | [12,23] | |
III | 大而(> 30 kD)热不稳定细菌素,主要由乳杆菌产生 Large molecules(> 30 kD)sensitive to heat, mainly produced by Lactobacillus | Lactacin B, helveticin J and enterolysin A | [13] |
Table 1 Classification and properties of bacteriocins
Class | 细菌素的特征Characteristics of bacteriocins | 举例Examples | 参考文献Reference | |
---|---|---|---|---|
I | Ia | 羊毛硫细菌素(<5 kD含有羊毛硫氨酸和β-甲基羊毛硫氨酸的肽) Lantibiotics(< 5 kD peptides containing lanthionine and β - methyllanthionine) | Nisin | [5] |
Ib | 含有labyrinthin和labionin的碳环羊毛硫细菌素 Carbacyclic lantibiotics containing labyrinthin and labionin | Labyrinthopeptin A1 | [15] | |
Ic | Sactibiotics(发夹结构和硫键) Sactibiotics(hairpin structure and disulfide bond) | Thuricin CD | [16] | |
II | IIa | 主要由Pediococcus、Lactobacillus、Leuconostoc和Enterococcus菌株产生,热稳定性小分子多肽,具有抗单核细胞增生李斯特菌活性 Small heat-stable peptides with anti Listeria monocytogenes activity, mainly produced by strains of Pediococcus, Lactobacillus, Leuconostoc and Enterococcus | Acidocin A, bavaricin A and pediocin PA-1 | [17-18] |
IIb | 两肽细菌素,其活性取决于两种肽的互补作用 The activity of dipeptide bacteriocin depends on the complementary action of the two peptides | Lactococcin G, lactacin F and plantaricin J/K | [19-20] | |
IIc | N和C末端共价连接的环状细菌素 N-terminal and C-terminal covalently linked circular bacteriocins | Acidocin B, gassericin A and uberolysin | [21-22] | |
IId | 未修饰的,线性的,非类片菌素 Unmodified, linear, non pediocin-like bacteriocins | Lacticin Z, carnobacteriocin A and enterocin Q | [12,23] | |
III | 大而(> 30 kD)热不稳定细菌素,主要由乳杆菌产生 Large molecules(> 30 kD)sensitive to heat, mainly produced by Lactobacillus | Lactacin B, helveticin J and enterolysin A | [13] |
[1] |
Eijlander RT, Abee T, Kuipers OP, et al. Bacterial spores in food:how phenotypic variability complicates prediction of spore properties and bacterial behavior[J]. Current Opinion in Biotechnology, 2011,22(2):180-186.
doi: 10.1016/j.copbio.2010.11.009 pmid: 21134736 |
[2] |
Todorov SD, Leblanc JG, Franco BDGM, et al. Evaluation of the probiotic potential and effect of encapsulation on survival for Lactobacillus plantarum ST16Pa isolated from papaya[J]. World Journal of Microbiology and Biotechnology, 2012,28(3):973-984.
doi: 10.1007/s11274-011-0895-z URL |
[3] |
Walsh CJ, Guinane CM, Hill C, et al. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database[J]. BMC Microbiology, 2015,15(1):183.
doi: 10.1186/s12866-015-0515-4 URL |
[4] | 匡珍, 李学英, 徐春霞, 等. 乳酸菌细菌素研究进展及其在水产养殖和加工中的应用[J]. 食品工业科技, 2019,40(4):292-298. |
Kuang Z, Li XY, Xu CX, et al. Research progress of bacteriocins from lactic acid bacteria and its application in aqua culture and pocessing[J]. Science and Technology of Food Industry, 2019,40(4):292-298. | |
[5] |
Szabo EA, Cahill ME. Nisin and ALTA(TM)2341 inhibit the growth of Listeria monocytogenes on smoked salmon packaged under vacuum or 100% CO2[J]. Letters in Applied Microbiology, 1999,28(5):373-377.
