Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (9): 132-141.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1492
Previous Articles Next Articles
LIU Shao-hua1(), ZHAO Xi-sheng1,2, YANG Qing1, YANG Chang-qing1, PAN Xu-hao1, ZHANG Jian-hui3, YANG Ai-guo1(), LI Yi-ting1()
Received:
2020-12-08
Online:
2021-09-26
Published:
2021-10-25
Contact:
YANG Ai-guo,LI Yi-ting
E-mail:18838933976@163.com;yangaiguo@caas.cn;liyiting@caas.cn
LIU Shao-hua, ZHAO Xi-sheng, YANG Qing, YANG Chang-qing, PAN Xu-hao, ZHANG Jian-hui, YANG Ai-guo, LI Yi-ting. Cloning and Functional Identification of Monoterpene Synthase Gene NtTPS2 in Tobacco[J]. Biotechnology Bulletin, 2021, 37(9): 132-141.
引物名称 Primer | 引物序列Sequence(5'-3') |
---|---|
NtTPS2-F | ATGGCCACCTCCATAAGACCTGCAA |
NtTPS2-R | TTATAGGGATGGATTGGGAGTCAAT |
NtTPS2∷gfp-F | CAGTGGTCTCACAACATGGCCACCTCCATAAGACC |
NtTPS2∷gfp-R | CAGTGGTCTCATACATAGGGATGGATTGGGAGTCA |
NtTPS2-pYJM26-F | GAAGATCTATGGCCACCTCCATAAGACCTGCAA |
NtTPS2-pYJM26-R | CCCTCGAGTTATAGGGATGGATTGGGAGTCAAT |
Actin-F | TTCCGATGCCCTGAAGTCCT |
Actin-R | TCTGCCTTTGCAATCCACAT |
NtTPS2-qF | AAATGCCAAACGCTAATCCT |
NtTPS2-qR | TTCCACCACCTTGATACATCTC |
Table 1 Primers for NtTPS2 gene cloning,vector construction and qPCR
引物名称 Primer | 引物序列Sequence(5'-3') |
---|---|
NtTPS2-F | ATGGCCACCTCCATAAGACCTGCAA |
NtTPS2-R | TTATAGGGATGGATTGGGAGTCAAT |
NtTPS2∷gfp-F | CAGTGGTCTCACAACATGGCCACCTCCATAAGACC |
NtTPS2∷gfp-R | CAGTGGTCTCATACATAGGGATGGATTGGGAGTCA |
NtTPS2-pYJM26-F | GAAGATCTATGGCCACCTCCATAAGACCTGCAA |
NtTPS2-pYJM26-R | CCCTCGAGTTATAGGGATGGATTGGGAGTCAAT |
Actin-F | TTCCGATGCCCTGAAGTCCT |
Actin-R | TCTGCCTTTGCAATCCACAT |
NtTPS2-qF | AAATGCCAAACGCTAATCCT |
NtTPS2-qR | TTCCACCACCTTGATACATCTC |
Fig.2 Prediction of the conserved domain of NtTPS2 protein A:Terpene synthase,N-terminal domain;B:isoprenoid synthase domain,terpene synthase,metal-binding domain
Fig.3 Multiple sequence alignment of NtTPS2 and other plant terpene synthase genes The red boxes are marked as conserved domains of terpene synthase “DDxxD” and “(N,D)D(L,I,V)X(S,T)XXXE”. AcNES:Actinidia chinensis nerol synthase(AER36088.1);MsLIS:Mentha spicata limonene synthase(AAC37366.1);ObZIS:Ocimum basilicum α-pinene synthase(AAV63788.1);AaLIS:Artemisia annua linalool synthase(AAF13356.1);VvGES:Vitis vinifera geraniol synthase(NP_001267895.1)
Fig.8 Analysis of metabolites of NtTPS2 A:GC-MS analyses of mixed standard products of geraniol and nerol;B:GC-MS analyses of geraniol and nerol synthesized by NtTPS2 engineering bacteria;C:GC-MS analyses of products synthesized by control engineering bacteria;D:mass spectrum of nerol standard;E:mass spectrum of geraniol standard;F:mass spectrum of nerol synthesized by NtTPS2 engineering bacteria;G.:mass spectrum of geraniol synthesized by NtTPS2 engineering bacteria
[1] |
Benford HL, Frith JC, Auriola S, et al. Farnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates:biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs[J]. Molecular Pharmacology, 1999, 56(1):131-140.
