Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (3): 246-255.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0642
Previous Articles Next Articles
ZHANG Guo-ning1(), FENG Jing-xian1, YANG Ying-bo2, CHEN Wan-sheng1,3(), XIAO Ying1()
Received:
2021-05-17
Online:
2022-03-26
Published:
2022-04-06
Contact:
CHEN Wan-sheng,XIAO Ying
E-mail:1351877424@qq.com;chenwansheng@shutcm.edu.cn;xiaoyingtcm@shutcm.edu.cn
ZHANG Guo-ning, FENG Jing-xian, YANG Ying-bo, CHEN Wan-sheng, XIAO Ying. Application of Cyclodextrin Glucosyltransferase in the Glycosylation Modification of Natural Products[J]. Biotechnology Bulletin, 2022, 38(3): 246-255.
底物 Substrate | 结构类型 Structure type | CGTase来源 CGTase source | 糖基供体 Glycosyl donor | 糖苷化产物应用 Application of glycosylation products | 参考文献 Reference |
---|---|---|---|---|---|
木犀草素 | 黄酮类 | Bacillus circulans | α-环糊精 | 水溶性增加,增强了其在医疗实践中的应用 | [ |
柚皮苷 | 黄酮类 | Alkalophilic Bacillus sp | 麦芽煳精 | 溶解度提高1.0×103倍,扩大其在食品工业中的应用范围 | [ |
新橙皮苷 | 黄酮类 | Alkalophilic Bacillus | β-环糊精 | 溶解度提高1.5×103倍,扩大其在食品工业中的应用范围 | [ |
芦丁 | 黄酮醇类 | Bacillus macerans | 糊精 | 溶解度提高3×104倍 | [ |
苯并[H]喹唑啉类化合物 | 杂环化合物 | Thermophilic Bacterial | γ-环糊精 | 增高水溶性,提高制剂生物活性和生物利用度 | [ |
槐糖苷 | 异黄酮类 | Paenibacillus macerans | α-环糊精或麦芽糖 | 糖链增长水溶性增加,扩大在食品和制药行业中的应用范围 | [ |
槲皮素-3-葡萄糖;低聚葡萄糖基柚皮素-7-葡萄糖;低聚葡萄糖基橙皮素-7-葡萄糖 | 黄酮醇、二氢黄酮 | B. macerans | α-环糊精 α-cyclodextrin | 糖苷产物水溶性增强,扩大在食品和制药行业中的应用范围 | [ |
(-)-表儿茶素(EC) | 黄烷-3醇类 | Paenibacillus sp. | β-环糊精(最佳);淀粉;麦芽七糖(G7) | 糖苷产物水溶性增强,扩大在食品行业中的应用范围 | [ |
没食子儿茶素没食子酸(EGCG) | 黄烷-3醇类 | Thermoanaerobacter sp | 淀粉 | 植物多酚糖基化,提高溶解度和生物利用度 | [ |
橙皮苷 | 二氢黄酮 | A. Bacillus | 可溶性淀粉 | 水溶性提高300倍,扩大应用范围 | [ |
葛根素 | 异黄酮 | Bacillus licheniformis | α-cyclodextrin | PU-G、PU-2G以及PU-3G与PU相比,溶解度分别增强16.5、100.9和179.1倍 | [ |
Table 1 Application of CGTase glycosylation modification to improve the solubility of natural products
底物 Substrate | 结构类型 Structure type | CGTase来源 CGTase source | 糖基供体 Glycosyl donor | 糖苷化产物应用 Application of glycosylation products | 参考文献 Reference |
---|---|---|---|---|---|
木犀草素 | 黄酮类 | Bacillus circulans | α-环糊精 | 水溶性增加,增强了其在医疗实践中的应用 | [ |
柚皮苷 | 黄酮类 | Alkalophilic Bacillus sp | 麦芽煳精 | 溶解度提高1.0×103倍,扩大其在食品工业中的应用范围 | [ |
新橙皮苷 | 黄酮类 | Alkalophilic Bacillus | β-环糊精 | 溶解度提高1.5×103倍,扩大其在食品工业中的应用范围 | [ |
芦丁 | 黄酮醇类 | Bacillus macerans | 糊精 | 溶解度提高3×104倍 | [ |
苯并[H]喹唑啉类化合物 | 杂环化合物 | Thermophilic Bacterial | γ-环糊精 | 增高水溶性,提高制剂生物活性和生物利用度 | [ |
槐糖苷 | 异黄酮类 | Paenibacillus macerans | α-环糊精或麦芽糖 | 糖链增长水溶性增加,扩大在食品和制药行业中的应用范围 | [ |
槲皮素-3-葡萄糖;低聚葡萄糖基柚皮素-7-葡萄糖;低聚葡萄糖基橙皮素-7-葡萄糖 | 黄酮醇、二氢黄酮 | B. macerans | α-环糊精 α-cyclodextrin | 糖苷产物水溶性增强,扩大在食品和制药行业中的应用范围 | [ |
(-)-表儿茶素(EC) | 黄烷-3醇类 | Paenibacillus sp. | β-环糊精(最佳);淀粉;麦芽七糖(G7) | 糖苷产物水溶性增强,扩大在食品行业中的应用范围 | [ |
