Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (5): 212-220.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0828
Previous Articles Next Articles
GONG Xiao-hui1(), YANG Min1, LI Shu-ting1, LIN Sheng-hao1, XU Wen-tao1,2()
Received:
2020-07-05
Online:
2021-05-26
Published:
2021-06-11
Contact:
XU Wen-tao
E-mail:250735966@qq.com;xuwentao@cau.edu.cn
GONG Xiao-hui, YANG Min, LI Shu-ting, LIN Sheng-hao, XU Wen-tao. Progress on Antibacterial Mechanism,Activity and Application of Silver Nanoclusters[J]. Biotechnology Bulletin, 2021, 37(5): 212-220.
[1] |
Zheng J, Nicovich PR, Dickson RM . Highly fluorescent noble-metal quantum dots[J]. Annual Review of Physical Chemistry, 2007,58(1):409-431.
doi: 10.1146/annurev.physchem.58.032806.104546 URL |
[2] |
Zheng KY, Setyawati MI, Leong DT, et al. Antimicrobial silver nanomaterials[J]. Coordination Chemistry Reviews, 2018,357:1-17.
doi: 10.1016/j.ccr.2017.11.019 URL |
[3] |
Xu H, Suslick KS. Water-soluble fluorescent silver nanoclusters[J]. Advanced Materials, 2010,22(10):1078-1082.
doi: 10.1002/adma.200904199 URL |
[4] | Díez I, Ras RHA. Few-atom silver clusters as fluorescent reporters[M]. Berlin, Heidelberg:Springer, 2010. |
[5] |
Jin R. Quantum sized, thiolate-protected gold nanoclusters[J]. Nanoscale, 2010,2(3):343-362.
doi: 10.1039/B9NR00160C URL |
[6] |
Luo Z, Zheng K, Xie J. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications[J]. Chemical Communications, 2014,50(40):5143-5155.
doi: 10.1039/C3CC47512C URL |
[7] | 李艳乐. 基于DNA-银纳米簇的荧光生物传感技术及纳米银抗菌性能研究[D]. 长沙:湖南大学, 2016. |
Li YL. Fluorescent biosensor based on DNA-templated silver nanoclusters and antibacterial properties of silver nanoclusters[D]. Changsha:Hunan University, 2016. | |
[8] |
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent:a case study on E. coli as a model for Gram-negative bacteria[J]. Journal of Colloid and Interface Science, 2004,275(1):177-182.
doi: 10.1016/j.jcis.2004.02.012 URL |
[9] |
Li WR, Xie XB, Shi QS, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli[J]. Applied Microbiology and Biotechnology, 2010,85(4):1115-1122.
doi: 10.1007/s00253-009-2159-5 URL |
[10] |
Hwang ET, Lee JH, Chae YJ, et al. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria[J]. Small, 2008,4(6):746-750.
doi: 10.1002/smll.200700954 pmid: 18528852 |
[11] |
Gogoi SK, Gopinath P, Paul A, et al. Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles[J]. Langmuir, 2006,22(22):9322-9328.
doi: 10.1021/la060661v URL |
[12] |
Kaviya S, Santhanalakshmi J, Viswanathan B, et al. Biosynjournal of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2011,79(3):594-598.
doi: 10.1016/j.saa.2011.03.040 URL |
[13] | Dakal TC, Kumar A, Majumdar RS, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles[J]. Frontiers in Microbiology, 2016,7:1831. |
[14] |
Li X, Fu T, Li B, et al. Riboflavin-protected ultrasmall silver nanoclusters with enhanced antibacterial activity and the mechanisms[J]. RSC Advances, 2019,9(23):13275-13282.
doi: 10.1039/C9RA02079A URL |
[15] |
Jin JC, Wu XJ, Xu J, et al. Ultrasmall silver nanoclusters:Highly efficient antibacterial activity and their mechanisms[J]. Biomaterials Science, 2017,5(2):247-257.
doi: 10.1039/C6BM00717A URL |
[16] |
Wang X, Gao W, Xu W, et al. Fluorescent Ag nanoclusters templated by carboxymethyl-β-cyclodextrin(CM-β-CD)and their in vitro antimicrobial activity[J]. Materials Science and Engineering C, 2013,33(2):656-662.
doi: 10.1016/j.msec.2012.10.012 URL |
[17] |
Xu D, Wang Q, Yang T, et al. Polyethyleneimine capped silver nanoclusters as efficient antibacterial agents[J]. International Journal of Environmental Research And Public Health, 2016,13(3):334.
