Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (11): 41-48.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0094
Previous Articles Next Articles
KOU Jia-yi1,2(), WANG Yu-ling2, ZENG Rui-lin1,2, LAN Dao-liang2,3()
Received:
2022-01-21
Online:
2022-11-26
Published:
2022-12-01
Contact:
LAN Dao-liang
E-mail:1076365466@qq.com;landaoliang@163.com
KOU Jia-yi, WANG Yu-ling, ZENG Rui-lin, LAN Dao-liang. Application of Single-cell Transcriptome Sequencing in Mammalian[J]. Biotechnology Bulletin, 2022, 38(11): 41-48.
Items | 10x Genomics | BD RhapsodyTM |
---|---|---|
单细胞分离 | 微流控芯片,油包水 | 蜂巢板(scanner检测) |
通量 | 同时测8个样本 | 最多可测4个样本 |
细胞活性 | 85%以上 | 65%以上 |
细胞直径 | 小于40 μm | 小于40 μm |
表面蛋白检测 | 可以 | 可以 |
Single Cell ATAC-SEQ | 可以 | 不能 |
Table 1 10x Genomics and BD RhapsodyTM options
Items | 10x Genomics | BD RhapsodyTM |
---|---|---|
单细胞分离 | 微流控芯片,油包水 | 蜂巢板(scanner检测) |
通量 | 同时测8个样本 | 最多可测4个样本 |
细胞活性 | 85%以上 | 65%以上 |
细胞直径 | 小于40 μm | 小于40 μm |
表面蛋白检测 | 可以 | 可以 |
Single Cell ATAC-SEQ | 可以 | 不能 |
[1] |
Schiller HB, Montoro DT, Simon LM, et al. The human lung cell atlas:a high-resolution reference map of the human lung in health and disease[J]. Am J Respir Cell Mol Biol, 2019, 61(1):31-41.
doi: 10.1165/rcmb.2018-0416TR URL |
[2] |
Arendt D. The evolution of cell types in animals:emerging principles from molecular studies[J]. Nat Rev Genet, 2008, 9(11):868-882.
doi: 10.1038/nrg2416 URL |
[3] |
Vickaryous MK, Hall BK. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest[J]. Biol Rev Camb Philos Soc, 2006, 81(3):425-455.
doi: 10.1017/S1464793106007068 URL |
[4] | Cain MP, Hernandez BJ, Chen JC. Quantitative single-cell interactomes in normal and virus-infected mouse lungs[J]. Dis Model Mech, 2020, 13(6):dmm044404. |
[5] | 巴黎根·达列力汗, 常铤晋, 汪富文, 等. 单细胞转录组测序技术及其应用研究进展[J]. 家畜生态学报, 2021, 42(11):1-5. |
Dalielihan B, Chang TJ, Wang FW, et al. Research progress on single cell RNA sequencing technology and its application[J]. J Domest Animal Ecol, 2021, 42(11):1-5. | |
[6] | Zhu Y, Huang YH, Tan Y, et al. Single-cell RNA sequencing in hematological diseases[J]. Proteomics, 2020, 20(13):e1900228. |
[7] |
Kan MY, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary diseases[J]. Respir Res, 2017, 18(1):149.
doi: 10.1186/s12931-017-0631-9 URL |
[8] |
Raj A, van Oudenaarden A. Nature, nurture, or chance:stochastic gene expression and its consequences[J]. Cell, 2008, 135(2):216-226.
doi: 10.1016/j.cell.2008.09.050 URL |
[9] |
Nimmo RA, May GE, Enver T. Primed and ready:understanding lineage commitment through single cell analysis[J]. Trends Cell Biol, 2015, 25(8):459-467.
doi: 10.1016/j.tcb.2015.04.004 URL |
[10] |
Yamada S, Nomura S. Review of single-cell RNA sequencing in the heart[J]. Int J Mol Sci, 2020, 21(21):8345.
