Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (6): 272-278.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1224
Previous Articles Next Articles
WANG Meng-ting(), CAO Jie-yu, WANG Zhong-xin, WANG Ya-yu, YANG Da-zuo, ZHOU Yi-bing, ZHAO Huan()
Received:
2020-09-30
Online:
2021-06-26
Published:
2021-07-08
Contact:
ZHAO Huan
E-mail:781627412@qq.com;zhaohuan@dlou.edu.cn
WANG Meng-ting, CAO Jie-yu, WANG Zhong-xin, WANG Ya-yu, YANG Da-zuo, ZHOU Yi-bing, ZHAO Huan. Research Progress of MicroRNA Involvement in the Stress Responses of Aquatic Animals to Envirnmental Pollutants[J]. Biotechnology Bulletin, 2021, 37(6): 272-278.
[1] |
Choudhuri S. Small noncoding RNAs:biogenesis, function, and emerging signifificance in toxicology[J]. Biochem Mol Toxicol, 2010, 24:195-216.
doi: 10.1002/(ISSN)1099-0461 URL |
[2] | Lee Y, Jeon K, Lee JT, et al. Micro RNA maturation:stepwise processing and subcellular localization[J]. EMBO, 2002, 21(17):4663-4670. |
[3] |
Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-micro RNAs and short hairpin RNAs[J]. Genes Dev, 2003, 17(24):3011-3016.
doi: 10.1101/gad.1158803 URL |
[4] |
Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates micro RNA processing[J]. Nature, 2003, 425(6956):415-419.
doi: 10.1038/nature01957 URL |
[5] |
Bartel DP. MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233.
doi: 10.1016/j.cell.2009.01.002 pmid: 19167326 |
[6] |
Carthew RW. Gene regulation by microRNAs[J]. Curr Opin Genet Dev, 2006, 16(2):203-208.
doi: 10.1016/j.gde.2006.02.012 URL |
[7] |
Jalali S, Ramanathan GK, Parthasarathy PT, et al. Mir-206 regulates pulmonary artery smooth muscle cellproliferation and differentiation[J]. PLoS One, 2012, 7(10):e46808.
doi: 10.1371/journal.pone.0046808 URL |
[8] |
Yuan J, Xiao G, Peng G, et al. Mi RNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ[J]. Biochemical and Biophysical Research Communications, 2015, 457(2):171-176.
doi: 10.1016/j.bbrc.2014.12.078 URL |
[9] |
Kang D, Skalsky RL, Cullen BR. Micro RNAs target multiple pro-apoptotic cellular genes to promote epithelial cell survival[J]. PLoS Pathog, 2015, 11(6):e1004979.
doi: 10.1371/journal.ppat.1004979 URL |
[10] |
O’Connell RM, Rao DS, Baltimore D. Micro RNA regulation of inflammatory responses[J]. Annual Review of Immunology, 2012, 30:295-312.
doi: 10.1146/annurev-immunol-020711-075013 URL |
[11] |
Tate R, Rotondo D, Davidson J. Regulation of lipid metabolism by micro RNAs[J]. Current Opinion in Lipidology, 2015, 26(3):243-244.
doi: 10.1097/MOL.0000000000000186 URL |
[12] |
Fabbri M, Urani C, Sacco MG, et al. Whole genome analysis and microRNAs regulation in HepG2 cells exposed to cadmium[J]. ALTEX, 2012, 29:173-182.
doi: 10.14573/altex URL |
[13] |
Bao YB, Zhang LL, Dong YH, et al. Identification and comparative analysis of the Tegillarca granosa haemocytes microRNA transcriptome in response to Cd using a deep sequencing approach[J]. PLoS One, 2014, 9(4):e93619.
doi: 10.1371/journal.pone.0093619 URL |
[14] |
Chen S, Garrett J, McKinney GJ, et al. Novel cadmium responsive microRNAs in Daphnia pulex[J]. Environ Sci Technol, 2015, 49(24):14605-14613.
doi: 10.1021/acs.est.5b03988 URL |
[15] |
Chen S, Nichols KM, Poynton HC, et al. Sepúlveda. MicroRNAs are involved in cadmium tolerance in Daphnia pulex[J]. Aquatic Toxicology, 2016, 175:241-248.
