Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (11): 250-257.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0009
Previous Articles Next Articles
ZHANG Jun-feng1(), LI Meng-ke1, WU Zhi-hao1, CUI Xiao-long2, XIAO wei2(), ZHANG Shi-ying1()
Received:
2022-01-05
Online:
2022-11-26
Published:
2022-12-01
Contact:
XIAO wei,ZHANG Shi-ying
E-mail:zjf9625@163.com;weixiao@ynu.edu.cn;amy-zhang999@163.com
ZHANG Jun-feng, LI Meng-ke, WU Zhi-hao, CUI Xiao-long, XIAO wei, ZHANG Shi-ying. Effects of Bacteriophages DCEAV-31 and DCEIV-9 on the Algicidal Characteristics of Algicidal Bacterium Against Microcystis[J]. Biotechnology Bulletin, 2022, 38(11): 250-257.
试验编号 Test No. | 藻 Algae | 菌 Bacterium | 噬菌体 Bacteriophage |
---|---|---|---|
试验A | M.aeruginosa 905 | ||
试验B | M.aeruginosa 905 | EA-31/EI-9 | |
试验C | M.aeruginosa 905 | DCEAV-31/DCEIV-9 | |
试验D | M.aeruginosa 905 | EA-31/EI-9 | DCEAV-31/DCEIV-9 |
Table 1 Different assemblage setups for co-culture experi-ments
试验编号 Test No. | 藻 Algae | 菌 Bacterium | 噬菌体 Bacteriophage |
---|---|---|---|
试验A | M.aeruginosa 905 | ||
试验B | M.aeruginosa 905 | EA-31/EI-9 | |
试验C | M.aeruginosa 905 | DCEAV-31/DCEIV-9 | |
试验D | M.aeruginosa 905 | EA-31/EI-9 | DCEAV-31/DCEIV-9 |
Fig. 3 Concentration of cells and virus particles in different experimental groups A,B:Cells concentration of M. aeruginosa 905. C,D:Cells concentration of Exiguobacterium EA-31 and EI-9. E,F:Titer of phage DCEAV-31 and DCEIV-9
[1] | 张一卉, 赵以军, 程凯. 富营养化水体中微囊藻、菌、病毒数量关系初步研究[J]. 环境科学与技术, 2010, 33(4):20-23. |
Zhang YH, Zhao YJ, Cheng K. Quantitative relationship among Microcystis aeruginosa, bacteriaplankton and virioplankton in eutrophication water bodies[J]. Environ Sci &Technol, 2010, 33(4):20-23. | |
[2] |
Yang F, Wei HY, Li XQ, et al. Isolation and characterization of an algicidal bacterium indigenous to lake Taihu with a red pigment able to lyse Microcystis aeruginosa[J]. Biomed Environ Sci, 2013, 26(2):148-154.
doi: 10.3967/0895-3988.2013.02.009 pmid: 23336138 |
[3] | 黄洪辉, 韩贝贝, 张书飞, 等. 海洋溶藻菌的研究进展[J]. 南方水产科学, 2019, 15(5):126-132. |
Huang HH, Han BB, Zhang SF, et al. Advance in marine algicidal bacteria research[J]. South China Fish Sci, 2019, 15(5):126-132. | |
[4] | 卢露, 马金玲, 牛晓君, 等. 铜绿微囊藻溶藻菌EA-1的分离鉴定及溶藻特性[J]. 中国环境科学, 2021, 41(11):5372-5381. |
Lu L, Ma JL, Niu XJ, et al. Isolation and identification of an algicidal bacteria strain of EA-1 and algicidal characteristics on Microcystis aeruginosa[J]. China Environ Sci, 2021, 41(11):5372-5381. | |
[5] | 张孝进, 戴正为, 戴煜, 等. 可同时控藻和除藻毒素的方法研究进展[J]. 生态环境学报, 2021, 30(7):1549-1554. |
Zhang XJ, Dai ZW, Dai Y, et al. Research progress on the methods of simultaneous algae control and microcystin removal[J]. Ecol Environ Sci, 2021, 30(7):1549-1554. | |
[6] |
Gallardo-Rodríguez JJ, Astuya-Villalón A, Llanos-Rivera A, et al. A critical review on control methods for harmful algal blooms[J]. Rev Aquac, 2019, 11(3):661-684.
