Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (11): 32-40.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0335
Previous Articles Next Articles
XU Ji-fen1,2(), CHEN Hong-fei1,2, WANG Na1,2, LIU Jing1,2()
Received:
2022-03-16
Online:
2022-11-26
Published:
2022-12-01
Contact:
LIU Jing
E-mail:1751578646@qq.com;liujing@ynnu.edu.cn
XU Ji-fen, CHEN Hong-fei, WANG Na, LIU Jing. Research Advances in Hog1 MAPK Signaling Pathway in Fungi[J]. Biotechnology Bulletin, 2022, 38(11): 32-40.
[1] | Alonso-Monge R, Román E, Arana DM, et al. Fungi sensing environmental stress[J]. Clin Microbiol Infect, 2009, 15(Suppl 1):17-19. |
[2] |
Martín H, Flández M, Nombela C, et al. Protein phosphatases in MAPK signalling:we keep learning from yeast[J]. Mol Microbiol, 2005, 58(1):6-16.
doi: 10.1111/j.1365-2958.2005.04822.x URL |
[3] |
Rispail N, Soanes DM, Ant C, et al. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi[J]. Fungal Genet Biol, 2009, 46(4):287-298.
doi: 10.1016/j.fgb.2009.01.002 pmid: 19570501 |
[4] | Chen RE, Thorner J. Function and regulation in MAPK signaling pathways:lessons learned from the yeast Saccharomyces cerevisiae[J]. Biochim Biophys Acta, 2007, 1773(8):1311-1340. |
[5] |
Jiang M, Zhang YZ, Li P, et al. Mitogen-activated protein kinase and substrate identification in plant growth and development[J]. Int J Mol Sci, 2022, 23(5):2744.
doi: 10.3390/ijms23052744 URL |
[6] |
Kaur P, Goyal N. Pathogenic role of mitogen activated protein kinases in protozoan parasites[J]. Biochimie, 2022, 193:78-89.
doi: 10.1016/j.biochi.2021.10.012 URL |
[7] |
Whitaker RH, Cook JG. Stress relief techniques:p38 MAPK determines the balance of cell cycle and apoptosis pathways[J]. Biomolecules, 2021, 11(10):1444.
doi: 10.3390/biom11101444 URL |
[8] |
Cheetham J, Smith DA, da Silva Dantas A, et al. A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans[J]. Mol Biol Cell, 2007, 18(11):4603-4614.
doi: 10.1091/mbc.e07-06-0581 pmid: 17804815 |
[9] | 吴雪昌, 胡森杰, 钱凯先. 酵母HOG-MAPK途径[J]. 细胞生物学杂志, 2005, 27(3):247-252. |
Wu XC, Hu SJ, Qian KX. HOG-MAPK pathway in yeast[J]. Chin J Cell Biol, 2005, 27(3):247-252. | |
[10] |
O’Rourke SM, Herskowitz I, O’Shea EK. Yeast go the whole HOG for the hyperosmotic response[J]. Trends Genet, 2002, 18(8):405-412.
pmid: 12142009 |
[11] |
Maeda T, Takekawa M, Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor[J]. Science, 1995, 269(5223):554-558.
doi: 10.1126/science.7624781 pmid: 7624781 |
[12] |
O’Rourke SM, Herskowitz I. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis[J]. Mol Biol Cell, 2004, 15(2):532-542.
pmid: 14595107 |
[13] |
O’Rourke SM, Herskowitz I. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae[J]. Genes Dev, 1998, 12(18):2874-2886.
doi: 10.1101/gad.12.18.2874 URL |
[14] |
Ramezani Rad M, Jansen G, Bühring F, et al. Ste50p is involved in regulating filamentous growth in the yeast Saccharomyces cerevisiae and associates with Ste11p[J]. Mol Gen Genet MGG, 1998, 259(1):29-38.
doi: 10.1007/s004380050785 URL |
[15] |
Wang YQ, Dohlman HG. Pheromone signaling mechanisms in yeast:a prototypical sex machine[J]. Science, 2004, 306(5701):1508-1509.
doi: 10.1126/science.1104568 URL |
[16] |
Warmka J, Hanneman J, Lee J, et al. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1[J]. Mol Cell Biol, 2001, 21(1):51-60.
