Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (4): 242-252.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0964
Previous Articles Next Articles
WANG Chun-yan1,2(), LA Gui-xiao3, SU Xiu-hong1,2(), LI Meng1,2, DONG Cheng-ming1,2
Received:
2021-07-28
Online:
2022-04-26
Published:
2022-05-06
Contact:
SU Xiu-hong
E-mail:1739080605@qq.com;suxiuhong80@163.com
WANG Chun-yan, LA Gui-xiao, SU Xiu-hong, LI Meng, DONG Cheng-ming. Screening of Endophytic Bacteria from Rehmannia glutinosa at Different Stages and Analysis of Their Growth-promoting Characteristics[J]. Biotechnology Bulletin, 2022, 38(4): 242-252.
菌株 Strain | 最相近菌种 The closest strain | 登录号 Login number | 相似性 Similarity/% | 菌株 Strain | 最相近菌种 The closest strain | 登录号 Login number | 相似性 Similarity/% | |
---|---|---|---|---|---|---|---|---|
ER1 | Bacillus proteolyticus | NR157735 | 99.9 | ER28 | Bacillus paramycoides | MT124553 | 99.72 | |
ER2 | Bacillus methylotrophicus | KC790266 | 99.9 | ER29 | Pseudomonas plecoglossicida | MT124554 | 100.0 | |
ER3 | Bacillus toyoneusis | NR121761 | 100.0 | ER30 | Pseudomonas monteilii | MT124555 | 98.0 | |
ER4 | Bacillus licheniformis | MH842141 | 99.9 | ER31 | Pseudomonas taiwanensis | JF911384 | 100.0 | |
ER5 | Bacillus cereus | FJ501984 | 100.0 | ER32 | Pseudomonas aeruginosa | NR117678 | 100.0 | |
ER6 | Bacillus wiedmannii | MK088275 | 100.0 | ER33 | Pseudomonas fluorescens | MN256396 | 99.0 | |
ER7 | Bacillus amyloliquefacieus | KU291367 | 100.0 | ER34 | Pseudomonas oryzihabitans | JQ660200 | 100.0 | |
ER8 | Bacillus velezensis | MG996871 | 100.0 | ER35 | Pseudomonas psychrotolerans | KY882047 | 99.9 | |
ER9 | