Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (10): 115-123.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0066
Previous Articles Next Articles
ZHANG Tong-tong1,2(), ZHENG Deng-yu2, WU Zhong-yi2, ZHANG Zhong-bao2(), YU Rong1()
Received:
2022-01-14
Online:
2022-10-26
Published:
2022-11-11
Contact:
ZHANG Zhong-bao,YU Rong
E-mail:zhangtongtong1217@163.com;zhangzhongbao@baafs.net.cn;yurong@mail.cnu.edu.cn
ZHANG Tong-tong, ZHENG Deng-yu, WU Zhong-yi, ZHANG Zhong-bao, YU Rong. Functional Analysis of ZmNF-YB13 Responding to Drought and Salt Stress[J]. Biotechnology Bulletin, 2022, 38(10): 115-123.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
pZmNF-YB13-FP | ATGGCGGAAGCTCCGGCGAGCC |
pZmNF-YB13-RP | TTAGTTTGAGATATCCCCGTTA |
pZmNF-YB13RT-FP | AATGGCGACGATCTGCTGTGG |
pZmNF-YB13RT-RP | GCTATCACCCTGCACCTCTCTG |
pGAPDH-FP | CCCTTCATCACCACGGACTAC |
pGAPDH-RP | AACCTTCTTGGCACCACCCT |
pZmNF-YB13T-FP | GAGAAGCGGAAGACCATCA |
pZmNF-YB13T-RP | GTATAATTGCGGGACTCTAATC |
Table 1 Primers used in this study
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
pZmNF-YB13-FP | ATGGCGGAAGCTCCGGCGAGCC |
pZmNF-YB13-RP | TTAGTTTGAGATATCCCCGTTA |
pZmNF-YB13RT-FP | AATGGCGACGATCTGCTGTGG |
pZmNF-YB13RT-RP | GCTATCACCCTGCACCTCTCTG |
pGAPDH-FP | CCCTTCATCACCACGGACTAC |
pGAPDH-RP | AACCTTCTTGGCACCACCCT |
pZmNF-YB13T-FP | GAGAAGCGGAAGACCATCA |
pZmNF-YB13T-RP | GTATAATTGCGGGACTCTAATC |
Fig.2 Tissue-specific expression pattern of gene ZmNF-YB13 in maize The error line in the figure refers to the standard deviation. Different letters indicate significant differences at the 0.05 level. The same below
Fig.3 Expressions of ZmNF-YB13 in response to abiotic and hormone stress in maize A:Dehydration treatment;B:cold(4℃)treatment;C:high salt(200 mmol/L NaCl)treatment;D:PEG treatment. The error bar represents± SD of triplicate experiments
Fig.4 Identification of T3 transgenic A. thaliana A:Identification of T3 generation A. thaliana by PCR. B:Identification of T3 generation A. thaliana by qPCR
Fig.5 Phenotypic analysis of ZmNF-YB13 transgenicA. thaliana under different stress treatments A:Phenotypic observation of A. thaliana under stress. B:Root length statistics of A. thaliana under stress treatment. *indicates significant difference at the 0.05 level. ** indicates very significant difference at the 0.01 level, the same below
Fig.6 Phenotypic analysis of A. thaliana under high salt and drought treatment in soil A:Analysis of phenotype of ZmNF-YB13 transgenic A. thaliana after high salt,drought and rewatering. B and C:Statistical analysis of green leaf number of transgenic and wild-type A. thaliana under high salt and drought treatment. D:Measurement of MDA content. E:Measurement of POD activity
[1] | 陈彦锋. 玉米高产栽培技术论述[J]. 世界热带农业信息, 2021(11):20-21. |
Chen YF. Discussion on high yield cultivation technology of maize[J]. World Trop Agric Inf, 2021(11):20-21. | |
[2] | 田敬园, 刘荣, 杨谦, 等. 玉米种植保护性耕作技术及其应用研究[J]. 世界热带农业信息, 2021(11):7-8. |
Tian JY, Liu R, Yang Q, et al. Study on conservation tillage technology of maize planting and its application[J]. World Trop Agric Inf, 2021(11):7-8. | |
[3] | 徐昆, 朱秀芳, 刘莹, 等. 气候变化下干旱对中国玉米产量的影响[J]. 农业工程学报, 2020, 36(11):149-158. |