doi: 10.1111/raq.12251 URL |
[7] |
李东, 李祎, 郑天凌. 海洋溶藻功能菌作用机理研究的若干进展[J]. 地球科学进展, 2013, 28(2):243-252.
doi: 10.11867/j.issn.1001-8166.2013.02.0243 |
Li D, Li Y, Zheng TL. Advance in the research of marine algicidal functional bacteria and their algicidal mechanism[J]. Adv Earth Sci, 2013, 28(2):243-252. | |
[8] | 张奕妍, 黄兰兰, 王夕予, 等. 噬藻体对蓝藻种群密度的调控及其对水体中物质循环的影响[J]. 湖泊科学, 2022, 34(2):376-390. |
Zhang YY, Huang LL, Wang XY, et al. Regulation of cyanobacteria population density by cyanophage and its effect on material circulation in water[J]. J Lake Sci, 2022, 34(2):376-390. | |
[9] | 王子艺, 成亚辉, 张仕颖, 等. 浮游藻类与噬藻体生态功能及其互作关系研究进展[J]. 贵州农业科学, 2020, 48(11):114-120. |
Wang ZY, Cheng YH, Zhang SY, et al. Research progress on ecological functions and interactions between phytoplankton and cyanophage[J]. Guizhou Agric Sci, 2020, 48(11):114-120. | |
[10] | 蔡一鸣, 刘玉珊, 王志龙, 等. 云南不同高原富营养化湖泊噬藻体g20基因遗传多样性研究[J]. 生态与农村环境学报, 2021, 37(6):786-793. |
Cai YM, Liu YS, Wang ZL, et al. Phylogenetic diversity of cyanophage g20 gene in different eutrophic plateau lakes in Yunnan Province[J]. J Ecol Rural Environ, 2021, 37(6):786-793. | |
[11] | 张奇亚. 噬藻体感染相关基因的研究进展[J]. 微生物学通报, 2020, 47(10):3277-3286. |
Zhang QY. Genes associated with cyanophage infection:a review[J]. Microbiol China, 2020, 47(10):3277-3286. | |
[12] | Naknaen A, Suttinun O, Surachat K, et al. A novel jumbo phage PhiMa05 inhibits harmful Microcystis sp[J]. Front Microbiol, 2021, 12:660351. |
[13] | 龚良玉, 李雁宾, 祝陈坚, 等. 生物法治理赤潮的研究进展[J]. 海洋环境科学, 2010, 29(1):152-158. |
Gong LY, Li YB, Zhu CJ, et al. Research progress on biological control of HABs[J]. Mar Environ Sci, 2010, 29(1):152-158. | |
[14] |
王灵, 向文洲, 卫华宁, 等. 一株微杆菌CBA01对球形棕囊藻的溶藻特性与生理响应研究[J]. 生物技术通报, 2021, 37(10):91-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0161 |
Wang L, Xiang WZ, Wei HN, et al. Study on the algicidal characteristics and physiological response of Microbacterium sp. CBA01 to Phaeocystis globosa[J]. Biotechnol Bull, 2021, 37(10):91-99. | |
[15] | 范德朋, 胡亚冬, 杨敏志, 等. 鱼腥藻藻华水体一株溶藻菌BWFA55的鉴定及溶藻特性[J]. 广东海洋大学学报, 2021, 41(6):9-17. |
Fan DP, Hu YD, Yang MZ, et al. Identification and algicidal characteristics of an algicidal bacterium BWFA55 in Anabaena bloom water[J]. J Guangdong Ocean Univ, 2021, 41(6):9-17. | |
[16] |
Zhang CC, Massey IY, Liu Y, et al. Identification and characterization of a novel indigenous algicidal bacterium Chryseobacterium species against Microcystis aeruginosa[J]. J Toxicol Environ Health A, 2019, 82(15):845-853.