doi: 10.3390/ijerph13030334 URL |
[18] | 刘亚, 程博闻, 韦媛辉. 纳米银PP抗菌纺粘布的开发[J]. 纺织学报, 2006,27(2):78-80. |
Liu Y, Cheng BW, Wei YH. Development of anti-bacterial spun-bonded polypropylene(PP)fabric treated with nanometer silver anti-bacterial agent[J]. Journal of Textile Research, 2006,27(2):78-80. | |
[19] |
Yuan X, Setyawati MI, Leong DT, et al. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing[J]. Nano Research, 2014,7(3):301-307.
doi: 10.1007/s12274-013-0395-6 URL |
[20] |
Farrag M, Mohamed RA. Ecotoxicity of~ 1 nm silver and palladium nanoclusters protected by l-glutathione on the microbial growth under light and dark conditions[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2016,330:117-125.
doi: 10.1016/j.jphotochem.2016.07.027 URL |
[21] |
Fayaz AM, Balaji K, Girilal M, et al. Biogenic synjournal of silver nanoparticles and their synergistic effect with antibiotics:a study against gram-positive and gram-negative bacteria[J]. Bulletin of the Chemical Society of Japan, 2010,6(1):103-109.
doi: 10.1246/bcsj.6.103 URL |
[22] | Kim KJ, Sung WS, Moon SK, et al. Antifungal effect of silver nanoparticles on dermatophytes[J]. J Microbiol Biotechnol, 2008,18(8):1482-1484. |
[23] |
Díez I, Ras RHA. Fluorescent silver nanoclusters[J]. Nanoscale, 2011,3(5):1963-19700.
doi: 10.1039/c1nr00006c URL |
[24] | Javani S, Lorca R, Latorre A, et al. Antibacterial activity of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence[J]. ACS Applied Materials & Interfaces, 2016,8(16):10147-10154. |
[25] |
Eun H, Kwon WY, Kalimuthu K, et al. Melamine-promoted formation of bright and stable DNA-silver nanoclusters and their antimicrobial properties[J]. Journal of Materials Chemistry B, 2019,7(15):2512-2517.
doi: 10.1039/C8TB03166E URL |
[26] | Yang L, Yao C, Li F, et al. Synjournal of branched DNA scaffolded super-nanoclusters with enhanced antibacterial performance[J]. Small, 2018,14(16):e1800185. |
[27] |
Huma ZE, Gupta A, Javed I, et al. Cationic silver nanoclusters as potent antimicrobials against multidrug-resistant bacteria[J], ACS Omega, 2018,3(12):16721-16727.
doi: 10.1021/acsomega.8b02438 URL |
[28] |
Chakraborty I, Udayabhaskararao T, Deepesh GK, et al. Sunlight mediated synjournal and antibacterial properties of monolayer protected silver clusters[J]. Journal of Materials Chemistry B, 2013,1(33):4059-4064.
doi: 10.1039/c3tb20603c pmid: 32260958 |
[29] |
Yuan X, Setyawati MI, Tan AS, et al. Highly luminescent silver nanoclusters with tunable emissions:cyclic reduction-decomposition synjournal and antimicrobial properties[J]. NPG Asia Materials, 2013,5(2):e39.
doi: 10.1038/am.2013.3 URL |
[30] |
Padmos JD, Boudreau RTM, Weaver DF, et al. Structure of tiopronin-protected silver nanoclusters in a one-dimensional assembly[J]. The Journal of Physical Chemistry C, 2015,119(43):24627-24635.
doi: 10.1021/acs.jpcc.5b07426 URL |
[31] |
Sangsuwan A, Kawasaki H, Matsumura Y, et al. Antimicrobial silver nanoclusters bearing biocompatible phosphorylcholine-based zwitterionic protection[J]. Bioconjugate Chemistry, 2016,27(10):2527-2533.
doi: 10.1021/acs.bioconjchem.6b00455 pmid: 27689806 |
[32] |
Nakal-Chidiac A, García O, García-Fernández L, et al. Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties[J]. Carbohydrate Polymers, 2020,250:116973.
doi: 10.1016/j.carbpol.2020.116973 URL |
[33] | Wang SS, Wang YY, Peng Y, et al. Exploring the antibacteria performance of multicolor Ag, Au and Cu nanoclusters[J]. ACS Applied Materials & Interfaces, 2019,11(8):8461-8469. |
[34] |
Zheng K, Setyawati MI, Lim TP, et al. Antimicrobial cluster bombs:silver nanoclusters packed with daptomycin[J]. ACS nano, 2016,10(8):7934-7942.
