Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (6): 236-243.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1231
Previous Articles Next Articles
FENG Lian-jie(), AN Wen-jing, LIU Di, LIU Ya-fei, WANG Kai-jie, LIANG Wei-hong()
Received:
2020-10-04
Online:
2021-06-26
Published:
2021-07-08
Contact:
LIANG Wei-hong
E-mail:729531030@qq.com;liangwh@htu.edu.cn
FENG Lian-jie, AN Wen-jing, LIU Di, LIU Ya-fei, WANG Kai-jie, LIANG Wei-hong. Progress in Research of Rice Trichome Related Genes[J]. Biotechnology Bulletin, 2021, 37(6): 236-243.
登录号基因 Gene ID | 基因名称 Gene name | 是否隆克 Clone or not | 编码蛋白 Coding protein | 亚细胞定位 Subcellular localization | 基因分离方法 Methods of gene isolation | 基因功能 Putative function | 染色体定位 Chromosome localization | 突变体表型 Mutant phenotype | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
LOC_Os05g 02730 | NUDA/GL-1;OsWOX3B;dep;GLR1;GL5 | 是 | WOX 3B蛋白 | 细胞核 | 图位克隆 | 调节表皮毛发育起始 | 5号染色体 | 叶片与颖壳无毛 | [8-11] |
LOC_Os06g 44750 | GL6;HL6 | 是 | AP2/ERF转录因子 | 细胞核 | 图位克隆 | 与OsWOX3B互作调节长毛伸长 | 6号染色体 | 叶片与颖壳长毛数量减少 | [12-14] |
LOC_Os05g 02754 | gl1 | 是 | 叶绿体跨膜蛋白 | 叶绿体 | 图位克隆 | 调控表皮毛发育的起始 | 5号染色体 | 叶片无长毛、微毛,具腺毛;颖壳无毛 | [18-19] |
LOC_Os06g 44860 | OsSPL10;GLR3 | 是 | SBP转录因子 | 细胞核 | 图位克隆 | 正调控表皮毛发育 | 6号染色体 | 叶片与颖壳无毛 | [16-17] |
LOC_Os01g 70100 | glr2 | 否 | 锌指转录因子 | 细胞核 | 调控长毛和微毛的形成 | 1号染色体 | 叶片无长毛、微毛,具腺毛;颖壳无毛 | [15] | |
LOC_Os06g 03660 | GLL | 是 | 过氧化物酶体蛋白 | 细胞核、细胞质和细胞膜 | 图位克隆 | 调节表皮细胞的分化 | 6号染色体 | 叶片无长毛,叶缘无毛,颖壳有毛 | [20] |
Table 1 Known genes for rice trichomes development
登录号基因 Gene ID | 基因名称 Gene name | 是否隆克 Clone or not | 编码蛋白 Coding protein | 亚细胞定位 Subcellular localization | 基因分离方法 Methods of gene isolation | 基因功能 Putative function | 染色体定位 Chromosome localization | 突变体表型 Mutant phenotype | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
LOC_Os05g 02730 | NUDA/GL-1;OsWOX3B;dep;GLR1;GL5 | 是 | WOX 3B蛋白 | 细胞核 | 图位克隆 | 调节表皮毛发育起始 | 5号染色体 | 叶片与颖壳无毛 | [8-11] |
LOC_Os06g 44750 | GL6;HL6 | 是 | AP2/ERF转录因子 | 细胞核 | 图位克隆 | 与OsWOX3B互作调节长毛伸长 | 6号染色体 | 叶片与颖壳长毛数量减少 | [12-14] |
LOC_Os05g 02754 | gl1 | 是 | 叶绿体跨膜蛋白 | 叶绿体 | 图位克隆 | 调控表皮毛发育的起始 | 5号染色体 | 叶片无长毛、微毛,具腺毛;颖壳无毛 | [18-19] |
LOC_Os06g 44860 | OsSPL10;GLR3 | 是 | SBP转录因子 | 细胞核 | 图位克隆 | 正调控表皮毛发育 | 6号染色体 | 叶片与颖壳无毛 | [16-17] |
LOC_Os01g 70100 | glr2 | 否 | 锌指转录因子 | 细胞核 | 调控长毛和微毛的形成 | 1号染色体 | 叶片无长毛、微毛,具腺毛;颖壳无毛 | [15] | |
LOC_Os06g 03660 | GLL | 是 | 过氧化物酶体蛋白 | 细胞核、细胞质和细胞膜 | 图位克隆 | 调节表皮细胞的分化 | 6号染色体 | 叶片无长毛,叶缘无毛,颖壳有毛 | [20] |
[1] | Martin H. Plant trichomes:a model for cell differentiation[J]. Nat Rev Mol Cell Biol, 2004, 5(6):471-480. |
[2] |
Liu H, Liu SB, Jiao JJ, et al. Trichomes as a natural biophysical barrier for plants and their bioinspired applications[J]. Soft Matter, 2017, 13(30):5096-5106.