doi: 10.1046/j.1365-2672.1999.00547.x URL |
[6] |
Oppegard C, Rogne P, Emanuelsen L, et al. The two-peptide class II bacteriocins:structure, production, and mode of action[J]. Journal of Molecular Microbiology and Biotechnology, 2007,13(4):210-219.
doi: 10.1159/000104750 URL |
[7] | Noda M, Miyauchi R, Danshiitsoodol N, et al. Expression of genes involved in bacteriocin production and self-resistance in Lactobacillus brevis 174A is mediated by two regulatory proteins[J]. Applied and Environmental Microbiology, 2018,84(7):2707-2717. |
[8] | Moll GN, Konings WN, Driessen AJM, et al. Bacteriocins:mechanism of membrane insertion and pore formation[J]. Molecular Microbiology, 1999,76(1-4):185-198. |
[9] |
Okuda K, Zendo T, Sugimoto S, et al. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm[J]. Antimicrobial Agents and Chemotherapy, 2013,57(11):5572-5579.
doi: 10.1128/AAC.00888-13 URL |
[10] | Parada JL, Caron CR, Medeiros ABP, et al. Bacteriocins from lactic acid bacteria:purification, properties and use as biopreservatives[J]. Brazilian Archives of Biology and Technology, 2007,50(3):521-542. |
[11] |
Drider D, Fimland G, Hechard Y, et al. The continuing story of class IIa bacteriocins[J]. Microbiology and Molecular Biology, 2006,70(2):564-582.
doi: 10.1128/MMBR.00016-05 URL |
[12] | O’Shea EF, O’Connor PM, O’Sullivan O, et al. Bactofencin A, a new type of cationic bacteriocin with unusual immunity[J]. mBio, 2013,4(6):498-513. |
[13] | Sun Z, Wang X, Zhang X, et al. Class III bacteriocin helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane[J]. Industrial Microbiology and Biotechnology, 2018,45(3):227-231. |
[14] | Gulluce M, Karadayi M, Baris O, et al. Bacteriocins:promising antimicrobials. Microbial pathogens and strategies for combating them[M] // A. Mendes-Vilas(Ed.), Science, Technology and Education, FORMATEX, Madrid, Spain, 2013: 1016-1027. |
[15] |
Ferir G, Petrova MI, Andrei G, et al. The lantibiotic peptide labyrithopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications[J]. PLoS One, 2013,8(5):e64010.
doi: 10.1371/journal.pone.0064010 URL |
[16] |
Mathur H, O’Connor PM, Cotter PD, et al. Heterologous expression of thuricin CD immunity genes in Listeria monocytogenes[J]. Antimicrob Agents Chemother, 2014,58(6):3421-3428.
doi: 10.1128/AAC.00090-14 URL |
[17] |
Trinetta V, Morleo A, Sessa F, et al. Purified sakac in A shows a dual mechanism of action against Listeria spp:proton motive force dissipation and cell wall breakdown[J]. FEMS Microbiol Letters, 2012,334(2):143-149.
doi: 10.1111/fml.2012.334.issue-2 URL |
[18] |
Chen H, Tian F, Li S, et al. Cloning and heterologous expression of a bacteriocin sakacin P from Lactobacillus sakei in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2012,94(4):1061-1068.
doi: 10.1007/s00253-012-3872-z URL |
[19] |
Oppegard C, Rogne P, Kristiansen PE, et al. Structure analysis of the two-peptide bacteriocin lactococcin G by introducing D-amino acid residues[J]. Microbiology, 2010,156(6):1883-1889.
doi: 10.1099/mic.0.038430-0 URL |
[20] |
Ekblad B, Kyriakou PK, Oppegard C, et al. Structure-function analysis of the two-peptide bacteriocin plantaricin EF[J]. Biochemistry, 2010,55(36):5106-5116.