doi: 10.1016/j.aquatox.2016.03.023 URL |
[16] | Liu Q, Yang J, Gong YF, et al. MicroRNA profiling identifies biomarkers in head kidneys of common carp exposed to cadmium[J]. Chemosphere, 2020, 5(247):901-930. |
[17] | Qiang J, Tao YF, He J, et al. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia(GIFT, Oreochromis niloticus)exposed to cadmium by directly targeting a metallothionein gene[J]. Aquatic Toxicology, 2017, 1(182):39-48. |
[18] | Guo H, Lu ZC, Zhu XW, et al. Difffferential expression of microRNAs in hemocytes from white shrimp Litopenaeus vannamei under copper stress[J]. Fish and Shellfifish Immunology, 2017, 9(74):152-161. |
[19] | 张晶晶, 李宏俊, 秦艳杰, 等. 基于鳃的miRNA转录组研究中国蛤蜊对重金属镉的响应[J]. 海洋学报, 2016, 38(12):118-131. |
Zhang JJ, Li HJ, Qin YJ, et al. Identification and differential expression of gill microRNA in the Chinese surf clam(Mactra chinensis)with Cd2+ exposure [J]. Acta Oceanologica Sinica, 2016, 38(12):118-131. | |
[20] | 王菊, 赵建军, 马旭. 丙烯酰胺对斑马鱼胚胎发育过程中microRNA 表达的影响[J]. 毒理学杂志, 2017, 21(3):169-171. |
Wang J, Zhao JJ, Ma X. Effects of acrylamide on the expression of microRNA in zebrafish development[J]. Journal of Toxicology, 2017, 21(3):169-171. | |
[21] |
Wu M, Wu D, Wang C, et al. Hexabromocyclododecane exposure induces cardiac hypertrophy and arrhythmia by inhibiting miR-1 expression via up-regulation of the homeobox gene Nkx2. 5[J]. Hazard Mater, 2016, 302:304-313.
doi: 10.1016/j.jhazmat.2015.10.004 URL |
[22] |
Jenny MJ, Aluru N, Hahn ME. Effects of short-term exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos[J]. Toxicol Appl Pharmacol, 2012, 264:262-273.
doi: 10.1016/j.taap.2012.08.007 URL |
[23] |
Ju L, Zhou Z, Jiang B, et al. miR-21 is involved in skeletal deficiencies of zebrafish embryos exposed to polychlorinated biphenyls[J]. Environ Sci Pollut Res, 2017, 24:886-891.
doi: 10.1007/s11356-016-7874-8 URL |
[24] |
Zhang L, Li YY, Zeng HZ, et al. MicroRNA expression changes during zebrafifish development induced by perflfluorooctane sulfonate[J]. Appl Toxicol, 2011, 31:210-222.
doi: 10.1006/faat.1996.0093 URL |
[25] |
Huang HN, Zhang K, Zhou YY, et al. MicroRNA-155 targets cyb561d2 in zebrafish in response to fipronil exposure[J]. Environ Toxicol, 2016, 31(7):877-886.
doi: 10.1002/tox.v31.7 URL |
[26] |
Zhou Y, Huang H, Zhang K, et al. miRNA-216 and miRNA-499 target cyb561d2 in zebrafish in response to fipronil exposure[J]. Environ Toxicol Pharmacol, 2016, 45:98-107.
doi: 10.1016/j.etap.2016.05.019 URL |
[27] | Wang X, Zhou S, Ding X, et al. Effect of triazophos, fipronil and their mixture on miRNA expression in adult zebrafish[J]. Environ Sci Health Part B, 2010, 45:648-657. |
[28] |
Jia L, Zhang D, Huang H, et al. Triazophos-induced toxicity in zebrafish:miRNA-217 inhibits nup43[J]. Toxicol Res, 2018, 7:913-922.
doi: 10.1039/C8TX00065D URL |
[29] |
Renaud L, Silveira WA, Hazard ES, et al. The plasticizer bisphenol a perturbs the hepatic epigenome:a systems level analysis of the miRNome[J]. Genes, 2017, 8(10):269-308.
doi: 10.3390/genes8100269 URL |
[30] | Lee JY, Kho YL, Kim YL, et al. Exposure to bisphenol S alters the expression of microRNA in male zebrafish[J]. Toxicology and Applied Pharmacology, 2018, 1(338):191-196. |
[31] |
Zhang QL, Dong ZX, Xiong Y, et al. Genome-wide transcriptional response of microRNAs to the benzo(a)pyrene stress in amphioxus Branchiostoma belcheri[J]. Chemosphere, 2019, 3(218):205-210.