Xu K, Zhu XF, Liu Y, et al. Effects of drought on maize yield under climate change in China[J]. Trans Chin Soc Agric Eng, 2020, 36(11):149-158. | |
[4] | 王全忠, 薛超, 周宏. 气候变化对中国玉米生产的影响及应对研究[J]. 科技与经济, 2016, 29(5):45-49. |
Wang QZ, Xue C, Zhou H. An empirical study of effect & coping strategies about climate change on Chinese maize production[J]. Sci Technol Econ, 2016, 29(5):45-49. | |
[5] | 闫振华, 刘东尧, 贾绪存, 等. 花期高温干旱对玉米雄穗发育、生理特性和产量影响[J]. 中国农业科学, 2021, 54(17):3592-3608. |
Yan ZH, Liu DY, Jia XC, et al. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage[J]. Sci Agric Sin, 2021, 54(17):3592-3608. | |
[6] | 姚超, 杨敏婕, 许梅花. 盐胁迫下玉米种子萌发及影响[J]. 农家参谋, 2021(8):61-62. |
Yao C, Yang MJ, Xu MH. Effects of salt stress on seed germination of maize[J]. The Farmers Consultant, 2021(8):61-62. | |
[7] | 刘畅, 孙璐. 盐碱胁迫对玉米苗期生理指标影响的研究进展[J]. 种子科技, 2020, 38(11):18-19. |
Liu C, Sun L. Research progress on effects of salt-alkali stress on physiological indexes of maize seedling stage[J]. Seed Sci Technol, 2020, 38(11):18-19. | |
[8] | 袁海, 何鹏飞, 武君洁, 等. 盐胁迫对耐盐和盐敏感玉米幼苗生长和生理特性的影响[J]. 江苏农业科学, 2019, 47(19):86-89. |
Yuan H, He PF, Wu JJ, et al. Effects of salt stress on growth and biological traits of salt-tolerant and salt-sensitive maize seedlings[J]. Jiangsu Agric Sci, 2019, 47(19):86-89. | |
[9] | 李世贵, 马瑞, 王芳芳, 等. 植物NF-Y转录因子研究进展[J]. 植物生理学报, 2021, 57(2):248-256. |
Li SG, Ma R, Wang FF, et al. Research progresses on plant NF-Y transcription factors[J]. Plant Physiol J, 2021, 57(2):248-256. | |
[10] | 丁慧霞, 刘凤, 等. 植物中NF-Y转录因子的结构和功能研究进展[J]. 分子植物育种, 2017, 15(5):1691-1701. |
Ding HX, Liu F, et al. The structure and function of NF-Y in plants[J]. Mol Plant Breed, 2017, 15(5):1691-1701. | |
[11] |
Li WX, Oono Y, Zhu JH, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8):2238-2251.
doi: 10.1105/tpc.108.059444 URL |
[12] |
Leyva-González MA, Ibarra-Laclette E, Cruz-Ramírez A, et al. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members[J]. PLoS One, 2012, 7(10):e48138.
doi: 10.1371/journal.pone.0048138 URL |
[13] |
Das S, Parida SK, Agarwal P, et al. Transcription factor OsNF-YB9 regulates reproductive growth and development in rice[J]. Planta, 2019, 250(6):1849-1865.
doi: 10.1007/s00425-019-03268-2 pmid: 31482329 |
[14] |
Xiong YF, Ren Y, Li W, et al. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice[J]. J Exp Bot, 2019, 70(15):3765-3780.
doi: 10.1093/jxb/erz168 pmid: 31211389 |
[15] |
Alam MM, Tanaka T, Nakamura H, et al. Overexpression of a rice heme activator protein gene(OsHAP2E)confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number[J]. Plant Biotechnol J, 2015, 13(1):85-96.
doi: 10.1111/pbi.12239 URL |
[16] |
Ma XY, Zhu XL, Li CL, et al. Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana[J]. Plant Physiol Biochem, 2015, 86:34-43.
doi: 10.1016/j.plaphy.2014.11.011 URL |
[17] |
Xu L, Lin ZY, Tao Q, et al. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L[J]. PLoS One, 2014, 9(10):e111354.
doi: 10.1371/journal.pone.0111354 URL |
[18] |
Maheshwari P, Kummari D, Palakolanu SR, et al. Genome-wide identification and expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench)[J]. PLoS One, 2019, 14(9):e0222203.
