Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (4): 106-116.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0959
Previous Articles Next Articles
LIN Ke-yun(), DUAN Yu-jing, WANG Gao-sheng, SUN Nian-li, FANG Yu-jie(), WANG You-ping
Received:
2021-07-21
Online:
2022-04-26
Published:
2022-05-06
Contact:
FANG Yu-jie
E-mail:lkylab407@163.com;yjfang@yzu.edu.cn
LIN Ke-yun, DUAN Yu-jing, WANG Gao-sheng, SUN Nian-li, FANG Yu-jie, WANG You-ping. Cloning and Functional Identification of BnNF-YA1 in Brassica napus L.[J]. Biotechnology Bulletin, 2022, 38(4): 106-116.
Fig. 1 Analysis of hydrophilicity/hydrophobicity,phos-phorylation site,secondary structure and tertiary structure of BnNF-YA1 A:Hydrophilic/hydrophobic analysis of BnNF-YA1. B:Prediction of phosphorylation sites of BnNF-YA1. C:Prediction of secondary structure of BnNF-YA1. D:Prediction of the tertiary structure of BnNF-YA1
Fig. 4 Expression profile of BnNF-YA1 A:Changes of BnNF-YA1 expression in B. napus under PEG,cold,heat,and ABA treatments. B:Spatial-temporal expression profile of BnNF-YA1 in the different organs of B. napus
Fig. 5 Generation of BnNF-YA1-OE transgenic rapeseed plants A:Schematic diagram of the overexpresed vector backbone. B:PCR positive identification of overexpresed BnNF-YA1 in T0 generation. C:RNA detection of BnNF-YA1-OE transgenic positive plants. D:Reverse transcription detection of BnNF-YA1-OE transgenic positive plants. E:Expression of BnNF-YA1-OE in the T0 generation of overexpressed plants
Fig. 6 Phenotypic identification of T2 generation of BnNF-YA1-OE transgenic plants at the cotyledon stage A:Phenotype of T2 generation of BnNF-YA1-OE transgenic plants at the cotyledon stage. B:The hypocotyl length,root length and fresh weight of T2 generation of BnNF-YA1-OE transgenic plants. The error bars represent the standard deviation(SD). * represents significant difference(P<0.05),and ** represents extremely significant difference(P<0.01)
[1] | 文雁成, 王汉中, 沈金雄, 等. 用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础[J]. 中国农业科学, 2006, 39(2):246-256. |
Wen YC, Wang HZ, Shen JX, et al. Analysis of genetic diversity and genetic basis of Chinese rapeseed cultivars(Brassica napus L.)by sequence-related amplified polymorphism markers[J]. Sci Agric Sin, 2006, 39(2):246-256. | |
[2] | 李利霞, 陈碧云, 闫贵欣, 等. 中国油菜种质资源研究利用策略与进展[J]. 植物遗传资源学报, 2020, 21(1):1-19. |
Li LX, Chen BY, Yan GX, et al. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China[J]. J Plant Genet Resour, 2020, 21(1):1-19. | |
[3] | 王汉中. 发展油菜生物柴油的潜力、问题与对策[J]. 中国油料作物学报, 2005, 27(2):74-76. |
Wang HZ. Potential, problems and strategy of developing rapeseed biodiesel[J]. Chin J Oil Crop Scieves, 2005, 27(2):74-76. | |
[4] | 唐湘如, 官春云. 几种酶活性与油菜油分和蛋白质及产量的关系[J]. 湖南农业大学学报, 2000, 26(1):37-40. |
Tang XR, Guan CY. Relationship between activities of several enzymes and the oil, protein and yield of rapeseeds(Brassica napus)[J]. J Hunan Agric Univ, 2000, 26(1):37-40. | |
[5] | 陈兆波, 余健. 我国油菜生产形势分析及科研对策研究[J]. 中国油料作物学报, 2010, 32(2):303-308. |
Chen ZB, Yu J. Research strategies based on the analysis of rapeseed production in China[J]. Chin J Oil Crop Sci, 2010, 32(2):303-308. | |
[6] | 王汉中. 我国油菜产业发展的历史回顾与展望[J]. 中国油料作物学报, 2010, 32(2):300-302. |
Wang HZ. Review and future development of rapeseed industry in China[J]. Chin J Oil Crop Sci, 2010, 32(2):300-302. | |
[7] |
Gyawali S, Parkin IAP, Steppuhn H, et al. Seedling, early vegetative, and adult plant growth of oilseed rapes(Brassica napus L.)under saline stress[J]. Can J Plant Sci, 2019, 99(6):927-941.
doi: 10.1139/cjps-2019-0023 URL |
[8] |
Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress[J]. Plant Cell, 2002, 14(Suppl):S165-S183.
doi: 10.1105/tpc.000596 URL |
[9] |
Zhu JK. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002, 53:247-273.
doi: 10.1146/annurev.arplant.53.091401.143329 URL |
[10] |
Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814):796-815.