pmid: 11113180 |
[17] |
Reiser V, Ruis H, Ammerer G. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae[J]. Mol Biol Cell, 1999, 10(4):1147-1161.
pmid: 10198063 |
[18] |
Wurgler-Murphy SM, Maeda T, Witten EA, et al. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases[J]. Mol Cell Biol, 1997, 17(3):1289-1297.
doi: 10.1128/MCB.17.3.1289 pmid: 9032256 |
[19] |
Winkler A, Arkind C, Mattison CP, et al. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress[J]. Eukaryot Cell, 2002, 1(2):163-173.
doi: 10.1128/EC.1.2.163-173.2002 pmid: 12455951 |
[20] |
Du C, Sarfati J, Latge JP, et al. The role of the sakA(Hog1)and tcsB(sln1)genes in the oxidant adaptation of Aspergillus fumigatus[J]. Med Mycol, 2006, 44(3):211-218.
doi: 10.1080/13693780500338886 URL |
[21] |
Furukawa K, Hoshi Y, Maeda T, et al. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress[J]. Mol Microbiol, 2005, 56(5):1246-1261.
pmid: 15882418 |
[22] |
Liu J, Wang ZK, Sun HH, et al. Characterization of the Hog1 MAPK pathway in the entomopathogenic fungus Beauveria bassiana[J]. Environ Microbiol, 2017, 19(5):1808-1821.
doi: 10.1111/1462-2920.13671 URL |
[23] | 吴雪兰, 郝海波, 黄建春, 等. CWI和HOG信号通路基因在斑玉蕈不同发育阶段的表达模式[J]. 菌物学报, 2021, 40(6):1388-1399. |
Wu XL, Hao HB, Huang JC, et al. The expression pattern of CWI and HOG signal pathway genes during the growth and development of Hypsizygus marmoreus[J]. Mycosystema, 2021, 40(6):1388-1399. | |
[24] | 王调兰. Hog1、Slt2-MAP激酶对梨果蜡质及疏水性诱导Alternaria alternata侵染结构分化的调控作用[D]. 兰州: 甘肃农业大学, 2020. |
Wang TL. Regulation role of Hog1 and Slt2 MAP kinases on infection structural differentiation of Alternaria alternata induced by pear cuticular wax and hydrophobicity[D]. Lanzhou: Gansu Agricultural University, 2020. | |
[25] |
Su C, Lu Y, Liu HP. Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity[J]. Mol Biol Cell, 2013, 24(3):385-397.
doi: 10.1091/mbc.e12-06-0477 URL |
[26] |
Morales-Menchén A, Navarro-García F, Guirao-Abad JP, et al. Non-canonical activities of Hog1 control sensitivity of Candida albicans to killer toxins from Debaryomyces hansenii[J]. Front Cell Infect Microbiol, 2018, 8:135.
doi: 10.3389/fcimb.2018.00135 URL |
[27] | Chi Z, Kong CC, Wang ZZ, et al. The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp[J]. Biotechnol Adv, 2022, 55:107898. |
[28] | Li YF, He P, Tian CM, et al. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides[J]. Fungal Genet Biol, 2020, 135:103289. |
[29] | 李珊. RKHog1基因敲除对红冬孢酵母YM25235低温生长适应性的影响[D]. 昆明: 昆明理工大学, 2019. |
Li S. Effects of RKHog1 gene deletion on the adaptation of Rhodosporidium kratochvilovae YM25235 to low temperature[D]. Kunming: Kunming University of Science and Technology, 2019. | |
[30] | Huang S, Zhang D, Weng FL, et al. Activation of a mitogen-activated protein kinase Hog1 by DNA damaging agent methyl methanesulfonate in yeast[J]. Front Mol Biosci, 2020, 7:581095. |
[31] |
Lee J, Levin DE. Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1[J]. MBoC, 2018, 29(15):1904-1915.
doi: 10.1091/mbc.E18-03-0185 URL |
[32] |
Mehrabi R, Zwiers LH, de Waard MA, et al. MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola[J]. Mol Plant Microbe Interact, 2006, 19(11):1262-1269.