doi: 10.1016/0045-6535(74)90007-1 URL |
[32] | 洪响声. 稀有鮈鲫micro RNA的鉴定及在水生态毒理学上的初步应用[D]. 武汉:华中农业大学, 2016. |
Hong XS. Identification and preliminary application of microRNAs of Chinese rare minnow(Gobiocypris Rarus)in aquatic ecotoxicology[D]. Wuhan:Huazhong Agricultural University, 2016. | |
[33] | 王芳. 黄河鲤卵巢发育相关miRNA的鉴定及生物学功能的初步研究[D]. 新乡:河南师范大学, 2018. |
Wang F. Identification and biological function analysis of microRNA related to ovarian development of yellow river carp(Cyprinus carpio)[D]. Xinxiang:Henan Normal University, 2018. | |
[34] | 尹双, 代燕辉, 徐立娜, 等. 海洋酸化条件下重金属和金属纳米颗粒的环境行为及其对海洋生物的影响[J]. 中国科学:化学, 2018, 48(3):256-265. |
Yin S, Dai YH, Xu LN, et al. Environmental behaviors and toxicity of heavy metals and metallic nanoparticles to marine organisms under ocean acidification[J]. Scientia Sinica:Chimica, 2018, 48(3):256-265.
doi: 10.1360/N032017-00146 URL |
|
[35] |
Hu M, Jovanović B, Palić D. In silico prediction of MicroRNA role in regulation of Zebrafish(Danio rerio)responses to nanoparticle exposure[J]. Toxicol, 2019, 60:187-202.
doi: 10.1016/0300-483X(90)90142-4 URL |
[36] |
Hu H, Shi Y, Zhang Y, et al. Comprehensive gene and microRNA expression profiling on cardiovascular system in zebrafish co-exposured of SiNPs and MeHg[J]. Sci Total Environ, 2017, 607-608:795-805.
doi: 10.1016/j.scitotenv.2017.07.036 URL |
[37] |
Martinez R, Vera-Chang MN, Haddad M, et al. Developmental fluoxetine exposure in zebrafish reduces offspring basal cortisol concentration via life stage-dependent maternal transmission[J]. PLoS One, 2019, 14:e0212577.
doi: 10.1371/journal.pone.0212577 URL |
[38] |
Lin J, Wang C, Liu J, et al. Up-stream mechanisms for up-regulation of miR-125b from triclosan exposure to zebrafish(Danio rerio)[J]. Aquat Toxicol, 2017, 193:256-267.
doi: 10.1016/j.aquatox.2017.10.021 URL |
[39] |
Wang X, Zheng Y, Ma Y, et al. Lipid metabolism disorder induced by up-regulation of miR-125b and miR-144 following β-diketone antibiotic exposure to F0-zebrafish(Danio rerio)[J]. Ecotoxicol Environ Saf, 2018, 164:243-252.
doi: 10.1016/j.ecoenv.2018.08.027 URL |
[40] |
Craig PM, Trudeau VL, Moon TW. Profiling hepatic microRNAs in zebrafish:fluoxetine exposure mimics a fasting response that targets AMP-activated protein kinase(AMPK)[J]. PLoS One, 2014, 9:e95351.
doi: 10.1371/journal.pone.0095351 URL |
[41] |
Liu J, Xiang C, Huang W, et al. Neurotoxicological effects induced by up-regulation of miR-137 following triclosan exposure to zebrafish(Danio rerio)[J]. Aquat Toxicol, 2019, 206:176-185.
doi: 10.1016/j.aquatox.2018.11.017 URL |
[42] |
Aluru N, Deak KL, Jenny MJ, et al. Developmental exposure to valproic acid alters the expression of microRNAs involved in neurodevelopment in zebrafish[J]. Neurotoxicol Teratol, 2013, 40:46-58.
doi: 10.1016/j.ntt.2013.10.001 URL |
[43] |
Li J, Liu J, Zhang Y, et al. Screening on the differentially expressed miRNAs in zebrafish(Danio rerio)exposed to trace β-diketone antibiotics and their related functions[J]. Aquat Toxicol, 2016, 178:27-38.
doi: 10.1016/j.aquatox.2016.07.009 URL |
[44] |
Duan J, Yu Y, Li Y, et al. Comprehensive understanding of PM2. 5 on gene and microRNA expression patterns in zebrafish(Danio rerio)model[J]. Sci Total Environ, 2017, 586:666-674.