pmid: 10385693 |
[2] | Kotti T, Ramirez D, Pfeiffer B, et al. Brain cholesterol turnover required for geranylgeraniol production and learning in mice[J]. Proceedings of the National Academy of ences of the United States of America, 2006, 103(10):3869-3874. |
[3] |
Ito M, Honda G. Geraniol synthases from perilla and their taxonomical significance[J]. Phytochemistry, 2007, 68(4):446-453.
doi: 10.1016/j.phytochem.2006.11.006 URL |
[4] | 王凌健, 方欣, 杨长青, 等. 植物萜类次生代谢及其调控[J]. 中国科学:生命科学, 2013, 43(12):1030-1046. |
Wang LJ, Fang X, Yang CQ, et al. Biosynjournal and regulation of secondary terpenoid metabolism in plants[J]. Science China Life Sciences, 2013, 43(12):1030-1046. | |
[5] | 梁宗锁, 方誉民, 杨东风. 植物萜类化合物生物合成与调控及其代谢工程研究进展[J]. 浙江理工大学学报:自然科学版, 2017, 37(2):255-264. |
Liang ZS, Fang YM, Yang DF. Biosynjournal, regulation and metabolic engineering of terpenoids in plants[J]. Journal of Zhejiang Sci-Tech University:Natural Sciences Edition, 2017, 37(2):255-264. | |
[6] |
Mohammed MJ, Tadros MG, Michel HE. Geraniol protects against cyclophosphamide-induced hepatotoxicity in rats:Possible role of MAPK and PPAR-γ signaling pathways[J]. Food and Chemical Toxicology, 2020, 139:111251.
doi: S0278-6915(20)30139-3 pmid: 32171873 |
[7] | 吴凤礼, 彭彦峰, 徐毅诚, 等. 代谢工程改造微生物生产芳香族化合物的研究进展[J]. 生物加工过程, 2017, 15(5):9-23. |
Wu FL, Peng YF, Xu YC, et al. Advances in microbial metabolic engineering for producing aromatic chemicals[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(5):9-23. | |
[8] |
Wendt KUl, Schulz GE. Isoprenoid biosynjournal:manifold chemistry catalyzed by similar enzymes[J]. Structure, 1998, 6(2):127-133.
pmid: 9519404 |
[9] |
Peters RJ, Carter OA, Zhang Y, et al. Bifunctional abietadiene synthase:mutual structural dependence of the active sites for protonation-initiated and ionization-initiated cyclizations[J]. Biochemistry, 2003, 42(9):2700-2707.
doi: 10.1021/bi020492n URL |
[10] |
KoKsal M, Hu H, Coates RM, et al. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase[J]. Nature Chemical Biology, 2011, 7(7):431-433.
doi: 10.1038/nchembio.578 URL |
[11] |
Zhou K, Peters RJ. Investigating the conservation pattern of a putative second terpene synthase divalent metal binding motif in plants[J]. Phytochemistry, 2009, 70(3):366-369.
doi: 10.1016/j.phytochem.2008.12.022 pmid: 19201430 |
[12] |
Chen F, Tholl D, D’Auria JC, et al. Biosynjournal and emission of terpenoid volatiles from Arabidopsis flowers[J]. The Plant Cell, 2003, 15:481-494.
doi: 10.1105/tpc.007989 URL |
[13] |
Tholl D, Chen F, Petri J, et al. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers[J]. The Plant Journal, 2005, 42:757-771.