没食子儿茶素没食子酸(EGCG) | 黄烷-3醇类 | Thermoanaerobacter sp | 淀粉 | 植物多酚糖基化,提高溶解度和生物利用度 | [ |
橙皮苷 | 二氢黄酮 | A. Bacillus | 可溶性淀粉 | 水溶性提高300倍,扩大应用范围 | [ |
葛根素 | 异黄酮 | Bacillus licheniformis | α-cyclodextrin | PU-G、PU-2G以及PU-3G与PU相比,溶解度分别增强16.5、100.9和179.1倍 | [ |
底物 Substrate | 结构类型 Structure type | CGTase来源 CGTase source | 糖基供体 Glycosyl donor | 糖苷化产物应用 Application of glycosylation products | 参考文献 Reference |
---|---|---|---|---|---|
熊果苷arbutin | 苯酚类 | Bacillus macerans | 淀粉 | 对人酪氨酸酶抑制活性增强 | [ |
α-生育酚-β-葡萄糖苷、δ-生育酚-β-葡萄糖苷 | 多酚类 | 不明确 | 淀粉 | 对大鼠腹膜肥大细胞产生IgE抗体和增强组胺释放抑制作用 | [ |
对苯二酚(HQ) | 苯酚类 | Thermoanaerobacter sp | 麦芽糊精 | 抗褐变能力增强 | [ |
α-L-鼠李糖 | 糖类 | Bacillus circulans 251 | 麦芽糖糊精 | 可能应用于针对细菌性痢疾的合成候选疫苗 | [ |
槲皮素-3-葡萄糖;低聚葡萄糖基柚皮素-7-葡萄糖;低聚葡萄糖基橙皮素-7-葡萄糖 | 黄酮醇、二氢黄酮 | B. macerans | α-环糊精 | 对Cu2+氧化降解的抵抗能力大大增强 | [ |
(+)儿茶素 | 黄烷-3醇类 | B. macerans | 淀粉 | 抑制蘑菇中酪氨酸酶的活性 | [ |
辣木提取物中的多酚类化合物 | 多酚类 | Trichoderma viride | 小麦淀粉 | 抗氧化和清除自由基能力增强 | [ |
月桂酸蔗糖 | 糖类 | 不明确 | 糊精 | 潜在的抗肿瘤和杀虫活性 | [ |
橙皮素苷(3'-, 5-,and 7-O-glucosides) | 二氢黄酮 | 不明确 | 淀粉 | 对IgE抗体和大鼠嗜中性白细胞产生O2具有抑制作用 | [ |
辣椒素的β葡萄糖苷 | 芳香烃类 | 不明确 | 淀粉 | 抑制IgE抗体的形成 | [ |
白藜芦醇 | 多酚类 | Thermoanaerobacter sp | 淀粉 | 具有表面活性剂性质 | [ |
水杨醇 | 酚类 | B. macerans | α-环糊精 | 促进吸收,并可作为温和有效的解热镇痛药前体 | [ |
(-)-表儿茶素(EC) | 黄烷-3醇类 | Paenibacillus sp. | β-环糊精(最佳);淀粉;麦芽七糖(G7) | 糖苷产物抗紫外线褐变能力增强 | [ |
橙皮苷 | 二氢黄酮类 | Alkalophilic Bacillus | 可溶性淀粉 | 糖苷产物吸收紫外线以稳定食品中的色素 | [ |
Anhydro-D-fructose | 糖类 | 不明确 | β-环糊精 | 降低了与牛血清白蛋白的氨基羰基反应活性 | [ |
1, 5-Anhydro-D-fructose | 糖类 | Bacillus stearothermophilus | β-环糊精 | 为提高食物蛋白溶解性和稳定性以及蛋白酶抗性提供新的手段 | [ |
D-pinitol L-chiro-inositol D-chiro-Inositol muco-inositol allo-inositol | 脂环醇 | Thermoanaerobacter sp | β-环糊精 | 肌醇糖基化衍生物在细胞功能中具有多种生理作用 | [ |
肌醇(myoinositol) | Bacillus ohbensis. |
Table 2 Application of CGTase glycosylation modification to improve the bioactivity of natural products
底物 Substrate | 结构类型 Structure type | CGTase来源 CGTase source | 糖基供体 Glycosyl donor | 糖苷化产物应用 Application of glycosylation products | 参考文献 Reference |
---|---|---|---|---|---|
熊果苷arbutin | 苯酚类 | Bacillus macerans | 淀粉 | 对人酪氨酸酶抑制活性增强 | [ |
α-生育酚-β-葡萄糖苷、δ-生育酚-β-葡萄糖苷 | 多酚类 | 不明确 | 淀粉 | 对大鼠腹膜肥大细胞产生IgE抗体和增强组胺释放抑制作用 | [ |
对苯二酚(HQ) | 苯酚类 | Thermoanaerobacter sp | 麦芽糊精 | 抗褐变能力增强 | [ |
α-L-鼠李糖 | 糖类 | Bacillus circulans 251 | 麦芽糖糊精 | 可能应用于针对细菌性痢疾的合成候选疫苗 | [ |
槲皮素-3-葡萄糖;低聚葡萄糖基柚皮素-7-葡萄糖;低聚葡萄糖基橙皮素-7-葡萄糖 | 黄酮醇、二氢黄酮 | B. macerans | α-环糊精 | 对Cu2+氧化降解的抵抗能力大大增强 | [ |
(+)儿茶素 | 黄烷-3醇类 | B. macerans | 淀粉 | 抑制蘑菇中酪氨酸酶的活性 | [ |
辣木提取物中的多酚类化合物 | 多酚类 | Trichoderma viride | 小麦淀粉 | 抗氧化和清除自由基能力增强 | [ |
月桂酸蔗糖 | 糖类 | 不明确 | 糊精 | 潜在的抗肿瘤和杀虫活性 | [ |
橙皮素苷(3'-, 5-,and 7-O-glucosides) | 二氢黄酮 | 不明确 | 淀粉 | 对IgE抗体和大鼠嗜中性白细胞产生O2具有抑制作用 | [ |