doi: 10.1039/C7SM00622E URL |
[3] |
Szymanski DB, Lloyd AM, Marks MD. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis[J]. Trends Plant Sci, 2000, 5(5):214-219.
pmid: 10785667 |
[4] | 徐是雄, 徐雪宾. 稻的形态与解剖[M]. 北京: 农业出版社, 1984. |
Xu SX, Xu XB. Morphology and anatomy of rice[M]. Beijing: Agriculture Press, 1984. | |
[5] |
Lim HH, Domala Z, Joginder S, et al. Rice millers’ syndrome:a preliminary report[J]. Br J Ind Med, 1984, 41(4):445-449.
pmid: 6498108 |
[6] | 郭龙彪, 罗利军, 余新桥, 等. 美国光壳稻品种农艺性状评价及其改良和利用[J]. 浙江农业科学, 1999, 1(5):3-5. |
Guo LB, Luo LJ, Xu XQ, et al. Evaluation, improvement and utilization on some selected American rice cultivars[J]. Journal of Zhejiang Agricultural Sciences, 1999, 1(5):3-5. | |
[7] |
Hu BL, Wan Y, Li X, et al. Phenotypic characterization and genetic analysis of rice with pubescent leaves and glabrous hulls(PLgh)[J]. Crop Science, 2013, 53(5):1878-1886.
doi: 10.2135/cropsci2012.09.0522 URL |
[8] |
Li JJ, Yuan YD, Lu ZF, et al. Glabrous Rice 1, encoding a homeodomain protein, regulates trichome development in rice[J]. Rice, 2012, 5(1):32.
doi: 10.1186/1939-8433-5-32 URL |
[9] | 李晨光. 水稻光壳基因GLR3、GL5的克隆及功能研究和叶片茸毛基因HL6的精细定位[D]. 北京:中国农业大学, 2016. |
Li CG. Cloning and function analysis of glabrous leaf gene GLR3、GL5 and fine mapping of hairy leaf gene HL6 in rice[D]. Beijing:China Agricultural University, 2016. | |
[10] |
Zhang HL, Wu K, Wang YF, et al. A WUSCHEL-like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice[J]. Rice, 2012, 5(1):30.
doi: 10.1186/1939-8433-5-30 URL |
[11] |
Angeles-Shim RB, Asano K, Takashi T, et al. A WUSCHEL-related homeobox 3B gene, Depilous(dep), confers glabrousness of rice leaves and glumes[J]. Rice, 2012, 5(28):28-30.
doi: 10.1186/1939-8433-5-28 URL |
[12] |
Sun WQ, Gao DW, Xiong Y, et al. Hairy Leaf 6, an AP2/ERF transcription factor, interacts with OsWOX3B and regulates trichome formation in rice[J]. Molecular Plant, 2017, 10(11):1417-1433.
doi: 10.1016/j.molp.2017.09.015 URL |
[13] |
Zeng YH, Zhu YS, Lian L, et al. Genetic analysis and fine mapping of the pubescence gene GL6 in rice(Oryza sativa L.)[J]. Chinese Science Bulletin, 2013, 58(24):2992-2999.