doi: 10.3390/ijms21218345 URL |
[11] | Zhang HN, Lee CAA, Li ZL, et al. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa[J]. PLoS Comput Biol, 2018, 14(4):e1006053. |
[12] |
Chambers DC, Carew AM, Lukowski SW, et al. Transcriptomics and single-cell RNA-sequencing[J]. Respirology, 2019, 24(1):29-36.
doi: 10.1111/resp.13412 pmid: 30264869 |
[13] |
Heijink IH, Kuchibhotla VNS, Roffel MP, et al. Epithelial cell dysfunction, a major driver of asthma development[J]. Allergy, 2020, 75(8):1902-1917.
doi: 10.1111/all.14421 URL |
[14] |
Pollen AA, Nowakowski TJ, Shuga J, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex[J]. Nat Biotechnol, 2014, 32(10):1053-1058.
doi: 10.1038/nbt.2967 pmid: 25086649 |
[15] |
Peng XL, Moffitt RA, Torphy RJ, et al. De novo compartment deconvolution and weight estimation of tumor samples using DECODER[J]. Nat Commun, 2019, 10(1):4729.
doi: 10.1038/s41467-019-12517-7 pmid: 31628300 |
[16] |
Haque A, Engel J, Teichmann SA, et al. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications[J]. Genome Med, 2017, 9(1):75.
doi: 10.1186/s13073-017-0467-4 pmid: 28821273 |
[17] | Wu AR, Wang JB, Streets AM, et al. Single-cell transcriptional analysis[J]. Annu Rev Anal Chem(Palo Alto Calif), 2017, 10(1):439-462. |
[18] |
Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA sequencing methods[J]. Mol Cell, 2017, 65(4):631-643. e4.
doi: S1097-2765(17)30049-7 pmid: 28212749 |
[19] |
Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade[J]. Nat Protoc, 2018, 13(4):599-604.
doi: 10.1038/nprot.2017.149 pmid: 29494575 |
[20] |
Goetz JJ, Trimarchi JM. Transcriptome sequencing of single cells with Smart-Seq[J]. Nat Biotechnol, 2012, 30(8):763-765.
doi: 10.1038/nbt.2325 pmid: 22871714 |
[21] |
Ramsköld D, Luo SJ, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30(8):777-782.
pmid: 22820318 |
[22] |
Picelli S, Faridani OR, Björklund AK, et al. Full-length RNA-seq from single cells using Smart-seq2[J]. Nat Protoc, 2014, 9(1):171-181.
doi: 10.1038/nprot.2014.006 pmid: 24385147 |
[23] |
Picelli S, Björklund ÅK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11):1096-1098.
doi: 10.1038/nmeth.2639 pmid: 24056875 |
[24] |
See P, Lum J, Chen JM, et al. A single-cell sequencing guide for immunologists[J]. Front Immunol, 2018, 9:2425.
doi: 10.3389/fimmu.2018.02425 pmid: 30405621 |
[25] | Ni J, Hu CS, Li H, et al. Significant improvement in data quality with simplified SCRB-seq[J]. Acta Biochim Biophys Sin(Shanghai), 2020, 52(4):457-459. |
[26] |
Bagnoli JW, Ziegenhain C, Janjic A, et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq[J]. Nat Commun, 2018, 9(1):2937.
doi: 10.1038/s41467-018-05347-6 pmid: 30050112 |
[27] |
Soumillon M, Cacchiarelli D, Semrau S, et al. Characterization of directed differentiation by high-throughput single-cell RNA-Seq[J]. bioRxiv, 2014. DOI:10. 1101/003236.
doi: 10. 1101/003236 |
[28] |
Hashimshony T, Wagner F, Sher N, et al. CEL-Seq:single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3):666-673.
doi: 10.1016/j.celrep.2012.08.003 pmid: 22939981 |
[29] |
Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17:77.