辣椒素的β葡萄糖苷 | 芳香烃类 | 不明确 | 淀粉 | 抑制IgE抗体的形成 | [ |
白藜芦醇 | 多酚类 | Thermoanaerobacter sp | 淀粉 | 具有表面活性剂性质 | [ |
水杨醇 | 酚类 | B. macerans | α-环糊精 | 促进吸收,并可作为温和有效的解热镇痛药前体 | [ |
(-)-表儿茶素(EC) | 黄烷-3醇类 | Paenibacillus sp. | β-环糊精(最佳);淀粉;麦芽七糖(G7) | 糖苷产物抗紫外线褐变能力增强 | [ |
橙皮苷 | 二氢黄酮类 | Alkalophilic Bacillus | 可溶性淀粉 | 糖苷产物吸收紫外线以稳定食品中的色素 | [ |
Anhydro-D-fructose | 糖类 | 不明确 | β-环糊精 | 降低了与牛血清白蛋白的氨基羰基反应活性 | [ |
1, 5-Anhydro-D-fructose | 糖类 | Bacillus stearothermophilus | β-环糊精 | 为提高食物蛋白溶解性和稳定性以及蛋白酶抗性提供新的手段 | [ |
D-pinitol L-chiro-inositol D-chiro-Inositol muco-inositol allo-inositol | 脂环醇 | Thermoanaerobacter sp | β-环糊精 | 肌醇糖基化衍生物在细胞功能中具有多种生理作用 | [ |
肌醇(myoinositol) | Bacillus ohbensis. |
底物 Substrate | 结构类型 Structure type | CGTase来源 CGTase source | 糖基供体 Glycosyl donor | 糖苷化产物应用 Application of glycosylation products | 参考文献 Reference |
---|---|---|---|---|---|
新橙皮苷 | 黄酮类 | Alkalophilic Bacillus | 可溶性淀粉 | 苦味降低10倍 | [ |
Neohesperidin | Flavonoid | Soluble starch | 10 times lower of bitterness | ||
甜叶悬钩子苷 | 二萜类 | Bacillus circulans | 可溶性淀粉 | 甜度增加 | [ |
Rubusoside | Diterpenoid | Soluble starch | Increased sweetness | ||
罗汉果V Mogroside V | 四环三萜类 Tetracyclic triterpenoid | Paenibacillus macerans Geobacillus sp. Thermoanaerobacter sp. | 麦芽糊精 Maltodextrin | 甜度增加 Increased sweetness | [ |
甘油 Glycerin | 脂肪醇 Fatty alcohol | Geobacillus(Bacillus)stearothermophilus(效果较好 Good effect) Thermoanaerobacter sp.(效果较好 Good effect)Bacillus circulans | 淀粉Starch | 有望应用于食品以改善口感It is expected to be used to improve the taste of food | [ |
Table 3 Application of CGTase glycosylation modification to improve the taste of natural products
底物 Substrate | 结构类型 Structure type | CGTase来源 CGTase source | 糖基供体 Glycosyl donor | 糖苷化产物应用 Application of glycosylation products | 参考文献 Reference |
---|---|---|---|---|---|
新橙皮苷 | 黄酮类 | Alkalophilic Bacillus | 可溶性淀粉 | 苦味降低10倍 | [ |
Neohesperidin | Flavonoid | Soluble starch | 10 times lower of bitterness | ||
甜叶悬钩子苷 | 二萜类 | Bacillus circulans | 可溶性淀粉 | 甜度增加 | [ |
Rubusoside | Diterpenoid | Soluble starch | Increased sweetness | ||
罗汉果V Mogroside V | 四环三萜类 Tetracyclic triterpenoid | Paenibacillus macerans Geobacillus sp. Thermoanaerobacter sp. | 麦芽糊精 Maltodextrin | 甜度增加 Increased sweetness | [ |
甘油 Glycerin | 脂肪醇 Fatty alcohol | Geobacillus(Bacillus)stearothermophilus(效果较好 Good effect) Thermoanaerobacter sp.(效果较好 Good effect)Bacillus circulans | 淀粉Starch | 有望应用于食品以改善口感It is expected to be used to improve the taste of food | [ |
[1] |
van de Manakker F, Vermonden T, van Nostrum CF, et al. Cyclodextrin-based polymeric materials:synjournal, properties, and pharmaceutical/biomedical applications[J]. Biomacromolecules, 2009, 10(12):3157-3175.