doi: 10.1038/35048692 URL |
[11] | Singh D, Laxmi A. Transcriptional regulation of drought response:a tortuous network of transcriptional factors[J]. Front Plant Sci, 2015, 6:895. |
[12] | Calvenzani V, Testoni B, Gusmaroli G, et al. Interactions and CCAAT-binding of Arabidopsis thaliana NF-Y subunits[J]. PLoS One, 2012, 7(8):e42902. |
[13] |
Gnesutta N, Chiara M, Bernardini A, et al. The plant NF-Y DNA matrix in vitro and in vivo[J]. Plants, 2019, 8(10):406.
doi: 10.3390/plants8100406 URL |
[14] |
Petroni K, Kumimoto RW, Gnesutta N, et al. The promiscuous life of plant NUCLEAR FACTOR Y transcription factors[J]. Plant Cell, 2012, 24(12):4777-4792.
doi: 10.1105/tpc.112.105734 URL |
[15] |
Mantovani R, Li XY, Pessara U, et al. Dominant negative analogs of NF-YA[J]. J Biol Chem, 1994, 269(32):20340-20346.
pmid: 8051128 |
[16] |
Gnesutta N, Kumimoto RW, Swain S, et al. CONSTANS imparts DNA sequence specificity to the histone fold NF-YB/NF-YC dimer[J]. Plant Cell, 2017, 29(6):1516-1532.
doi: 10.1105/tpc.16.00864 URL |
[17] |
Nardone V, Chaves-Sanjuan A, Nardini M. Structural determinants for NF-Y/DNA interaction at the CCAAT box[J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(5):571-580.
doi: 10.1016/j.bbagrm.2016.09.006 URL |
[18] |
Chaves-Sanjuan A, Gnesutta N, Gobbini A, et al. Structural determinants for NF-Y subunit organization and NF-Y/DNA association in plants[J]. Plant J, 2021, 105(1):49-61.
doi: 10.1111/tpj.15038 URL |
[19] |
Gnesutta N, Mantovani R, Fornara F. Plant flowering:imposing DNA specificity on histone-fold subunits[J]. Trends Plant Sci, 2018, 23(4):293-301.
doi: S1360-1385(17)30281-9 pmid: 29331540 |
[20] |
Nardini M, Gnesutta N, Donati G, et al. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination[J]. Cell, 2013, 152(1/2):132-143.
doi: 10.1016/j.cell.2012.11.047 URL |
[21] |
Mach J. CONSTANS companion:CO binds the NF-YB/NF-YC dimer and confers sequence-specific DNA binding[J]. Plant Cell, 2017, 29(6):1183.
doi: 10.1105/tpc.17.00465 URL |
[22] |
Li WX, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8):2238-2251.
doi: 10.1105/tpc.108.059444 URL |
[23] |
Lee DK, Kim HI, Jang G, et al. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner[J]. Plant Sci, 2015, 241:199-210.
doi: 10.1016/j.plantsci.2015.10.006 URL |
[24] |
Zhang Q, Zhang J, Wei H, et al. Genome-wide identification of NF-YA gene family in cotton and the positive role of GhNF-YA10 and GhNF-YA23 in salt tolerance[J]. Int J Biol Macromol, 2020, 165(pt b):2103-2115.
doi: 10.1016/j.ijbiomac.2020.10.064 pmid: 33080263 |
[25] |
Ni Z, Hu Z, Jiang Q, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Mol Biol, 2013, 82(1/2):113-129.
doi: 10.1007/s11103-013-0040-5 URL |
[26] |
Ma XJ, Yu TF, Li XH, et al. Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants[J]. BMC Plant Biol, 2020, 20(1):123.
doi: 10.1186/s12870-020-02337-z URL |
[27] |
Ma X, et al. Wheat NF-YA10 functions independently in salinity and drought stress[J]. Bioengineered, 2015, 6(4):245-247.
doi: 10.1080/21655979.2015.1054085 URL |
[28] |
Lian C, Li Q, Yao K, et al. Populus trichocarpa PtNF-YA9, a multifunctional transcription factor, regulates seed germination, abiotic stress, plant growth and development in Arabidopsis[J]. Front Plant Sci, 2018, 9:954.
doi: 10.3389/fpls.2018.00954 URL |
[29] | Pereira SLS, Martins CPS, Sousa AO, et al. Genome-wide characterization and expression analysis of Citrus NUCLEAR FACTOR-Y(NF-Y)transcription factors identified a novel NF-YA gene involved in drought-stress response and tolerance[J]. PLoS One, 2018, 13(6):e0199187. |
[30] |
Sorin C, Declerck M, Christ A, et al. A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis[J]. New Phytol, 2014, 202(4):1197-1211.
doi: 10.1111/nph.12735 URL |
[31] |
Li C, Distelfeld A, Comis A, et al. Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes[J]. Plant J, 2011, 67(5):763-773.
doi: 10.1111/j.1365-313X.2011.04630.x URL |
[32] |
Fornari M, Calvenzani V, Masiero S, et al. The Arabidopsis NF-YA3 and NF-YA8 genes are functionally redundant and are required in early embryogenesis[J]. PLoS One, 2013, 8(11):e82043.