doi: 10.1094/MPMI-19-1262 URL |
[33] |
Segmüller N, Ellendorf U, Tudzynski B, et al. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea[J]. Eukaryot Cell, 2007, 6(2):211-221.
pmid: 17189492 |
[34] |
Ochiai N, Tokai T, Nishiuchi T, et al. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum[J]. Biochem Biophys Res Commun, 2007, 363(3):639-644.
doi: 10.1016/j.bbrc.2007.09.027 URL |
[35] |
Alonso-Monge R, Navarro-García F, Molero G, et al. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans[J]. J Bacteriol, 1999, 181(10):3058-3068.
pmid: 10322006 |
[36] | 魏金瑛. SakA基因影响马尔尼菲篮状菌应激反应、抗真菌药物敏感性以及在感染动物模型中的作用机制研究[D]. 南宁: 广西医科大学, 2017. |
Wei JY. SakA gene regulates stress response, drug sensitivity and virulence of Talaromyces marneffei[D]. Nanning: Guangxi Medical University, 2017. | |
[37] | Ownley BH, Gwinn KD, Vega FE. The ecology of fungal entomopathogens[M]. Springer Netherlands, 2010. |
[38] | Jin K, Ming Y, Xia YX. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum[J]. Microbiology(Reading), 2012, 158(Pt 12):2987-2996. |
[39] |
Zhang YJ, Zhao JH, Fang WG, et al. Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects[J]. Appl Environ Microbiol, 2009, 75(11):3787-3795.
doi: 10.1128/AEM.01913-08 URL |
[40] |
Chen XX, Xu C, Qian Y, et al. MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii[J]. Environ Microbiol, 2016, 18(3):1048-1062.
doi: 10.1111/1462-2920.13198 URL |
[41] |
Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts[J]. Microbiol Mol Biol Rev, 2002, 66(2):300-372.
doi: 10.1128/MMBR.66.2.300-372.2002 URL |
[42] |
Escoté X, Zapater M, Clotet J, et al. Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1[J]. Nat Cell Biol, 2004, 6(10):997-1002.
pmid: 15448699 |
[43] | Correia I, Alonso-Monge R, Pla J. The Hog1 MAP kinase promotes the recovery from cell cycle arrest induced by hydrogen peroxide in Candida albicans[J]. Front Microbiol, 2017, 7:2133. |
[44] |
González-Novo A, Jiménez J, Clotet J, et al. Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress[J]. Mol Cell Biol, 2015, 35(9):1606-1618.
doi: 10.1128/MCB.01279-14 pmid: 25733686 |
[45] |
Yaakov G, Duch A, García-Rubio M, et al. The stress-activated protein kinase Hog1 mediates S phase delay in response to osmostress[J]. Mol Biol Cell, 2009, 20(15):3572-3582.
doi: 10.1091/mbc.E09-02-0129 pmid: 19477922 |
[46] |
Alcasabas AA, Osborn AJ, Bachant J, et al. Mrc1 transduces signals of DNA replication stress to activate Rad53[J]. Nat Cell Biol, 2001, 3(11):958-965.
doi: 10.1038/ncb1101-958 pmid: 11715016 |
[47] |
Duch A, Felipe-Abrio I, Barroso S, et al. Coordinated control of replication and transcription by a SAPK protects genomic integrity[J]. Nature, 2013, 493(7430):116-119.
doi: 10.1038/nature11675 URL |
[48] |
Alexander MR, Tyers M, Perret M, et al. Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress[J]. Mol Biol Cell, 2001, 12(1):53-62.
pmid: 11160822 |
[49] | Clotet J, Posas F. Control of cell cycle in response to osmostress:lessons from yeast[J]. Methods Enzymol, 2007, 428:63-76. |
[50] |
Clotet J, Escoté X, Adrover MA, et al. Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity[J]. EMBO J, 2006, 25(11):2338-2346.
doi: 10.1038/sj.emboj.7601095 pmid: 16688223 |
[51] |
Tognetti S, Jiménez J, Viganò M, et al. Hog1 activation delays mitotic exit via phosphorylation of Net1[J]. Proc Natl Acad Sci USA, 2020, 117(16):8924-8933.