doi: 10.1021/acsnano.6b03862 URL |
[35] |
Shitomi K, Miyaji H, Miyata S, et al. Photodynamic inactivation of oral bacteria with silver nanoclusters/rose bengal nanocomposite[J]. Photodiagnosis and Photodynamic Therapy, 2020,30:101647.
doi: S1572-1000(19)30592-7 pmid: 31904554 |
[36] | Takenaka S, Karg E, Roth C, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats[J]. Environmental Health Perspectives, 2001,109(4):547-551. |
[37] |
Tang J, Xiong L, Wang S, et al. Distribution, translocation and accumulation of silver nanoparticles in rats[J]. Journal of Nanoscience and Nanotechnology, 2009,9(8):4924-4932.
doi: 10.1166/jnn.2009.1269 URL |
[38] |
Sung JH, Ji JH, Yoon JU, et al. Lung function changes in sprague-dawley rats after prolonged inhalation exposure to silver nanoparticles[J]. Inhalation Toxicology, 2008,20(6):567-574.
doi: 10.1080/08958370701874671 URL |
[39] |
Lee H, Choi Y, Jung E, et al. Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation[J]. Journal of Nanoparticle Research, 2010,12(5):1567-1578.
doi: 10.1007/s11051-009-9666-2 URL |
[40] |
Hussain SM, Hess KL, Gearhart JM, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells[J]. Toxicology in Vitro, 2005,19(7):975-983.
pmid: 16125895 |
[41] |
Braydichstolle LK, Hussain SM, Schlager JJ, et al. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells[J]. Toxicological Sciences, 2005,88(2):412-419.
doi: 10.1093/toxsci/kfi256 URL |
[42] |
Ahamed M, Karns M, Goodson MS, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells[J]. Toxicology and Applied Pharmacology, 2008,233(3):404-410.
doi: 10.1016/j.taap.2008.09.015 URL |
[43] |
Arora S, Jain J, Rajwade JM, et al. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells[J]. Toxicology and Applied Pharmacology, 2009,236(3):310-318.
doi: 10.1016/j.taap.2009.02.020 pmid: 19269301 |
[44] |
Foldbjerg R, Olesen PL, Hougaard M, et al. PVP- coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes[J]. Toxicology Letters, 2009,190(2):156-162.
doi: 10.1016/j.toxlet.2009.07.009 pmid: 19607894 |
[45] |
Gopinath P, Gogoi SK, Sanpui P, et al. Signaling gene cascade in silver nanoparticle induced apoptosis[J]. Colloids and Surfaces B:Biointerfaces, 2010,77(2):240-245.
doi: 10.1016/j.colsurfb.2010.01.033 URL |
[46] |
Samberg ME, Oldenburg SJ, Monteiroriviere NA, et al. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro[J]. Environmental Health Perspectives, 2009,118(3):407-413.
doi: 10.1289/ehp.0901398 URL |
[47] |
Khandelwal P, Poddar P. Fluorescent metal quantum clusters:an updated overview of the synjournal, properties, and biological applications[J]. Journal of Materials Chemistry B, 2017,5(46):9055-9084.
doi: 10.1039/c7tb02320k pmid: 32264589 |
[48] | Chandirasekar S, Chandrasekaran C, Muthukumarasamyvel T, et al. Sodium cholate-templated blue light-emitting Ag subnanoclusters:in vivo toxicity and imaging in zebrafish embryos[J]. ACS Applied Materials & Interfaces, 2015,7(3):1422-1430. |
[49] |
Díez I, Eronen P, Österberg M, et al. Functionalization of nanofibrillated cellulose with silver nanoclusters:fluorescence and antibacterial activity[J]. Macromolecular Bioscience, 2011,11(9):1185-1191.
doi: 10.1002/mabi.201100099 URL |
[50] |
Wang X, Gao W, Xu S, et al. Luminescent fibers:In situ synjournal of silver nanoclusters on silk via ultraviolet light-induced reduction and their antibacterial activity[J]. Chemical Engineering Journal, 2012,210:585-589.
doi: 10.1016/j.cej.2012.09.034 URL |
[51] |
Balagna C, Irfan M, Perero S, et al. Characterization of antibacterial silver nanocluster/silica composite coating on high performance Kevlar® textile[J]. Surface and Coatings Technology, 2017,321:438-447.