doi: 10.1021/bm901065f pmid: 19921854 |
[2] |
Biwer A, Antranikian G, Heinzle E. Enzymatic production of cyclodextrins[J]. Appl Microbiol Biotechnol, 2002, 59(6):609-617.
pmid: 12226716 |
[3] |
Sonnendecker C, Zimmermann W. Change of the product specificity of a cyclodextrin glucanotransferase by semi-rational mutagenesis to synthesize large-ring cyclodextrins[J]. Catalysts, 2019, 9(3):242.
doi: 10.3390/catal9030242 URL |
[4] |
Han R, Li J, Shin HD, et al. Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications[J]. Biotechnol Adv, 2014, 32(2):415-428.
doi: 10.1016/j.biotechadv.2013.12.004 URL |
[5] |
Leemhuis H, Kelly RM, Dijkhuizen L. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications[J]. Appl Microbiol Biotechnol, 2010, 85(4):823-835.
doi: 10.1007/s00253-009-2221-3 pmid: 19763564 |
[6] |
Kim MH, Sohn CB, Oh TK. Cloning and sequencing of a cyclodextrin glycosyltransferase gene from Brevibacillus brevis CD162 and its expression in Escherichia coli[J]. FEMS Microbiol Lett, 1998, 164(2):411-418.
pmid: 9682490 |
[7] |
Nazir S, Sulistyo J, Hashmi MI, et al. Enzymatic synjournal of polyphenol glycosides catalyzed by transglycosylation reaction of cyclodextrin glucanotransferase derived from Trichoderma viride[J]. J Food Sci Technol, 2018, 55(8):3026-3034.
doi: 10.1007/s13197-018-3223-x URL |
[8] |
Bautista V, Esclapez J, Pérez-Pomares F, et al. Cyclodextrin glycosyltransferase:a key enzyme in the assimilation of starch by the halophilic archaeon Haloferax mediterranei[J]. Extremophiles, 2012, 16(1):147-159.
doi: 10.1007/s00792-011-0414-z pmid: 22134680 |
[9] |
Lim CH, Rasti B, Sulistyo J, et al. Comprehensive study on transglycosylation of CGTase from various sources[J]. Heliyon, 2021, 7(2):e06305.
doi: 10.1016/j.heliyon.2021.e06305 URL |
[10] |
Tachibana Y, Kuramura A, Shirasaka N, et al. Purification and characterization of an extremely thermostable cyclomaltodextrin glucanotransferase from a newly isolated hyperthermophilic archaeon, a Thermococcus sp[J]. Appl Environ Microbiol, 1999, 65(5):1991-1997.
doi: 10.1128/AEM.65.5.1991-1997.1999 URL |
[11] |
Svensson B. Protein engineering in the alpha-amylase family:catalytic mechanism, substrate specificity, and stability[J]. Plant Mol Biol, 1994, 25(2):141-157.
pmid: 8018865 |
[12] |
Klein C, Schulz GE. Structure of cyclodextrin glycosyltransferase refined at 2. 0 A resolution[J]. J Mol Biol, 1991, 217(4):737-750.
pmid: 1826034 |
[13] |
Wind RD, Buitelaar RM, Dijkhuizen L. Engineering of factors determining alpha-amylase and cyclodextrin glycosyltransferase specificity in the cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1[J]. Eur J Biochem, 1998, 253(3):598-605.
pmid: 9654055 |
[14] |
Janeček Š. Parallel β/α-barrels of α-amylase, cyclodextrin glycosyltransferase and oligo-1, 6-glucosidase versus the barrel of β-amylase:Evolutionary distance is a reflection of unrelated sequences[J]. FEBS Lett, 1994, 353(2):119-123.