doi: 10.1111/tpj.2005.42.issue-5 URL |
[14] |
Huang MS, Abel C, Sohrabi R, et al. Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03[J]. Plant Physiology, 2010, 153:1293-1310.
doi: 10.1104/pp.110.154864 URL |
[15] |
Raguso RA. Floral scent in a whole- plant context:moving beyond pollinator attraction[J]. Functional Ecology, 2009, 23:837-840
doi: 10.1111/fec.2009.23.issue-5 URL |
[16] |
Martin DM, Bohlmann J. Identification of Vitis vinifera(-)-α-terpineol synthase by in silico screening of full- length cDNA ESTs and functional characterization of recombinant terpene synthase[J]. Phytochemistry, 2004, 65(9):1223-1229.
pmid: 15184006 |
[17] | 庞强强, 蔡兴来, 孙晓东, 等. 大白菜TPS基因家族鉴定及其在高温胁迫下的表达分析[J]. 分子植物育种, 2020, 18(8):2452-2459. |
Pang QQ, Cai XL, Sun XD, et al. Identification of TPS gene family in Chinese cabbage(Brassica campestris L. )and its expression under heat stress[J]. Molecular Plant Breeding, 2020, 18(8):2452-2459. | |
[18] | Kayo Y, Shiduku T, Keiichiro T, et al. Rice terpene synthase 24(TPS24)encodes a jasmonate-responsive monoterpene synthase that produces an antibacterial γ-terpinene against rice pathogen[J]. Plant Physiology, 2016, 191:120-126. |
[19] | Masaki K, Miho H, Kayo Y, et al. Rice terpene synthase 18(TPS18)encodes a sesquiterpene synthase that produces an antibacterial(E)-nerolidol against a bacterial pathogen of rice[J]. Gen Plant Pathol, 2018, 84:221-229. |
[20] | 吕婧, 陈浣, 孙亭亭, 等. 普通烟草TPS家族全基因组序列鉴定与表达分析[J]. 基因组学与应用生物学, 2017, 36(6):2518-2530. |
Lv J, Chen H, Sun TT, et al. Genome-wide sequence identification and expression analysis of the TPS gene family in nicotiana tobacum[J]. Genomics and Applied Biology, 2017, 36(6):2518-2530. | |
[21] |
Yang JM, Nie QJ, Ren M, et al. Metabolic engineering of Esche-richia coli for the biosynjournal of alpha-pinene[J]. Biotechnology for Biofuels, 2013, 6(1):60.
doi: 10.1186/1754-6834-6-60 URL |
[22] |
Yang JM, Zhao G, Sun YZ, et al. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli[J]. Bioresource Technology, 2011, 104:642-647.
doi: 10.1016/j.biortech.2011.10.042 URL |
[23] | 唐亮, 马香, 周志钦. 植物萜类合成酶的进化研究[J]. 南大学学报:自然科学版, 2014, 36(4):89-96. |
Tang L, Ma X, Zhou Z Q. An evolutionary study of plant terpene synthases[J]. Journal of Southwest University:Natural Science Edition, 2014, 36(4):89-96. | |
[24] | 谢翎, 汪章勋, 黄勃. 大豆TPS基因家族全基因组鉴定、分类与表达分析[J]. 中国油料作物学报, 2014, 36(2):160-167. |
Xie L, Wang Z X, Huang B. Genome-wide identification classification and expression of TPS family genes in soybean[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(2):160-167. | |
[25] |
Li HW, Zang BS, Deng XW, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011, 234(5):1007-1018.
doi: 10.1007/s00425-011-1458-0 URL |
[26] |
Xie DW, Wang XN, Fu LS, et al. Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress[J]. Journal of Genetics, 2015, 94(1):55-65.