doi: 10.1021/acs.biochem.6b00588 URL |
[21] |
Pandey N, Malik RK, Kaushik JK, et al. A circular bacteriocin produced by lactic acid bacteria Lactobacillus gasseri[J]. World Journal of Microbiology and Biotechnology, 2013,29(11):1977-1987.
doi: 10.1007/s11274-013-1368-3 URL |
[22] |
Grande Burgos MJ, Galvez A, Pulido RP, et al. The cyclic antibacterial peptide enterocin AS-48:isolation, mode of action, and possible food applications[J]. International Journal of Molecular Sciences, 2014,15(12):22706-22727.
pmid: 25493478 |
[23] |
Uzelac G, Miljkovic M, Lozo J, et al. Expression of bacteriocin LsbB is dependent on a transcription terminator[J]. Microbiological Research, 2015,179:45-53.
doi: 10.1016/j.micres.2015.06.011 URL |
[24] |
Zheng S, Sonomoto K. Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria[J]. Applied Microbiology and Biotechnology, 2018,102(10):4243-4253.
doi: 10.1007/s00253-018-8917-5 pmid: 29560521 |
[25] | Chatterjee M, Raichaudhuri A. Bacteriocin in harmony with ABC transporter exhibits antimicrobial activity[J]. EC Microbiol, 2017,8(1):3-10. |
[26] | Shahnawaz M, Soto C. Microcin amyloid fibrils A are reservoir of toxic oligomeric species[J]. Biological Chemistry, 2012,287(15):11665-11676. |
[27] |
Christensen DP, Hutkins RW. Collapse of the proton motive force in Listeria monocytogenes caused by a bacteriocin produced by Pediococcus acidilactici[J]. Applied and Environmental Microbiology, 1992,58(10):3312-3315.
doi: 10.1128/AEM.58.10.3312-3315.1992 URL |
[28] |
Gabrielsen C, Brede DA, Hernandez PE, et al. The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML[J]. Antimicrobial Agents and Chemotherapy, 2012,56(6):2908-2915.
doi: 10.1128/AAC.00314-12 pmid: 22411612 |
[29] |
Bierbaum G, Sahl HG. Lantibiotics—unusually modified bacterio-cin-like peptides from gram-positive bacteria[J]. Zentralblatt Fur Bakteriol, 1993,278(1):1-22.
doi: 10.1016/S0934-8840(11)80275-6 URL |
[30] |
Ozel B, Simsek O, Akcelik M, et al. Innovative approaches to nisin production[J]. Applied Microbiology and Biotechnology, 2018,102(15):6299-6307.
doi: 10.1007/s00253-018-9098-y URL |
[31] |
Garsa AK, Kumariya R, Sood SK, et al. Bacteriocin production and different strategies for their recovery and purification[J]. Probiotics and Antimicrobial Proteins, 2014,6(1):47-58.
doi: 10.1007/s12602-013-9153-z pmid: 24676767 |
[32] |
Hemu X, Qiu Y, Nguyen GK, et al. Total synjournal of circular bacteriocins by butelase 1[J]. Journal of the American Chemical Society, 2016,138(22):6968-6971.
doi: 10.1021/jacs.6b04310 URL |
[33] |
Bedard F, Hammami R, Zirah S, et al. Synjournal, antimicrobial activity and conformational analysis of the class IIa bacteriocin pediocin PA-1 and analogs thereof[J]. Scientific Reports, 2018,8(1):9029.
doi: 10.1038/s41598-018-27225-3 URL |
[34] |
Garg N, Tang W, Goto Y, et al. Lantibiotics from Geobacillus thermodenitrificans[J]. Proceedings of the National Academy of Sciences, 2012,109(14):5241-5246.
doi: 10.1073/pnas.1116815109 URL |
[35] |
Beaulieu L, Groleau D, Miguez CB, et al. Production of pediocin PA-1 in the methylotrophic yeast Pichia pastoris reveals unexpected inhibition of its biological activity due to the presence of collagen-like material[J]. Protein Expression Purification, 2005,43(2):111-125.