doi: 10.1371/journal.pone.0082043 URL |
[33] |
E Z, Li T, Zhang H, et al. A group of nuclear factor Y transcription factors are sub-functionalized during endosperm development in monocots[J]. J Exp Bot, 2018, 69(10):2495-2510.
doi: 10.1093/jxb/ery087 URL |
[34] |
Liu R, Wu M, Liu HL, et al. Genome-wide identification and expression analysis of the NF-Y transcription factor family in Populus[J]. Physiol Plant, 2021, 171(3):309-327.
doi: 10.1111/ppl.13084 URL |
[35] |
Guo Y, Niu S, El-Kassaby YA, et al. Transcriptome-wide isolation and expression of NF-Y gene family in male cone development and hormonal treatment of Pinus tabuliformis[J]. Physiol Plant, 2021, 171(1):34-47.
doi: 10.1111/ppl.13183 URL |
[36] |
Mai YT, Shui LY, Huo KS, et al. Genome-wide characterization of the NUCLEAR FACTOR-Y(NF-Y)family in Citrus grandis identified CgNF-YB9 involved in the fructose and glucose accumulation[J]. Genes Genom, 2019, 41(11):1341-1355.
doi: 10.1007/s13258-019-00862-2 URL |
[37] | Maheshwari P, Kummari D, Palakolanu SR, et al. Genome-wide identification and expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench)[J]. PLoS One, 2019, 14(9):e0222203. |
[38] |
Liang M, Yin X, Lin Z, et al. Identification and characterization of NF-Y transcription factor families in Canola(Brassica napus L.)[J]. Planta, 2014, 239(1):107-126.
doi: 10.1007/s00425-013-1964-3 URL |
[39] | Xu L, Lin Z, Tao Q, et al. Multiple nuclear factor Y transcription factors respond to abiotic stress in Brassica napus L.[J]. PLoS One, 2014, 9(10):e111354. |
[40] |
Kumar S, Stecher G, Li M, et al. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549.
doi: 10.1093/molbev/msy096 URL |
[41] | 石淑稳, 周永明, 孙学成, 等. 甘蓝型油菜遗传转化体系的研究[J]. 华中农业大学学报, 1998, 17(3):205-210. |
Shi SW, Zhou YM, Sun XC, et al. Transformation of Brassica napus with herbicide resistance gene[J]. J Huazhong Agric, 1998, 17 (3):205-210. | |
[42] | 李佳, 沈斌章, 韩继祥, 等. 一种有效提取油菜叶片总DNA的方法[J]. 华中农业大学学报, 1994, 13(5):521-523. |
Li J, Shen BZ, Han JX, et al. A effective procedure for extracting total DNA in rape[J]. J Huazhong:Central China Agric Univ, 1994, 13(5):521-523. | |
[43] | Rao XY, et al. An improvement of the 2(-delta delta CT)method for quantitative real-time polymerase chain reaction data analysis[J]. Biostat Bioinforma Biomath, 2013, 3(3):71-85. |
[44] | 王寻, 冯资权, 等. 苹果NF-YA转录因子家族的生物信息学和表达分析[J]. 植物生理学报, 2021, 57(1):69-84. |
Wang X, Feng ZQ, You CX, et al. Bioinformatics and expression analysis of NF-YA transcription factor family in apple[J]. Plant Physiol J, 2021, 57(1):69-84.
doi: 10.1104/pp.57.1.69 URL |
|
[45] | 任旭洋. 四个滨海耐盐油菜转录因子(BnNF-YA2/3/9/12)的耐逆功能分析[D]. 南京:南京农业大学, 2017. |
Ren XY. Analysis of stress tolerance function of four transcription factors(BnNF-YA2/3/9/12)in coastal salt tolerant rapeseed[D]. Nanjing:Nanjing Agricultural University, 2017. | |
[46] |
黄锁, 胡利芹, 徐东北, 等. 谷子转录因子SiNF-YA5通过ABA非依赖途径提高转基因拟南芥耐盐性[J]. 作物学报, 2016, 42(12):1787-1797.
doi: 10.3724/SP.J.1006.2016.01787 |
Huang S, Hu LQ, Xu DB, et al. Transcription factor SiNF-YA5 from foxtail millet(Setaria italica)conferred tolerance to high-salt stress through ABA-independent pathway in transgenic Arabidopsis[J]. Acta Agron Sin, 2016, 42(12):1787-1797.
doi: 10.3724/SP.J.1006.2016.01787 URL |
|
[47] | 王蓓. 菊花DgbZIP2和DgNF-YA1基因的克隆与转基因菊花耐寒性研究[D]. 雅安:四川农业大学, 2019. |
Wang B. Cloning and functional identification of DgbZIP2 and DgNF-YA1 in Chrysanthemum[D]. Yan’an:Sichuan Agricultural University, 2019. |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[3] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[4] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[5] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[8] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[9] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[10] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[11] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[12] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[13] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[14] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[15] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||