doi: 10.1073/pnas.1918308117 URL |
[52] |
Rodríguez-Peña JM, García R, Nombela C, et al. The high-osmolarity glycerol(HOG)and cell wall integrity(CWI)signalling pathways interplay:a yeast dialogue between MAPK routes[J]. Yeast, 2010, 27(8):495-502.
doi: 10.1002/yea.1792 URL |
[53] | Chen Y, Zhu J, Ying SH, et al. Three mitogen-activated protein kinases required for cell wall integrity contribute greatly to biocontrol potential of a fungal entomopathogen[J]. PLoS One, 2014, 9(2):e87948. |
[54] |
Jiang B, Ram AFJ, Sheraton J, et al. Regulation of cell wall β-glucan assembly:PTC1 Negatively affects PBS2 Action in a pathway that includes modulation of EXG1 transcription[J]. Mol Gen Genet MGG, 1995, 248(3):260-269.
doi: 10.1007/BF02191592 URL |
[55] |
Lai MH, Silverman SJ, Gaughran JP, et al. Multiple copies of PBS2, MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae[J]. Yeast, 1997, 13(3):199-213.
pmid: 9090049 |
[56] |
Reynolds TB, Hopkins BD, Lyons MR, et al. The high osmolarity glycerol response(HOG)MAP kinase pathway controls localization of a yeast Golgi glycosyltransferase[J]. J Cell Biol, 1998, 143(4):935-946.
doi: 10.1083/jcb.143.4.935 pmid: 9817752 |
[57] |
Westfall PJ, Thorner J. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress:use of an analog-sensitive HOG1 allele[J]. Eukaryot Cell, 2006, 5(8):1215-1228.
pmid: 16896207 |
[58] |
Hao N, Zeng YX, Elston TC, et al. Control of MAPK specificity by feedback phosphorylation of shared adaptor protein Ste50[J]. J Biol Chem, 2008, 283(49):33798-33802.
doi: 10.1074/jbc.C800179200 pmid: 18854322 |
[59] |
Yamamoto K, Tatebayashi K, Tanaka K, et al. Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor[J]. Mol Cell, 2010, 40(1):87-98.
doi: 10.1016/j.molcel.2010.09.011 pmid: 20932477 |
[60] |
Shitamukai A, Hirata D, Sonobe S, et al. Evidence for antagonistic regulation of cell growth by the calcineurin and high osmolarity glycerol pathways in Saccharomyces cerevisiae[J]. J Biol Chem, 2004, 279(5):3651-3661.
doi: 10.1074/jbc.M306098200 pmid: 14583627 |
[61] | Leech CM, Flynn MJ, Arsenault HE, et al. The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network[J]. PLoS Genet, 2020, 16(4):e1008600. |
[62] |
Bahn YS, Kojima K, Cox GM, et al. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans[J]. Mol Biol Cell, 2005, 16(5):2285-2300.
doi: 10.1091/mbc.e04-11-0987 URL |
[1] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[2] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[3] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[4] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[5] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[6] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[7] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[8] | ZHANG Hong-hong, FANG Xiao-feng. Advances in the Regulation of Stress Sensing and Responses by Phase Separation in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 44-53. |
[9] | LIU Yuan-yuan, WEI Chuan-zheng, XIE Yong-bo, TONG Zong-jun, HAN Xing, GAN Bing-cheng, XIE Bao-gui, YAN Jun-jie. Characteristics of Class II Peroxidase Gene Expression During Fruiting Body Development and Stress Response in Flammulina filiformis [J]. Biotechnology Bulletin, 2023, 39(11): 340-349. |
[10] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[11] | LI Jian-jian, HE Chen-jing, HUANG Xiao-ping, XIANG Tai-he. Research Progress in the Regulation of Development and Stress Response by Long Non-coding RNAs in Plants [J]. Biotechnology Bulletin, 2023, 39(1): 48-58. |
[12] | WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2022, 38(8): 1-11. |
[13] | TANG Qian-qian, LIN Chu-yu, TAO Zeng. Research Progress in Histone Demethylase in Plant [J]. Biotechnology Bulletin, 2022, 38(7): 13-22. |
[14] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[15] | CHEN Hu, YANG Zhang-qi, SUN Shuang, LI Peng, XU Hui-lan. Expressions and of Genes Response to Signal Substances in MAPK Cascade Pathway Genes in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(6): 187-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||