doi: 10.1016/j.scitotenv.2017.02.042 URL |
[45] | Beate H, Stefan P, Martin, et al. MiR-21 is required for efficient kidney regeneration in fish[J]. Developmental Biology, 2015, 15:43. |
[1] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[2] | ZHANG Ting-huan, LONG Xi, GUO Zong-yi, CHAI Jie. miR-378 Promoting Lipogenesis and Identification of Target Genes [J]. Biotechnology Bulletin, 2021, 37(2): 80-87. |
[3] | TANG De-ping, YAO Hui-hui, TANG Jin-zhou, MAO Ai-hong. Mutual Regulation of microRNAs and Epigenetics in Human Cancers [J]. Biotechnology Bulletin, 2020, 36(8): 194-200. |
[4] | SONG Hua-li, SUN Xiao-ying, KONG Xiang-hui, LI Li, PEI Chao. Application of RNA Interference Technology in Antiviral and Antiparasitic Research of Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 193-205. |
[5] | SUN Rui-ping, WANG Feng, CHAO Zhe, LIU Hai-long, XING Man-ping, LIU Quan-wei, ZHENG Xin-li, HUANG Li-li, WEI Li-min. Comparative Analysis on miRNA Transcriptome of Skeletal Muscle Between Wuzhishan Pig and Landrace [J]. Biotechnology Bulletin, 2020, 36(10): 40-48. |
[6] | ZHAO Yan, CAO Xiao-ying, ZHOU Hao-tian, SONG Ling-yuan, TU Han-qing, HUANG Si-ying, ZHAO Jin-liang. Analysis of miRNA Transcriptome in Early Developmental Stage and Identification of Growth-related miRNA of Siniperca chuatsi [J]. Biotechnology Bulletin, 2018, 34(8): 181-189. |
[7] | XIE Jie ,WANG Ming ,LI Qing ,PAN Fei ,XIONG Xing-yao ,QIN Yu-zhi. Research Progress on Plant miR390 [J]. Biotechnology Bulletin, 2018, 34(6): 1-10. |
[8] | LI Yu-peng ,ZHANG Yi-ming,HU Hai-bi ,KANG Cheng-yu, LI Mu-zhou ,GUO Zhi-yun. Bioinformatics Analysis and Functional Verification of p53 Regulating miRNA-3661 in Hepatoma Cell HepG2 [J]. Biotechnology Bulletin, 2017, 33(7): 216-223. |
[9] | YANG Ya-lan, GUO Zhi-yun, DING Ruo-fan, MAO Can-quan, GUO Jian-xiu, XIONG Li-li. Differential Expression Profile Analysis of MicroRNAs in Doxorubicin-induced Hepatoma Cell Line HepG2 [J]. Biotechnology Bulletin, 2016, 32(6): 244-249. |
[10] | LIU Wei-can ,ZHOU Yong-gang, WANG Xing-chao, WANG Fa-wei, WANG Nan, DONG Yuan-yuan, LI Xiao-wei, LI Hai-yan. The Potential Application of microRNA-mediated Gene Regulation in Crop Improvement [J]. Biotechnology Bulletin, 2016, 32(4): 6-15. |
[11] | Lü Yang, WANG Yu, SUN Jia-jia, GONG Chun-ling, LI Guang-peng. Expression of microRNA-483 and microRNA-486 in the Cloned and fat-1-transgenic Bovine [J]. Biotechnology Bulletin, 2016, 32(3): 105-108. |
[12] | LIU Jing-jing, CHENG Chun-ling, XI Yu-zhen, WEI Shu. Roles of Nicotiana tobacum NtWRKY40 in Plant Responding to Virus Infection [J]. Biotechnology Bulletin, 2016, 32(10): 188-198. |
[13] | Qi Renli, Huang Jinxiu, Long Dingbiao, Huang Ping. The Role of MicroRNA in the Cell Apoptosis Mediated by NF-κB [J]. Biotechnology Bulletin, 2015, 31(5): 27-31. |
[14] | Hou Ying, Sun Xikui, Tang Mingqing. Evaluating the Development of Small Interfering RNA Expression Vector from Its Functional Elements [J]. Biotechnology Bulletin, 2015, 31(3): 64-69. |
[15] | Chen Jinmei, Jiang Luyi, Hong Zhi. Present Situation and Prospects on Application of Plant Bioreactor in Pharmaceutical [J]. Biotechnology Bulletin, 2015, 31(10): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||