doi: 10.1016/j.pep.2005.05.012 URL |
[36] |
Sabala I, Jonsson IM, Tarkowski IM, et al. Anti-staphylococcal activities of lysostaphin and LytM catalytic domain[J]. BMC Microbiol, 2012,12(1):97-107.
doi: 10.1186/1471-2180-12-97 URL |
[37] |
Bhavsar AP, Erdman LK, Schertzer JW, et al. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid[J]. Bacteriol, 2004,186(23):7865-7873.
doi: 10.1128/JB.186.23.7865-7873.2004 URL |
[38] |
Debabov DV, Kiriukhin MY, Neuhaus FC, et al. Biosynjournal of lipoteichoic acid in Lactobacillus rhamnosus:role of DltD in D-alanylation[J]. Bacteriol, 2000,182(10):2855-2864.
doi: 10.1128/JB.182.10.2855-2864.2000 URL |
[39] |
Kovacs M, Halfmann A, Fedtke I, et al. A functional dlt operon, encoding proteins required for incorporation of D-alanine in teichoic acids in Gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae[J]. Bacteriol, 2006,188(16):5797-5805.
doi: 10.1128/JB.00336-06 URL |
[40] |
Kumariya R, Sood SK, Rajput YS, et al. Gradual pediocin PA-1 resistance in Enterococcus faecalis confers cross-protection to diverse pore-forming cationic antimicrobial peptides displaying changes in cell wall and mannose PTS expression[J]. Annals of Microbiology, 2015,65(2):721-732.
doi: 10.1007/s13213-014-0912-1 URL |
[41] |
Khatib TO, Stevenson H, Yeaman MR, et al. Binding of daptomycin to anionic lipid vesicles is reduced in the presence of lysyl-phosphatidylglycerol[J]. Antimicrobial Agents and Chemotherapy, 2016,60(8):5051-5053.
doi: 10.1128/AAC.00744-16 pmid: 27216066 |
[42] | Ernst CM, Kuhn S, Slavetinsky CJ, et al. The lipid-modifying multiple peptide resistance factor is an oligomer consisting of distinct interacting synthase and flippase subunits[J]. mBio, 2015,6(1):e02340-14. |
[43] | Hebecker S, Krausze J, Hasenkampf T, et al. Structures of two bacterial resistance factors mediating tRNA-dependent aminoacylation of phosphatidylglycerol with lysine or alanine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(34):10691-10696. |
[44] |
Geiger O, Gonzalez-Silva N, Lopez-Lara IM, et al. Amino acid-containing membrane lipids in bacteria[J]. Progress in Lipid Research, 2010,49(1):46-60.
doi: 10.1016/j.plipres.2009.08.002 pmid: 19703488 |
[45] |
Naghmouchi K, Kheadr E, Lacroix C, et al. Class I/Class IIa bacteriocin crossresistance phenomenon in Listeria monocytogenes[J]. Food Microbiology, 2007,24(7):718-727.
doi: 10.1016/j.fm.2007.03.012 URL |
[46] |
Raaijmakers JM, Bruijn ID, Nybroe O, et al. Natural functions of lipopeptides from Bacillus and Pseudomonas:more than surfactants and antibiotics[J]. FEMS Microbiology Reviews, 2010,34(6):1037-1062.
doi: 10.1111/j.1574-6976.2010.00221.x pmid: 20412310 |
[47] |
Ines M, Dhouha G. Lipopeptide surfactants:Production, recovery and pore forming capacity[J]. Peptides, 2015,71:100-112.
doi: 10.1016/j.peptides.2015.07.006 URL |
[48] |
Gravesen A, Kallipolitis B, Holmstrøm K, et al. pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression[J]. Applied and Environmental Microbiology, 2004,70(3):1669-1679.