doi: 10.1007/s11434-013-5737-y URL |
[14] |
Xie YJ, Yu XZ, Jiang SF, et al. OsGL6, a conserved AP2 domain protein, promotes leaf trichome initiation in rice[J]. Biochem Biophys Res Commun, 2020, 522(2):448-455.
doi: 10.1016/j.bbrc.2019.11.125 URL |
[15] |
Wang YP, Chen WL, Qin P, et al. Characterization and fine mapping of GLABROUS RICE 2 in rice[J]. J Genet Genomics, 2013, 40(11):579-582.
doi: 10.1016/j.jgg.2013.06.001 URL |
[16] | 宋海冰, 汪斌, 陈壬杰, 等. 水稻“光身”突变体glr3的遗传分析及基因定位[J]. 遗传, 2016, 38(11):1011-1018. |
Song HB, Wang B, Chen RJ, et al. Genetic analysis and gene mapping of the glabrous leaf and hull mutant glr3 in rice(Oryza sativa L.)[J]. Hereditas, 2016, 38(11):1011-1018. | |
[17] | Lan T, Zheng YL, Su ZL, et al. OsSPL10, a SBP-Box gene, plays a dual role in salt tolerance and trichome formation in rice(Oryza sativa L.)[J]. G3-Genes Genomes Genetics, 2019, 9(12):4107-4114. |
[18] |
Li WQ, Wu JG, Weng SL, et al. Characterization and fine mapping of the glabrous leaf and hull mutants(gl1)in rice(Oryza sativa L.)[J]. Plant Cell Reports, 2010, 29(6):617-627.
doi: 10.1007/s00299-010-0848-2 URL |
[19] | 洪隽, 王启钊, 富昊伟, 等. 水稻光叶性状基因gl1的精细定位与候选基因分析[J]. 核农学报, 2011, 25(6):1088-1093, 1190. |
Hong J, Wang QZ, Fu HW, et al. Fine mapping and candidate gene analysis of glabrous leaf and hull gene(gl1)in rice(Oryza sativa L.)[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(6):1088-1093, 1190. | |
[20] | 董陈文华, 张小玲, 朱骞. 水稻光叶突变新基因的克隆和亚细胞定位[J]. 分子植物育种, 2015, 13(4):716-726. |
DongChen WH, Zhang XL, Zhu Q. Cloning and subcellular localization of a new glabrous-leaf mutant gene GLL in rice(Oryza sativa L.)[J]. Molecular Plant Breeding, 2015, 13(4):716-726. | |
[21] |
Tian NN, Liu F, Wang PD, et al. The molecular basis of glandular trichome development and secondary metabolism in plants[J]. Plant Gene, 2017, 12:1-12.
doi: 10.1016/j.plgene.2017.05.010 URL |
[22] |
Larkin JC, Oppenheimer DG, Pollock S, et al. Arabidopsis GLABROUS1 gene requires downstream sequences for function[J]. The Plant Cell, 1993, 5(12):1739-1748.
pmid: 12271054 |
[23] | Li YQ, Shan XT, Gao RF, et al. Two IIIf Clade-bHLHs from freesia hybrida play divergent roles in flavonoid biosynjournal and trichome formation when ectopically expressed in Arabidopsis[J]. Scientific Reports, 2016, 6(1):680-685. |
[24] |
Gao CH, Li D, Jin CY, et al. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynjournal and trichome formation in Arabidopsis[J]. Biochem Biophys Res Commun, 2017, 485(2):360-365.
doi: 10.1016/j.bbrc.2017.02.074 URL |
[25] |
Dai XM, Zhou LM, Zhang W, et al. A single amino acid substitution in the R3 domain of GLABRA1 leads to inhibition of trichome formation in Arabidopsis without affecting its interaction with GLABRA3[J]. Plant Cell Environ, 2016, 39(4):897-907.