pmid: 25846877 |
[27] | Han JL, Li ZQ, Liu BY, et al. Metabolic engineering of terpenoids in plants[J]. Chinese Journal of Biotechnology, 2007, 23(4):561-569. |
[28] | 王诗语, 王鹤蓉, 黄子豪, 等. 利用基因工程改造的大肠杆菌合成蒎烯[J]. 生物技术通讯, 2019, 30(4):455-463. |
Wang SY, Wang HR, Huang ZH, et al. Efficient synjournal of pinene by using genetically engineered Escherichia coli[J]. Letters in Biotechnology, 2019, 30(4):455-463. | |
[29] | 袁雪峰. 大肠杆菌工程菌高密度发酵生产虾青素[D]. 保定:河北大学, 2020. |
Yuan XF. Production of astaxanthin by high-density fermentation of engineered E. coli[J]. Baoding:Hebei Universitiy, 2020. | |
[30] | 李瑜, 李一萌, 杨丽, 等. 5L发酵罐高密度培养番茄红素工程菌及其发酵条件优化[J]. 现代食品科技, 2020, 36(6):137-146. |
Li Y, Li YM, Yang L, et al. High-density cultivation of lycopene-producing engineered bacteria in 5L fermenter and optimization of fermentation conditions[J]. Modern Food Science and Technology, 2020, 36(6):137-146. |
[1] | YIN Zhuo-ran, XUAN Dong-dong, LI Chen-yi, LI Chang, CHAI Zhe, WANG Kun-yao, ZHAO Meng-qi, PENG Jing-yuan, DONG Jie, JIA Hong-fang. Cloning and Functional Analysis of Gene NtNRAMP3b in Nicotiana tabacum [J]. Biotechnology Bulletin, 2022, 38(12): 175-183. |
[2] | YU Jing, YANG Hui, YU Shi-zhou, ZHAO Hui-na, ZHENG Qing-xia, WANG Bing, LEI Bo. Construction of Yeast One-hybrid Bait Vector of Tobacco NtCBT Gene Promoter and Screening of Interacted Proteins [J]. Biotechnology Bulletin, 2022, 38(10): 73-79. |
[3] | ZHANG Yun-chuan, LIN Yi-xuan, CAO Xin-wen, WANG Hai-nan, YAN Jie. TkDREB2 Clone from Taraxacum kok-saghyz and Drought Tolerance Analysis of Transgenic Nicotiana tabacum [J]. Biotechnology Bulletin, 2021, 37(11): 212-224. |
[4] | YAO Heng, YANG Da-hai, BAI Ge, XIE He. CRISPR/Cas9-mediated Targeted Knockout of Polyphenol Oxidase NtPPO1 Gene in Nicotiana tabacum [J]. Biotechnology Bulletin, 2018, 34(11): 97-102. |
[5] | YANG Li-yun, YANG Shuang-long, LI Jun-ying, PANG Tao, HE Bin, GONG Ming. Research Advances on Metabolism of Higher Fatty Acids in Nicotiana tabacum and Its Affecting Factors [J]. Biotechnology Bulletin, 2017, 33(12): 51-60. |
[6] | Lin Shifeng, Fu Qiang, Yu Jing, Zhao Jiehong, Ren Xueliang, Wang Rengang. Cloning and Expression Analysis of Cytosolic 6-phosphogluconate Dehydrogenase Gene in Tobacco(Nicotiana tabacum) [J]. Biotechnology Bulletin, 2015, 31(5): 113-119. |
[7] | Zhang Jianbo, Wang Shasha, Hao Dahai, Yang Huiqin, Ma Wenguang, Gao Xue, Cui Mingkun, Gong Ming. Comparison of Metabolic Differences of Trehalose in Nicotiana tabacum Seedlings Under Drought and Chilling Stress [J]. Biotechnology Bulletin, 2015, 31(10): 111-118. |
[8] | Wang Qiqi, Guo Danli, Wu Xiaoqing, Fei Chunyan, Huang Xianzhong. A Study on OpZFP Increasing Salt Tolerance of Nicotiana tabacum [J]. Biotechnology Bulletin, 2015, 31(10): 119-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||