doi: 10.1016/0014-5793(94)01019-6 URL |
[15] |
Sonnendecker C, Zimmermann W. Domain shuffling of cyclodextrin glucanotransferases for tailored product specificity and thermal stability[J]. FEBS Open Bio, 2019, 9(2):384-395.
doi: 10.1002/2211-5463.12588 pmid: 30761262 |
[16] |
Leemhuis H, Rozeboom HJ, Dijkstra BW, et al. Improved thermostability of Bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge[J]. Proteins, 2004, 54(1):128-134.
doi: 10.1002/prot.10516 URL |
[17] |
Knegtel RM, Strokopytov B, Penninga D, et al. Crystallographic studies of the interaction of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 with natural substrates and products[J]. J Biol Chem, 1995, 270(49):29256-29264.
doi: 10.1074/jbc.270.49.29256 pmid: 7493956 |
[18] |
Rimphanitchayakit V, Tonozuka T, Sakano Y. Construction of chimeric cyclodextrin glucanotransferases from Bacillus circulans A11 and Paenibacillus macerans IAM1243 and analysis of their product specificity[J]. Carbohydr Res, 2005, 340(14):2279-2289.
doi: 10.1016/j.carres.2005.07.013 URL |
[19] |
Zhou J, Feng Z, Liu S, et al. CGTase, a novel antimicrobial protein from Bacillus cereus YUPP-10, suppresses Verticillium dahliae and mediates plant defence responses[J]. Mol Plant Pathol, 2021, 22(1):130-144.
doi: 10.1111/mpp.13014 URL |
[20] |
Li Z, Huang M, Gu Z, et al. Asp577 mutations enhance the catalytic efficiency of cyclodextrin glycosyltransferase from Bacillus circulans[J]. Int J Biol Macromol, 2016, 83:111-116.
doi: 10.1016/j.ijbiomac.2015.11.042 URL |
[21] |
Wang L, Duan XG, Wu J. Enhancing the α-cyclodextrin specificity of cyclodextrin glycosyltransferase from Paenibacillus macerans by mutagenesis masking subsite -7[J]. Appl Environ Microbiol, 2016, 82(8):2247-2255.
doi: 10.1128/AEM.03535-15 URL |
[22] |
Li ZF, Ban XF, Gu ZB, et al. Mutations enhance β-cyclodextrin specificity of cyclodextrin glycosyltransferase from Bacillus circulans[J]. Carbohydr Polym, 2014, 108:112-117.
doi: 10.1016/j.carbpol.2014.03.015 URL |
[23] |
Chen FJ, Xie T, Yue Y, et al. Molecular dynamic analysis of mutant Y195I α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to γ-cyclodextrin[J]. J Mol Modeling, 2015, 21(8):1-9.
doi: 10.1007/s00894-014-2561-5 URL |
[24] | Tao X, Wang T, Su L, et al. Enhanced 2- o-alpha-d-glucopyranosyl-l-ascorbic acid synjournal through iterative saturation mutagenesis of acceptor subsite residues in Bacillus stearothermophilus NO2 cyclodextrin glycosyltransferase. J Agric Food Chem[J], 2018, 66(34):9052-9060. |
[25] |
Han R, Liu L, Shin HD, et al. Iterative saturation mutagenesis of -6 subsite residues in cyclodextrin glycosyltransferase from Paenibacillus macerans to improve maltodextrin specificity for 2-O-D-glucopyranosyl-L-ascorbic acid synjournal[J]. Appl Environ Microbiol, 2013, 79(24):7562-7568.
doi: 10.1128/AEM.02918-13 URL |
[26] |
Gudiminchi RK, Towns A, Varalwar S, et al. Enhanced synjournal of 2-O-α-d-glucopyranosyl-l-ascorbic acid from α-cyclodextrin by a highly disproportionating CGTase[J]. ACS Catal, 2016, 6(3):1606-1615.
doi: 10.1021/acscatal.5b02108 URL |
[27] |
Uitdehaag JCM, van der Veen BA, Dijkhuizen L, et al. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the α-amylase family[J]. Enzyme Microb Technol, 2002, 30(3):295-304.
doi: 10.1016/S0141-0229(01)00498-7 URL |
[28] |
Strokopytov B, Penninga D, Rozeboom HJ, et al. X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. implications for the catalytic mechanism of glycosidases[J]. Biochemistry, 1995, 34(7):2234-2240.
pmid: 7857935 |
[29] |
Uitdehaag JC, Mosi R, Kalk KH, et al. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family[J]. Nat Struct Biol, 1999, 6(5):432-436.
pmid: 10331869 |
[30] |
Choung WJ, Hwang SH, Ko DS, et al. Enzymatic synjournal of a novel kaempferol-3-O-β-d-glucopyranosyl-(1→4)-O-α-d-glucopyranoside using cyclodextrin glucanotransferase and its inhibitory effects on aldose reductase, inflammation, and oxidative stress[J]. J Agric Food Chem, 2017, 65(13):2760-2767.