doi: 10.1016/j.surfcoat.2017.05.009 URL |
[52] |
Mishra SK, Raveendran S, Ferreira JMF, et al. In situ impregnation of silver nanoclusters in microporous Chitosan-PEG membranes as an antibacterial and drug delivery percutaneous device[J]. Langmuir, 2016,32(40):10305-10316.
doi: 10.1021/acs.langmuir.6b02844 URL |
[53] |
Guo Q, Li J, Chen T, et al. Antimicrobial thin-film composite membranes with chemically decorated ultrasmall silver nanoclusters[J]. ACS Sustainable Chem Eng, 2019,7(17):14848-14855.
doi: 10.1021/acssuschemeng.9b02929 URL |
[54] | Mei L, Teng Z, Zhu G, et al. Silver nanocluster-embedded zein films as antimicrobial coating materials for food packaging[J]. ACS Applied Materials & Interfaces, 2017,9(40):35297-35304. |
[55] | 石璐. 银纳米簇水凝胶在餐具消毒及药物载体方面的应用[D]. 无锡:江南大学, 2016. |
SHI L. Silver nanoclusters hydrogel for tableware disinfection and drug delivery[D]. Wuxi:Jiangnan University, 2016. | |
[56] | 马芸. 银纳米簇水凝胶的制备及其应用[D]. 无锡:江南大学, 2014. |
MA Y. Preparation of Ag nanoclusters hydrogel and its applications[D]. Wuxi:Jiangnan University, 2014. | |
[57] | 银娜, 梁俊, 高志贤. 银纳米簇用于食品包装污染物的检测及其抗菌性能的应用[J]. 包装工程, 2019,40(21):44-50. |
Yin N, Liang J, Gao ZX. Silver nanoclusters for the detection of food packaging contaminants and their application in antibacterial properties[J]. Packaging Engineering, 2019,40(21):44-50. | |
[58] |
Lu R, Zou W, Du H, et al. Antimicrobial activity of Ag nanoclusters encapsulated in porous silica nanospheres[J]. Ceramics International, 2014,40(2):3693-3698.
doi: 10.1016/j.ceramint.2013.09.055 URL |
[59] | Patil AG, Bafna HR, More MP, et al. Green synjournal of graphene based silver nanocomposite for enhanced antibacterial activity against dental pathogens[J]. JSM Nanotechnology and Nanomedicine, SciMed Central, USA, 2017,5(3):1-7. |
[60] | 杜丽娜, 金义光. 核酸药物纳米制剂的设计及递送新技术[J]. 国际药学研究杂志, 2017,44(11):1052-1068. |
Du LN, Jin YG. Design of nucleic acid-loaded nanoscale formulations and relevant novel delivery techniques[J]. Journal of International Pharmaceutical Research, 2017,44(11):1052-1068. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[3] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[4] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[5] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[6] | YAO Jin-dong, TANG Hua-mei, YANG Wen-xiao, ZHANG Li-shan, LIN Xiang-min. Comparative Proteomics Analysis of Aeromonas hydrophila Under Enrofloxacin Stress [J]. Biotechnology Bulletin, 2023, 39(4): 288-296. |
[7] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[8] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[9] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[10] | LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori [J]. Biotechnology Bulletin, 2022, 38(9): 96-105. |
[11] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
[12] | WANG Chen-chen, ZHANG Fan-li, CHEN Pei-qi, WENG Si-yao, WANG Hui-fang, CUI Xiao-juan. Research Progress in the Structural and Functional Analysis of Mammalian DNA Methyltransferase DNMT1 and DNMT3 [J]. Biotechnology Bulletin, 2022, 38(7): 31-39. |
[13] | SHEN Heng, LIU Si-hui, LI yue, LI Jing-tao, LIANG Wen-xing. Rapid Crude Extraction of Genomic DNA from Solanum lycopersicum for PCR [J]. Biotechnology Bulletin, 2022, 38(6): 74-80. |
[14] | YI Fang, LAI Peng-cheng, ZHENG Xi-ao, HU Shuai, GAO Yan-li. Research on the Preparation and Purification of Kod DNA Polymerase [J]. Biotechnology Bulletin, 2022, 38(5): 183-190. |
[15] | WANG Zi-yan, WANG Jian, ZHANG Lun, GUI Shui-qing, LU Xue-mei. Study on Antibacterial Stability of Musca domestica Cecropin-MDC Against Salmonella typhimurium [J]. Biotechnology Bulletin, 2022, 38(3): 149-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||