doi: 10.1080/15287394.2019.1660466 URL |
[17] | 叶姜瑜, 钟以蓉, 俞岚, 等. 一株水华鱼腥藻溶藻菌的分离鉴定及菌藻关系初探[J]. 安徽农业科学, 2011, 39(29):18121-18124. |
Ye JY, Zhong YR, Yu L, et al. Identification of an algae-lysing bacterium of Anabaena flosaquae and primary research on their relationship[J]. J Anhui Agric Sci, 2011, 39(29):18121-18124. | |
[18] |
Yoshida-Takashima Y, Yoshida M, Ogata H, et al. Cyanophage infection in the bloom-forming cyanobacteria Microcystis aeruginosa in surface freshwater[J]. Microbes Environ, 2012, 27(4):350-355.
pmid: 23047146 |
[19] | 杨芸兰. 海洋酸化对病毒生态特性的影响[D]. 厦门: 厦门大学, 2018. |
Yang YL. Effects of ocean acidification on viral ecological characteristics[D]. Xiamen: Xiamen University, 2018. | |
[20] |
Yau S, Lauro FM, DeMaere MZ, et al. Virophage control of Antarctic algal host-virus dynamics[J]. Proc Natl Acad Sci USA, 2011, 108(15):6163-6168.
doi: 10.1073/pnas.1018221108 URL |
[21] |
Brussaard CPD. Viral control of phytoplankton populations—a review[J]. J Eukaryot Microbiol, 2004, 51(2):125-138.
pmid: 15134247 |
[22] |
Cai WW, Wang H, et al. Influence of a bacteriophage on the population dynamics of toxic dinoflagellates by lysis of algicidal bacteria[J]. Appl Environ Microbiol, 2011, 77(21):7837-7840.
doi: 10.1128/AEM.05783-11 URL |
[23] |
Zhang SY, Fan C, et al. Characterization of a novel bacteriophage specific to Exiguobacterium indicum isolated from a plateau eutrophic lake[J]. J Basic Microbiol, 2019, 59(2):206-214.
doi: 10.1002/jobm.201800184 URL |
[24] |
Fu CQ, Zhao Q, Li ZY, et al. A novel Halomonas ventosae-specific virulent halovirus isolated from the Qiaohou salt mine in Yunnan, Southwest China[J]. Extremophiles, 2016, 20(1):101-110.
doi: 10.1007/s00792-015-0802-x URL |
[25] |
Cheng YH, Gao DY, Xia YS, et al. Characterization of novel bacteriophage AhyVDH1 and its lytic activity against Aeromonas hydrophila[J]. Curr Microbiol, 2021, 78(1):329-337.
doi: 10.1007/s00284-020-02279-7 URL |
[26] |
Yoshida T, Kamiji R, Nakamura G, et al. Membrane-like protein involved in phage adsorption associated with phage-sensitivity in the bloom-forming cyanobacterium Microcystis aeruginosa[J]. Harmful Algae, 2014, 34:69-75.
doi: 10.1016/j.hal.2014.03.001 URL |
[27] |
Middelboe M, HagströM A, Blackburn N, et al. Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria[J]. Microb Ecol, 2001, 42(3):395-406.
pmid: 12024264 |
[28] |
Nagasaki K, Tomaru Y, Katanozaka N, et al. Isolation and characterization of a novel single-stranded RNA virus infecting the bloom-forming diatom Rhizosolenia setigera[J]. Appl Environ Microbiol, 2004, 70(2):704-711.
doi: 10.1128/AEM.70.2.704-711.2004 URL |
[29] |
Wang K, Chen F. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake Bay[J]. Aquat Microb Ecol, 2004, 34:105-116.
doi: 10.3354/ame034105 URL |
[30] |
Kasana RC, Pandey CB. Exiguobacterium:an overview of a versatile genus with potential in industry and agriculture[J]. Crit Rev Biotechnol, 2018, 38(1):141-156.