doi: 10.1021/acs.jafc.7b00501 URL |
[31] |
Marié T, Willig G, Teixeira ARS, et al. Enzymatic synjournal of resveratrol α-glycosides from β-cyclodextrin-resveratrol complex in water[J]. ACS Sustainable Chem Eng, 2018, 6(4):5370-5380.
doi: 10.1021/acssuschemeng.8b00176 URL |
[32] | Radu O L, Armand S, Lenouvel F. La glycosylation de la luteoline, en milieux de solventes organiques, par l’action catalytique de la cyclodextrine glycosyltransferase de Bacillus circulans. Revue Roumaine de Chimie[J], 2006, 51(2):147-152. |
[33] |
Kometani T, Nishimura T, Nakae T, et al. Synjournal of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species[J]. Biosci Biotechnol Biochem, 1996, 60(4):645-649.
doi: 10.1271/bbb.60.645 URL |
[34] |
Suzuki Y, Suzuki K. Enzymatic formation of 4G-alpha-D-glucopyranosyl-rutin[J]. Agric Biol Chem, 1991, 55(1):181-187.
pmid: 1368662 |
[35] |
Markosyan AA, Abelyan LA, Markosyan AI, et al. Transglycosylation of benzo[h]quinazolines[J]. Appl Biochem Microbiol, 2009, 45(2):130-136.
doi: 10.1134/S0003683809020033 URL |
[36] | Han RZ, Ni J, Zhou JY, et al. Engineering of cyclodextrin glycosyltransferase reveals pH-regulated mechanism of enhanced long-chain glycosylated sophoricoside specificity[J]. Appl Environ Microbiol, 2020, 86(7):e00004-20. |
[37] |
Lee YS, Woo JB, Ryu SI, et al. Glucosylation of flavonol and flavanones by Bacillus cyclodextrin glucosyltransferase to enhance their solubility and stability[J]. Food Chem, 2017, 229:75-83.
doi: 10.1016/j.foodchem.2017.02.057 URL |
[38] |
Aramsangtienchai P, Chavasiri W, Ito K, et al. Synjournal of epicatechin glucosides by a β-cyclodextrin glycosyltransferase[J]. J Mol Catal B:Enzym, 2011, 73(1/2/3/4):27-34.
doi: 10.1016/j.molcatb.2011.07.013 URL |
[39] |
Gonzalez-Alfonso JL, Leemans L, Poveda A, et al. Efficient α-glucosylation of epigallocatechin gallate catalyzed by cyclodextrin glucanotransferase from Thermoanaerobacter species[J]. J Agric Food Chem, 2018, 66(28):7402-7408.
doi: 10.1021/acs.jafc.8b02143 URL |
[40] |
Kometani T, Terada Y, Nishimura T, et al. Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties of hesperidin glycosides[J]. Biosci Biotechnol Biochem, 1994, 58(11):1990-1994.
doi: 10.1271/bbb.58.1990 URL |
[41] |
Huang W, He Q, Zhou ZR, et al. Enzymatic synjournal of puerarin glucosides using cyclodextrin glucanotransferase with enhanced antiosteoporosis activity[J]. ACS Omega, 2020, 5(21):12251-12258.
doi: 10.1021/acsomega.0c00950 pmid: 32548408 |
[42] |
Sugimoto K, Nishimura T, Nomura K, et al. Syntheses of arbutin-alpha-glycosides and a comparison of their inhibitory effects with those of alpha-arbutin and arbutin on human tyrosinase[J]. Chem Pharm Bull:Tokyo, 2003, 51(7):798-801.
doi: 10.1248/cpb.51.798 URL |
[43] |
Shimoda K, Akagi M, Hamada H. Production of β-maltooligosaccharides of α- and δ-tocopherols by Klebsiella pneumoniae and cyclodextrin glucanotransferase as anti-allergic agents[J]. Molecules, 2009, 14(8):3106-3114.
doi: 10.3390/molecules14083106 pmid: 19701147 |
[44] |
Mathew S, Adlercreutz P. Regioselective glycosylation of hydroquinone to α-arbutin by cyclodextrin glucanotransferase from Thermoanaerobacter sp[J]. Biochem Eng J, 2013, 79:187-193.
doi: 10.1016/j.bej.2013.08.001 URL |
[45] |
Kitao S, Sekine H. Α-D-glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutin[J]. Biosci Biotechnol Biochem, 1994, 58(1):38-42.
doi: 10.1271/bbb.58.38 URL |
[46] |
Urbach C, Halila S, Guerreiro C, et al. CGTase-catalysed Cis-glucosylation of L-rhamnosides for the preparation of Shigella flexneri 2a and 3a haptens[J]. Chembiochem, 2014, 15(2):293-300.
doi: 10.1002/cbic.201300597 URL |
[47] |
Funayama M, Nishino T, Hirota A, et al. Enzymatic synjournal of(+)catechin-α-glucoside and its effect on tyrosinase activity[J]. Biosci Biotechnol Biochem, 1993, 57(10):1666-1669.