doi: 10.1186/s13059-016-0938-8 pmid: 27121950 |
[30] |
Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343(6172):776-779.
doi: 10.1126/science.1247651 pmid: 24531970 |
[31] |
Biočanin M, Bues J, Dainese R, et al. Simplified Drop-seq workflow with minimized bead loss using a bead capture and processing microfluidic chip[J]. Lab Chip, 2019, 19(9):1610-1620.
doi: 10.1039/c9lc00014c pmid: 30920557 |
[32] |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5):1202-1214.
doi: S0092-8674(15)00549-8 pmid: 26000488 |
[33] |
Ren XW, et al. Reconstruction of cell spatial organization from single-cell RNA sequencing data based on ligand-receptor mediated self-assembly[J]. Cell Res, 2020, 30(9):763-778.
doi: 10.1038/s41422-020-0353-2 pmid: 32541867 |
[34] |
Raredon MSB, et al. Single-cell connectomic analysis of adult mammalian lungs[J]. Sci Adv, 2019, 5(12):eaaw3851.
doi: 10.1126/sciadv.aaw3851 URL |
[35] |
Armand EJ, Li JH, et al. Single-cell sequencing of brain cell transcriptomes and epigenomes[J]. Neuron, 2021, 109(1):11-26.
doi: 10.1016/j.neuron.2020.12.010 pmid: 33412093 |
[36] |
Zhang LK, Li FY, et al. Single-cell RNA-sequencing reveals the dynamic process and novel markers in porcine spermatogenesis[J]. J Anim Sci Biotechnol, 2021, 12(1):122.
doi: 10.1186/s40104-021-00638-3 URL |
[37] |
Zhou F, Wang R, Yuan P, et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation[J]. Nature, 2019, 572(7771):660-664.
doi: 10.1038/s41586-019-1500-0 URL |
[38] |
Behringer RR, Cate RL, Froelick GJ, et al. Abnormal sexual development in transgenic mice chronically expressing müllerian inhibiting substance[J]. Nature, 1990, 345(6271):167-170.
doi: 10.1038/345167a0 URL |
[39] | Meinsohn MC, Saatcioglu HD, Wei LN, et al. Single-cell sequencing reveals suppressive transcriptional programs regulated by MIS/AMH in neonatal ovaries[J]. Proc Natl Acad Sci USA, 2021, 118(20):e2100920118. |
[40] |
Liu XM, Wang YK, Liu YH, et al. Single-cell transcriptome sequencing reveals that cell division cycle 5-like protein is essential for porcine oocyte maturation[J]. J Biol Chem, 2018, 293(5):1767-1780.
doi: 10.1074/jbc.M117.809608 URL |
[41] | 郭芹芹, 等. 牛体外受精胚胎抗氧化相关的长链非编码RNA表达谱[J]. 畜牧兽医学报, 2017, 48(7):1229-1240. |
Guo QQ, et al. Long non-coding RNA profiling in bovine embryos treated with glutathione during in vitro culture[J]. Chin J Animal Vet Sci, 2017, 48(7):1229-1240. | |
[42] |
Soto DA, Ross PJ. Similarities between bovine and human germline development revealed by single-cell RNA sequencing[J]. Reproduction, 2021, 161(3):239-253.
doi: 10.1530/REP-20-0313 pmid: 33275120 |
[43] |
Lavagi I, Krebs S, et al. Single-cell RNA sequencing reveals developmental heterogeneity of blastomeres during major genome activation in bovine embryos[J]. Sci Rep, 2018, 8(1):4071.