doi: 10.1371/journal.pone.0222203 URL |
[19] |
Wang PJ, Zheng YC, Guo YC, et al. Identification, expression, and putative target gene analysis of nuclear factor-Y(NF-Y)transcription factors in tea plant(Camellia sinensis)[J]. Planta, 2019, 250(5):1671-1686.
doi: 10.1007/s00425-019-03256-6 URL |
[20] |
Feng C, Wang Y, Sun Y et al. Expression of the Malus sieversii NF-YB21 encoded gene confers tolerance to osmotic stresses in Arabidopsis thaliana[J]. Int J Mol Sci, 2021, 22(18):9777.
doi: 10.3390/ijms22189777 URL |
[21] |
Sun XD, Lian HF, Liu XC, et al. The garlic NF-YC gene, AsNF-YC8, positively regulates non-ionic hyperosmotic stress tolerance in tobacco[J]. Protoplasma, 2017, 254(3):1353-1366.
doi: 10.1007/s00709-016-1026-3 URL |
[22] |
Su HH, Cao YY, Ku LX, et al. Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize[J]. J Exp Bot, 2018, 69(21):5177-5189.
doi: 10.1093/jxb/ery299 pmid: 30137393 |
[23] |
Mei XP, Liu CX, Yu TT, et al. Identification and characterization of paternal-preferentially expressed gene NF-YC8 in maize endosperm[J]. Mol Genet Genomics, 2015, 290(5):1819-1831.
doi: 10.1007/s00438-015-1043-5 URL |
[24] |
Zhang ZB, Li XL, et al. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families[J]. Biochem Biophys Res Commun, 2016, 478(2):752-758.
doi: 10.1016/j.bbrc.2016.08.020 URL |
[25] |
殷龙飞, 王朝阳, 吴忠义, 等. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7):1029-1037.
doi: 10.3724/SP.J.1006.2019.83070 |
Yin LF, Wang ZY, Wu ZY, et al. Cloning and functional analysis of ZmGRAS31 gene in maize[J]. Acta Agron Sin, 2019, 45(7):1029-1037. | |
[26] |
Seo PJ, Park MJ, Park CM. Alternative splicing of transcription factors in plant responses to low temperature stress:mechanisms and functions[J]. Planta, 2013, 237(6):1415-1424.
doi: 10.1007/s00425-013-1882-4 URL |
[27] | Zhao H, Wu D, et al. The Arabidopsis thaliana nuclear factor Y transcription factors[J]. Front Plant Sci, 2017, 7:2045. |
[28] |
Sato H, Suzuki T, et al. NF-YB2 and NF-YB3 have functionally diverged and differentially induce drought and heat stress-specific genes[J]. Plant Physiol, 2019, 180(3):1677-1690.
doi: 10.1104/pp.19.00391 pmid: 31123093 |
[29] |
Wang BM, et al. ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants[J]. Front Plant Sci, 2018, 9:709.
doi: 10.3389/fpls.2018.00709 pmid: 29896208 |
[30] |
Zhang T, Zhang D, Liu YJ, et al. Overexpression of a NF-YB3 transcription factor from Picea wilsonii confers tolerance to salinity and drought stress in transformed Arabidopsis thaliana[J]. Plant Physiol Biochem, 2015, 94:153-164.
doi: 10.1016/j.plaphy.2015.05.001 URL |
[31] |
Han X, et al. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis[J]. J Exp Bot, 2013, 64(14):4589-4601.
doi: 10.1093/jxb/ert262 URL |
[32] | Wang T, Wei Q, Wang Z, et al. CmNF-YB8 affects drought resistance in Chrysanthemum by altering stomatal status and leaf cuticle thickness[J]. J Integr Plant Biol, 2021:2021 Dec 10. |
[33] |
Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde(MDA)and relatives in biological samples:analytical and biological challenges[J]. Anal Biochem, 2017, 524:13-30.
doi: 10.1016/j.ab.2016.10.021 URL |
[34] |
Nelson DE, Repetti PP, Adams TR, et al. Plant nuclear factor Y(NF-Y)B subunits confer drought tolerance and lead to improved corn yields on water-limited acres[J]. Proc Natl Acad Sci USA, 2007, 104(42):16450-16455.
doi: 10.1073/pnas.0707193104 URL |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[3] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[4] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[5] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[6] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[7] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[8] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[9] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[10] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[11] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[12] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[13] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[14] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[15] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||