doi: 10.1111/pce.12695 URL |
[26] |
Maes L, Inzé D, Goossens A. Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves[J]. Plant Physiology, 2008, 148(3):1453-1464.
doi: 10.1104/pp.108.125385 URL |
[27] | Fambrini M, Pugliesi C. The dynamic genetic-hormonal regulatory network controlling the trichome development in leaves[J]. Plants(Basel), 2019, 8(8):253. |
[28] |
Schellmann S, Schnittger A, Kirik V, et al. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis[J]. The EMBO Journal, 2002, 21(19):5036-5046.
doi: 10.1093/emboj/cdf524 URL |
[29] |
Wada T, Tachibana T, Shimura Y, et al. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC[J]. Science, 1997, 277(5329):1113-1116.
doi: 10.1126/science.277.5329.1113 URL |
[30] |
Kirik V, Simon M, Huelskamp M, et al. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis[J]. Developmental Biology, 2004, 268(2):506-513.
doi: 10.1016/j.ydbio.2003.12.037 URL |
[31] |
Koch AJ, Meinhardt H. Biological pattern formation:from basic mechanisms to complex structures[J]. Rev Mod Phys, 1994, 66(4):1481-1507.
doi: 10.1103/RevModPhys.66.1481 URL |
[32] |
Meinhardt H, Gierer A. Applications of a theory of biological pattern formation based on lateral inhibition[J]. J Cell Sci, 1974, 15(2):321-346.
pmid: 4859215 |
[33] | Balkunde R, Pesch M, Hülskamp M. Trichome patterning in Arabidopsis thaliana:from genetic to molecular models[J]. Curr Top Dev Biol, 2010, 91:299-321. |
[34] | 张继伟, 赵杰才, 周琴, 等. 植物表皮毛研究进展[J]. 植物学报, 2018, 53(5):726-737. |
Zhang JW, Zhao JC, Zhou Q, et al. Progress in research of plant trichome[J]. Chinese Bulletin of Botany, 2018, 53(5):726-737. | |
[35] |
Wang TY, Jia QM, Wang W, et al. GCN5 modulates trichome initiation in Arabidopsis by manipulating histone acetylation of core trichome initiation regulator genes[J]. Plant Cell Reports, 2019, 38(6):755-765.
doi: 10.1007/s00299-019-02404-2 URL |
[36] |
Huang FY, Chen JH, Feng YR, et al. Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene GLABRA3[J]. Plant J, 2020, 103(5):1735-1743.
doi: 10.1111/tpj.v103.5 URL |
[37] |
Wei LH, Song PZ, Wang Y, et al. The m(6)A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis[J]. Plant Cell, 2018, 30(5):968-985.
doi: 10.1105/tpc.17.00934 URL |
[38] | 郑叶子, 王丹, 潘咪, 等. 拟南芥GLABROUS 1两个新等位突变体的筛选和鉴定[J]. 生物技术通报, 2021, 37(2):15-23. |
Zheng YZ, Wang D, Pan M, et al. Isolation and characterization of two new GLABROUS1 alleles in Arabidopsis[J]. Biotechnology Bulletin, 2021, 37(2):15-23. | |
[39] |
Barunava P, Sitakanta P, Yuan L. Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynjournal in Arabidopsis[J]. Plant J, 2013, 74(3):435-447.
doi: 10.1111/tpj.2013.74.issue-3 URL |
[40] |
Matías-Hernández L, Aguilar-Jaramillo AE, Osnato M, et al. TEMPRANILLO reveals the mesophyll as crucial for epidermal trichome formation[J]. Plant Physiology, 2016, 170(3):1624-1639.
doi: 10.1104/pp.15.01309 URL |
[41] |
Wang Z, Yang ZR, Li FG. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton[J]. Plant Biotechnol J, 2019, 17(9):1706-1722.
doi: 10.1111/pbi.13167 pmid: 31111642 |
[42] |
Qin NX, Xu DQ, Li JG, et al. COP9 signalosome:Discovery, conservation, activity, and function[J]. J Integr Plant Biol, 2020, 62(1):90-103.