doi: 10.1080/07388551.2017.1312273 URL |
[31] |
Akins L, Ortiz J, Leff LG. Strain-specific responses of toxic and non-toxic Microcystis aeruginosa to exudates of heterotrophic bacteria[J]. Hydrobiologia, 2020, 847(1):75-89.
doi: 10.1007/s10750-019-04073-4 URL |
[32] | 陈莉婷, 左俊, 宋立荣, 等. 溶藻细菌筛选及溶藻活性物质对铜绿微囊藻生理活性的影响[J]. 水生生物学报, 2020, 44(3):638-646. |
Chen LT, Zuo J, Song LR, et al. Screening of algae-lysing bacteria and the effects of algaelysing active substances on the physiological activities of Microcystis aeruginosa[J]. Acta Hydrobiol Sin, 2020, 44(3):638-646. | |
[33] |
Hou SL, Shu WJ, Tan S, et al. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species[J]. Can J Microbiol, 2016, 62(1):49-59.
doi: 10.1139/cjm-2015-0425 URL |
[34] |
Zhou S, Yin H, Tang SY, et al. Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa[J]. Ecotoxicol Environ Saf, 2016, 127:214-221.
doi: 10.1016/j.ecoenv.2016.02.001 URL |
[35] | 李孟珂, 夏运生, 单壮壮, 等. 三株蓝藻附着细菌多样性及其对铜绿微囊藻增殖的影响[J]. 云南大学学报:自然科学版, 2019, 41(6):1238-1245. |
Li MK, Xia YS, Shan ZZ, et al. Diversity of bacteria associated with three strains of cyanobacteria and their effects on the proliferation of Microcystis aeruginosa[J]. J Yunnan Univ Nat Sci Ed, 2019, 41(6):1238-1245. | |
[36] |
Al-Shayeb B, Sachdeva R, et al. Clades of huge phages from across earth’s ecosystems[J]. Nature, 2020, 578(7795):425-431.
doi: 10.1038/s41586-020-2007-4 URL |
[1] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[2] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[3] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[4] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[5] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[6] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[7] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[8] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[9] | HU Xue-ying, ZHANG Yue, GUO Ya-jie, QIU Tian-lei, GAO Min, SUN Xing-bin, WANG Xu-ming. Comparison in Antibiotic Resistance Genes Carried by Bacteriophages and Bacteria in Farmland Soil Amended with Different Fertilizers [J]. Biotechnology Bulletin, 2022, 38(9): 116-126. |
[10] | SHEN Yue, TAO Bao-jie, HUA Xia, LV Bing, LIU Li-jun, CHEN Yun. Research Progress in the Interactions of Strigolactone with Hormones on Regulating Root Growth [J]. Biotechnology Bulletin, 2022, 38(8): 24-31. |
[11] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[12] | TANG Xiao-li, JIANG Fu-dong, ZHANG Hong-xia. Research Progress in the Functions of SINA E3 Ubiquitin Ligase in Plant [J]. Biotechnology Bulletin, 2022, 38(10): 10-17. |
[13] | CHEN Chen, HUANG Zhi-yang, YU Hai-yan, YUAN Hai-bin, TIAN Huai-xiang. Research Technology and Progress in Transcriptional Regulation in Prokaryotes [J]. Biotechnology Bulletin, 2022, 38(10): 54-65. |
[14] | JIANG Yu-qi, SHU Xin-yue, ZHENG Ai-ping, WANG Ai-jun. Recent Progress in Molecular Mechanism of Interaction Between Rice and Tilletia horrida [J]. Biotechnology Bulletin, 2021, 37(9): 248-254. |
[15] | LIU Juan, ZHU Chun-xiao, XIAO Xue-qiong, MO Chen-mi, WANG Gao-feng, XIAO Yan-nong. Screening of Protein Interacting with Purpureocillium lilacinum Cyclophilin PlCYP6 [J]. Biotechnology Bulletin, 2021, 37(7): 137-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||