doi: 10.1038/s41598-018-22248-2 pmid: 29511234 |
[44] | 叶娜. 基于单细胞转录组测序对天祝白牦牛生长期毛囊转录图谱的构建[D]. 兰州: 西北民族大学, 2021. |
Ye N. Construction of transcription map of hair follicles in growing period of Tianzhu white yak based on single cell transcriptome sequencing[D]. Lanzhou: Northwest University for Nationalities, 2021. | |
[45] | Wang SH, Wu TY, Sun JY, et al. Single-cell transcriptomics reveals the molecular anatomy of sheep hair follicle heterogeneity and wool curvature[J]. Front Cell Dev Biol, 2021, 9:800157. |
[46] |
See P, Lum J, Chen JM, et al. A single-cell sequencing guide for immunologists[J]. Front Immunol, 2018, 9:2425.
doi: 10.3389/fimmu.2018.02425 pmid: 30405621 |
[47] | Wang LL, Netto KG, Zhou LJ, et al. Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation[J]. Proc Natl Acad Sci USA, 2021, 118(2):e2005590118. |
[48] |
Wen W, Su WR, Tang H, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing[J]. Cell Discov, 2020, 6:31.
doi: 10.1038/s41421-020-0168-9 pmid: 32377375 |
[49] | Zhao ZX, Zhao Y, Zhou YQ, et al. Single-cell analysis identified lung progenitor cells in COVID-19 patients[J]. Cell Prolif, 2020, 53(12):e12931. |
[50] |
Ren XW, Wen W, Fan XY, et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas[J]. Cell, 2021, 184(7):1895-1913. e19.
doi: 10.1016/j.cell.2021.01.053 pmid: 33657410 |
[51] |
Guo JY, Hsu HS, et al. Serglycin in tumor microenvironment promotes non-small cell lung cancer aggressiveness in a CD44-dependent manner[J]. Oncogene, 2017, 36(17):2457-2471.
doi: 10.1038/onc.2016.404 pmid: 27819672 |
[52] |
Su SC, Chen JN, et al. CD10+ GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness[J]. Cell, 2018, 172(4):841-856. e16.
doi: 10.1016/j.cell.2018.01.009 |
[53] |
Zhang L, Li ZY, Skrzypczynska KM, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer[J]. Cell, 2020, 181(2):442-459. e29.
doi: S0092-8674(20)30341-X pmid: 32302573 |
[54] | Hosein AN, Huang HC, Wang ZN, et al. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution[J]. JCI Insight, 2019, 5(16):e129212. |
[55] |
Zhang QM, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma[J]. Cell, 2019, 179(4):829-845. e20.
doi: S0092-8674(19)31119-5 pmid: 31675496 |
[56] |
Zheng CH, Zheng LT, Yoo JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing[J]. Cell, 2017, 169(7):1342-1356. e16.
doi: S0092-8674(17)30596-2 pmid: 28622514 |
[57] | Park SR, Namkoong S, Friesen L, et al. Single-cell transcriptome analysis of colon cancer cell response to 5-fluorouracil-induced DNA damage[J]. Cell Rep, 2020, 32(8):108077. |
[58] |
Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq[J]. Science, 2016, 352(6282):189-196.
doi: 10.1126/science.aad0501 pmid: 27124452 |
[59] |
Wang RP, Dang MH, Harada K, et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma[J]. Nat Med, 2021, 27(1):141-151.
doi: 10.1038/s41591-020-1125-8 pmid: 33398161 |
[60] |
Ho DW, Tsui YM, Chan LK, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma[J]. Nat Commun, 2021, 12(1):3684.
doi: 10.1038/s41467-021-24010-1 URL |
[61] |
Neftel C, Laffy J, Filbin MG, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma[J]. Cell, 2019, 178(4):835-849. e21.
doi: S0092-8674(19)30687-7 pmid: 31327527 |
[62] |
Peng JY, Sun BF, Chen CY, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma[J]. Cell Res, 2019, 29(9):725-738.
doi: 10.1038/s41422-019-0195-y pmid: 31273297 |
[63] |
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8):1102-1123.
doi: 10.1158/2159-8290.CD-19-0094 pmid: 31197017 |
[64] | Hosein AN, Huang HC, Wang ZN, et al. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution[J]. JCI Insight, 2019, 5(16):e129212. |
[65] |
Lin W, Noel P, Borazanci EH, et al. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions[J]. Genome Med, 2020, 12(1):80.