doi: 10.1111/jipb.v62.1 URL |
[43] |
An LJ, Zhou ZJ, Su S, et al. GLABROUS INFLORESCENCE STEMS(GIS)is required for trichome branching through gibberellic acid signaling in Arabidopsis[J]. Plant Cell Physiol, 2012, 53(2):457-469.
doi: 10.1093/pcp/pcr192 URL |
[44] |
Zhou ZJ, An LJ, Sun LL, et al. ZFP5 encodes a functionally equivalent GIS protein to control trichome initiation[J]. Plant Signal Behav, 2012, 7(1):28-30.
doi: 10.4161/psb.7.1.18404 URL |
[45] | 王启钊, 赵海军, 李文旭, 等. 水稻LOC_Os05g02754基因的分子表征[J]. 核农学报, 2013, 27(3):301-306. |
Wang QZ, Zhao HJ, Li WX, et al. Molecular characterization of LOCOs05g02754 gene in rice(Oryza Sativa L.)[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3):301-306. | |
[46] | 石如玲, 姜玲玲. 过氧化物酶体脂肪酸β氧化[J]. 中国生物化学与分子生物学报, 2009, 25(1):12-16. |
Shi RL, Jiang LL. Recent advances in peroxisomal fatty acid β-oxidation[J]. Chinese Journal of Biochemistry Molecular Biology, 2009, 25(1):12-16. | |
[47] |
Reina-Pinto JJ, Voisin D, Kurdyukov S, et al. Misexpression of FATTY ACID ELONGATION1 in the Arabidopsis epidermis induces cell death and suggests a critical role for phospholipase A2 in this process[J]. The Plant Cell, 2009, 21(4):1252-1272.
doi: 10.1105/tpc.109.065565 URL |
[48] |
Inthima P, Nakano M, Otani M, et al. Overexpression of the gibberellin 20-oxidase gene from Torenia fournieri resulted in modified trichome formation and terpenoid metabolities of Artemisia annua L.[J]. Plant Cell Tiss Org Cult, 2017, 129(2):223-236.
doi: 10.1007/s11240-017-1171-1 URL |
[49] |
Zhou Z, Sun L, Zhao Y, et al. Zinc Finger Protein 6(ZFP6)regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana[J]. New Phyto, 2013, 198(3):699-708.
doi: 10.1111/nph.2013.198.issue-3 URL |
[50] |
Xia XC, Hu QQ, Li W, et al. Cotton(Gossypium hirsutum)JAZ3 and SLR1 function in jasmonate and gibberellin mediated epidermal cell differentiation and elongation[J]. Plant Cell Tiss Org Cult, 2018, 133(2):249-262.
doi: 10.1007/s11240-018-1378-9 URL |
[51] |
Peng S, Sun K, Guo Y, et al. Arabidopsis nucleoporin CPR5 controls trichome cell death through the core cell cycle regulator CKI[J]. Plant Biology, 2020, 22(2):337-345.
doi: 10.1111/plb.13068 pmid: 31692196 |
[52] |
Zheng KJ, Tian HN, Hu QN, et al. Ectopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation[J]. Sci Rep, 2016, 6:19254.
doi: 10.1038/srep19254 URL |
[53] |
Wang C, Liu Q, Shen Y, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3):283-287.
doi: 10.1038/s41587-018-0003-0 URL |
[54] | 安文静, 王凯婕, 刘亚菲, 等. CRISPR/Cas9介导的水稻OsRhoGAP2基因的敲除[J]. 中国生物化学与分子生物学报, 2020, 36(8):977-986. |
An WJ, Wang KJ, Liu YF, et al. CRISPR/Cas9-mediated knockdown of rice OsRhoGAP2 genes[J]. Chinese Journal of Biochemistry Molecular Biology, 2020, 36(8):977-986. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[4] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[5] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[6] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[7] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[8] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[9] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[10] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[11] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[12] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[13] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[14] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[15] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||