doi: 10.1271/bbb.57.1666 URL |
[48] |
Okada K, Zhao HS, Izumi M, et al. Glucosylation of sucrose laurate with cyclodextrin glucanotransferase[J]. Biosci Biotechnol Biochem, 2007, 71(3):826-829.
doi: 10.1271/bbb.60646 URL |
[49] |
Shimoda K, Hamada H. Production of hesperetin glycosides by Xanthomonas campestris and cyclodextrin glucanotransferase and their anti-allergic activities[J]. Nutrients, 2010, 2(2):171-180.
doi: 10.3390/nu2020171 pmid: 22254014 |
[50] |
Shimoda K, Kubota N, Akagi M. Synjournal of capsaicin oligosaccharides and their anti-allergic activity—synjournal of capsaicin oligosaccharides as anti-allergic food-additives[J]. Adv Chem Eng Sci, 2012, 2(1):45-49.
doi: 10.4236/aces.2012.21006 URL |
[51] |
Torres P, Poveda A, Jimenez-Barbero J, et al. Enzymatic synjournal of α-glucosides of resveratrol with surfactant activity[J]. Adv Synth Catal, 2011, 353(7):1077-1086.
doi: 10.1002/adsc.201000968 URL |
[52] |
Yoon SH, Bruce Fulton D, Robyt JF. Enzymatic synjournal of two salicin analogues by reaction of salicyl alcohol with Bacillus macerans cyclomaltodextrin glucanyltransferase and Leuconostoc mesenteroides B-742CB dextransucrase[J]. Carbohydr Res, 2004, 339(8):1517-1529.
doi: 10.1016/j.carres.2004.03.018 URL |
[53] |
Yoshinaga K, Abe J, Tanimoto T, et al. Preparation and reactivity of a novel disaccharide, glucosyl 1, 5-anhydro-D-fructose(1, 5-anhydro-3-O-alpha-glucopyranosyl-D-fructose)[J]. Carbohydr Res, 2003, 338(21):2221-2225.
doi: 10.1016/S0008-6215(03)00341-0 URL |
[54] |
Yoshinaga K, Abe J, Tanimoto T, et al. Preparation and reactivity of a novel disaccharide, glucosyl 1, 5-anhydro-D-fructose(1, 5-anhydro-3-O-alpha-glucopyranosyl-D-fructose)[J]. Carbohydr Res, 2003, 338(21):2221-2225.
doi: 10.1016/S0008-6215(03)00341-0 URL |
[55] |
Miranda-Molina A, Marquina-Bahena S, López-Munguía A, et al. Regioselective glucosylation of inositols catalyzed by Thermoanaerobacter sp. CGTase[J]. Carbohydr Res, 2012, 360:93-101.
doi: 10.1016/j.carres.2012.08.002 URL |
[56] |
Jaitak V, Kaul VK, Bandna, et al. Simple and efficient enzymatic transglycosylation of stevioside by β-cyclodextrin glucanotransferase from Bacillus firmus[J]. Biotechnol Lett, 2009, 31(9):1415-1420.
doi: 10.1007/s10529-009-0020-7 pmid: 19466564 |
[57] |
Abelyan VA, Balayan AM, Ghochikyan VT, et al. Transglycosylation of stevioside by cyclodextrin glucanotransferases of various groups of microorganisms[J]. Appl Biochem Microbiol, 2004, 40(2):129-134.
doi: 10.1023/B:ABIM.0000018914.08571.50 URL |
[58] |
Yu XJ, Yang JS, Li BZ, et al. High efficiency transformation of stevioside into a single mono-glycosylated product using a cyclodextrin glucanotransferase from Paenibacillus sp. CGMCC 5316[J]. World J Microbiol Biotechnol, 2015, 31(12):1983-1991.
doi: 10.1007/s11274-015-1947-6 URL |
[59] |
Kim YH, Lee YG, Choi KJ, et al. Transglycosylation to ginseng saponins by cyclomaltodextrin glucanotransferases[J]. Biosci Biotechnol Biochem, 2001, 65(4):875-883.
doi: 10.1271/bbb.65.875 URL |
[60] |
Ohtani K, Aikawa Y, Ishikawa H, et al. Further study on the 1, 4-. ALPHA. -transglucosylation of rubusoside, a sweet steviol-bisglucoside from Rubus suavissimus[J]. Agric Biol Chem, 1991, 55(2):449-453.
pmid: 1368695 |
[61] |
Muñoz-Labrador A, Azcarate S, Lebrón-Aguilar R, et al. High-yield synjournal of transglycosylated mogrosides improves the flavor profile of monk fruit extract sweeteners[J]. J Agric Food Chem, 2021, 69(3):1011-1019.