doi: 10.1128/AEM.70.3.1669-1679.2004 URL |
[49] |
Crandall AD, Montville TJ. Nisin resistance in Listeria monocyto-genes ATCC 700302 is a complex phenotype[J]. Applied and Environmental Microbiology, 1998,64:231-237.
doi: 10.1128/AEM.64.1.231-237.1998 URL |
[50] | Patel S. Plant essential oils and allied volatile fractions as multifunctional additives in meat and fish-based food products:a review[J]. Food Additives and Contaminants, 2015,32(7):1049-1064. |
[51] |
Govaris A, Solomakos N, Pexara A, et al. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella enteritidis in minced sheep meat during refrigerated storage[J]. International Journal of Food Microbiology, 2010,137(2-3):175-180.
doi: 10.1016/j.ijfoodmicro.2009.12.017 pmid: 20060188 |
[52] |
Solomakos N, Govaris A, Koidis P, et al. The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage[J]. Food Microbiology, 2008,25(1):120-127.
doi: 10.1016/j.fm.2007.07.002 URL |
[53] | Rattanachaikunsopon P, Phumkhachorn P. Synergistic antimicrobial effect of nisin and p-cymene on Salmonella enterica serovar Typhi in vitro and on ready-toeat food[J]. Agricultural Chemical Society of Japan, 2010,74(3):520-524. |
[54] |
Huq T, Vu KD, Riedl B, et al. Synergistic effect of gamma(γ)- irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat(RTE)meat[J]. Food Microbiology, 2015,46:507-514.
doi: 10.1016/j.fm.2014.09.013 URL |
[55] | Bouttefroy A, Milliere JB. Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313[J]. Food Microbiology, 2000,62(1):65-75. |
[56] |
Topisirovic L, Kojic M, Fira D, et al. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation[J]. International Journal of Food Microbiology, 2006,112(3):230-235.
doi: 10.1016/j.ijfoodmicro.2006.04.009 URL |
[57] |
Field D, Daly K, O’Connor PM, et al. Efficacies of nisin A and nisin V semipurified preparations alone and in combination with plant essential oils for controlling Listeria monocytogenes[J]. Applied and Environmental Microbiology, 2015,81(8):2762-2769.
doi: 10.1128/AEM.00070-15 pmid: 25662980 |
[58] |
Ju X, Chen X, Du L, et al. Alanine-scanning mutational analysis of durancin GL reveals residues important for its antimicrobial activity[J]. Agricultural and Food Chemistry, 2015,63(28):6402-6409.
doi: 10.1021/acs.jafc.5b02114 URL |
[59] | Paula M, O’ Connor, Eileen F, et al. The potency of the broad spectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation[J]. Scientific Reports, 2018,8(1):1-8. |
[60] |
Carr FJ, Chill D, Maida N. The lactic acid bacteria:a literature survey[J]. Critical Reviews in Microbiology, 2002,28(4):281-370.
doi: 10.1080/1040-840291046759 URL |
[61] | Sanchez-Hidalgo M, Montalban-Lopez M, Manuel R, et al. AS-48 bacteriocin:close to perfection[J]. Cellular and Molecular Life Sciences, 2011,68(17):28145-2857. |
[62] |
Johnson EM, Jung DY, Jin DY, et al. Bacteriocins as food preservatives:Challenges and emerging horizons[J]. Critical Reviews in Food Science and Nutrition, 2018,58(16):2743-2767.
doi: 10.1080/10408398.2017.1340870 URL |
[63] | Rodriguez JM, Juan M, Martinez MI, et al. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria[J]. Food Science and Nutrition, 2002,42(2):91-121. |
[64] |
Weyermann J, Lochmann D, Zimmer A. A practical note on the use of cytotoxicity assays[J]. International Journal of Pharmaceutics, 2005,288(2):369-376.
doi: 10.1016/j.ijpharm.2004.09.018 URL |
[65] |
Grande MJ, Lopez RL, Abriouel H, et al. Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus[J]. Journal of Food Protection, 2007,70(2):405-411.