doi: 10.1186/s13073-020-00776-9 pmid: 32988401 |
[66] |
Zheng GXY, Terry JM, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8:14049.
doi: 10.1038/ncomms14049 pmid: 28091601 |
[67] |
Azizi E, Carr AJ, Plitas G, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment[J]. Cell, 2018, 174(5):1293-1308. e36.
doi: S0092-8674(18)30723-2 pmid: 29961579 |
[68] |
Lambrechts D, Wauters E, Boeckx B, et al. Phenotype molding of stromal cells in the lung tumor microenvironment[J]. Nat Med, 2018, 24(8):1277-1289.
doi: 10.1038/s41591-018-0096-5 pmid: 29988129 |
[69] |
Chen J, Tan Y, Sun FH, et al. Single-cell transcriptome and antigen-immunoglobin analysis reveals the diversity of B cells in non-small cell lung cancer[J]. Genome Biol, 2020, 21(1):152.
doi: 10.1186/s13059-020-02064-6 pmid: 32580738 |
[70] |
El-Serag HB. Hepatocellular carcinoma[J]. N Engl J Med, 2011, 365(12):1118-1127.
doi: 10.1056/NEJMra1001683 URL |
[71] |
He D, Wang D, Lu P, et al. Single-cell RNA sequencing reveals heterogeneous tumor and immune cell populations in early-stage lung adenocarcinomas harboring EGFR mutations[J]. Oncogene, 2021, 40(2):355-368.
doi: 10.1038/s41388-020-01528-0 pmid: 33144684 |
[72] |
Chen ZC, Zhao MN, Li M, et al. Identification of differentially expressed genes in lung adenocarcinoma cells using single-cell RNA sequencing not detected using traditional RNA sequencing and microarray[J]. Lab Invest, 2020, 100(10):1318-1329.
doi: 10.1038/s41374-020-0428-1 pmid: 32327726 |
[73] |
Datlinger P, et al. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing[J]. Nat Methods, 2021, 18(6):635-642.
doi: 10.1038/s41592-021-01153-z pmid: 34059827 |
[1] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[2] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[3] | ZHU Qing-yuan, LI Tian-qing. Applications of Single-cell RNA Sequencing in Heart Development,Disease and Medicine [J]. Biotechnology Bulletin, 2021, 37(1): 145-154. |
[4] | PENG Wen-chao, LIU Jian-xin, WANG Di-ming. Research Progress on Metabolic Causes for Hypoxic Stress in Mammalian Animals [J]. Biotechnology Bulletin, 2021, 37(1): 262-271. |
[5] | CáO Yán-ting, LIU Yán-feng, LI Jiáng-huá, LIU Long, DU Guo-cheng. ádvánces of Improving the Efficiency of Chemicál Biosynthesis Básed on Cell Subpopulátion Regulátion [J]. Biotechnology Bulletin, 2020, 36(4): 19-25. |
[6] | WANG Dan-rui, SHEN Wen-li, WEI Zi-yan, WANG Shang, DENG Ye. Applications of Single-cell Sequencing Technology in Microbial Ecology [J]. Biotechnology Bulletin, 2020, 36(10): 237-246. |
[7] | Liu Jintao, Wang Xingyi, Fan Li, Deng Xiancun, Liu Xuping, Tan Wensong. Effect of pH Heterogeneity in Large-scale Bioreactor on Fed-batch Culture Process of CHO cells [J]. Biotechnology Bulletin, 2015, 31(10): 236-241. |
[8] | Ke Fei, Wang Yun, Hou Lifan,g Hu Xing'an, Li Peipei. Developments in Mammalian Orthoreovirus Reverse Genetics Research [J]. Biotechnology Bulletin, 2014, 0(5): 15-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||