doi: 10.1021/acs.jafc.0c07267 URL |
[62] |
Yoshikawa S, Murata Y, Sugiura M, et al. Transglycosylation of mogroside V, a triterpene glycoside in Siraitia grosvenori, by cyclodextrin glucanotransferase and improvement of the qualities of sweetness[J]. J Appl Glycosci, 2005, 52(3):247-252.
doi: 10.5458/jag.52.247 URL |
[63] |
Nakano H, Kiso T, Okamoto K, et al. Synjournal of glycosyl glycerol by cyclodextrin glucanotransferases[J]. J Biosci Bioeng, 2003, 95(6):583-588.
doi: 10.1016/S1389-1723(03)80166-4 URL |
[64] |
Han R, Liu L, Shin HD, et al. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synjournal of 2-O-D-glucopyranosyl-L-ascorbic acid(AA-2G)[J]. Appl Microbiol Biotechnol, 2013, 97(13):5851-5860.
doi: 10.1007/s00253-012-4514-1 URL |
[65] |
Han RZ, Liu L, Li JH, et al. Functions, applications and production of 2-O-d-glucopyranosyl-l-ascorbic acid[J]. Appl Microbiol Biotechnol, 2012, 95(2):313-320.
doi: 10.1007/s00253-012-4150-9 URL |
[66] |
Martı́n MT, Angeles Cruces M, Alcalde M, et al. Synjournal of maltooligosyl fructofuranosides catalyzed by immobilized cyclodextrin glucosyltransferase using starch as donor[J]. Tetrahedron, 2004, 60(3):529-534.
doi: 10.1016/j.tet.2003.10.113 URL |
[67] |
Moon S, Lee H, Mathiyalagan R, et al. Synjournal of a novel α-glucosyl ginsenoside F1 by cyclodextrin glucanotransferase and its in vi-tro cosmetic applications[J]. Biomolecules, 2018, 8(4):142.
doi: 10.3390/biom8040142 URL |
[68] |
Tao XM, Su LQ, Wang L, et al. Improved production of cyclodextrin glycosyltransferase from Bacillus stearothermophilus NO2 in Escherichia coli via directed evolution[J]. Appl Microbiol Biotechnol, 2020, 104(1):173-185.
doi: 10.1007/s00253-019-10249-8 URL |
[69] |
Chen S, Xiong Y, Su L, et al. Position 228 in Paenibacillus macerans cyclodextrin glycosyltransferase is critical for 2-O-d-glucopyranosyl-l-ascorbic acid synjournal[J]. J Biotechnol, 2017, 247:18-24.
doi: 10.1016/j.jbiotec.2017.02.011 URL |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | ZHOU Shan-shan HUANG Yuan-long HUANG Jian-zhong LI Shan-ren. Research Progress in Bioactive Natural Products from Lysobacter [J]. Biotechnology Bulletin, 2023, 39(10): 41-49. |
[3] | ZHOU Zheng, LI Qing, CHEN Wan-sheng, ZHANG Lei. Research Strategies of Natural Products Biosynthesis Pathways and Key Enzymes in Medicinal Plants [J]. Biotechnology Bulletin, 2021, 37(8): 25-34. |
[4] | CHEN Peng. Rapid Screening Strategy for Target Identification of Bioactive Natural Products [J]. Biotechnology Bulletin, 2020, 36(11): 180-187. |
[5] | CUI Hong-li, CHEN Jun, HOU Yi-long, WU Hai-ge, QIN Song. Research Progress on Blue-photoreceptors and Its Functions in Eukaryotic Microalgae [J]. Biotechnology Bulletin, 2017, 33(4): 51-62. |
[6] | YI Hua-Wei, TANG Xiao-Feng. Research Progress on the Prediction of Protein Stability Based on Amino Acid Sequence and Simulated Structure [J]. Biotechnology Bulletin, 2017, 33(4): 83-89. |
[7] | KUANG Xue-jun, ZOU Li-qiu, SUN Chao, CHEN Shi-lin. Optimization Strategies for Synthetic Biological Systems of Natural Products [J]. Biotechnology Bulletin, 2017, 33(1): 48-57. |
[8] | Luo Jingchu. Teaching Examples of Applied Bioinformatics Course [J]. Biotechnology Bulletin, 2015, 31(11): 102-111. |
[9] | Wang Hui, Luo Chengbo, He Dao, Kong Lingping, Zhou Bijun, Wen Ming, Cheng Zhentao, Wang Kaigong. Analysis of Structure and B Cell Epitope Predicition of Mycoplasmaovipneumoniae DnaK Protein [J]. Biotechnology Bulletin, 2014, 0(3): 159-164. |
[10] | Pang Hao, Chen Yan, Wu Qianqian, Liu Chunyu, Guo Yuan, Lin Lihua, Huang Ribo. Exploring and Function Characteristics of Exo-1,4-β-D-glucanase CelB Gene of Bacillus licheniformis [J]. Biotechnology Bulletin, 2013, 0(9): 151-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||