doi: 10.4315/0362-028X-70.2.405 URL |
[1] | CHEN Yong, LI Ya-xin, WANG Ya-xuan, LIANG Lu-jie, FENG Si-yuan, Tian Guo-bao. Research Progress in the Molecular Mechanism of MCR-1 Mediated Polymyxin Resistance [J]. Biotechnology Bulletin, 2023, 39(6): 102-108. |
[2] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
[3] | LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori [J]. Biotechnology Bulletin, 2022, 38(9): 96-105. |
[4] | CHEN Fu-nuan, HUANG Yu, CAI Jia, WANG Zhong-liang, JIAN Ji-chang, WANG Bei. Structure of ABC Transporter and Research Progress of It in Bacterial Pathogenicity [J]. Biotechnology Bulletin, 2022, 38(6): 43-52. |
[5] | ZHU Hao, ZHANG Yan-wei, LIU Run, LIANG Yan, YANG Yi, XU Tian-le, YANG Zhang-ping. Research Progress in Antibiotic Adjuvant and Antibiotics in Antibacterial Aspects [J]. Biotechnology Bulletin, 2022, 38(6): 66-73. |
[6] | GONG Xiao-hui, YANG Min, LI Shu-ting, LIN Sheng-hao, XU Wen-tao. Progress on Antibacterial Mechanism,Activity and Application of Silver Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(5): 212-220. |
[7] | GAO Su, MA Jie-xin, LIU Jing-ju, ZHAO Guo-zhu. Study on Antibacterial Activity and Mechanism of Cordycepin [J]. Biotechnology Bulletin, 2021, 37(4): 137-144. |
[8] | CHEN Jie-hao, MIAO Yu-jia, LIANG Chao, TAO Yu, OUYANG Ping, WANG Kai-yu, GENG Yi, SHI Cun-bin, LI Ning-qiu. Study on the Antibacterial Mechanism of Alpinetin Against Fish-derived Drug-resistant Aeromonas hydrophila in vitro [J]. Biotechnology Bulletin, 2021, 37(2): 103-110. |
[9] | LI Di-yin, HE Yong-xing, HAN Jian-ting, LI Kun, WANG Zhi-ping, LI Miao-hui. Functional Identification of RstA in Pseudomonas fluorescens Strain 2P24 [J]. Biotechnology Bulletin, 2019, 35(6): 107-113. |
[10] | DOU Peng-peng, WANG Li, ZHANG Hua, ZHENG Yao. Molecular Identification and Drug Resistance Analysis of Plesiomonas shigellode Isolated from Fish [J]. Biotechnology Bulletin, 2019, 35(11): 118-123. |
[11] | LU Jia, DENG Qiu-ping, REN Wen-hua. Mechanism of Antimicrobial Peptide Scolopin 2-NH2 Isolated from Scolopendra subspinipes mutilans [J]. Biotechnology Bulletin, 2018, 34(11): 179-190. |
[12] | ZHAO Yan-kun, LIU Hui-min, WANG Shuai, CAI Jian-xing, WANG Cheng, CHEN He. Research Progress on Drug Resistance of Staphylococcus aureus in Bovine Mastitis [J]. Biotechnology Bulletin, 2018, 34(10): 18-25. |
[13] | MAO Wen, TIAN Lu, GONG Guo-li. Research Progress on Bacteriocins and Their Potential New Applications [J]. Biotechnology Bulletin, 2018, 34(10): 35-40. |
[14] | TU Wen-rui, CAI Yu-meng, YAN Jing, LU Jiang ,ZHANG Ya-li. Research Progresses on Plant Sucrose Transporters and Physiological Functions [J]. Biotechnology Bulletin, 2017, 33(4): 1-7. |
[15] | CHENG Fu-dong,DING Xiao,LI Sheng,SUN Xiao. Analysis,Comparison and Classification of Metagenomic Samples [J]. Biotechnology Bulletin, 2016, 32(5): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||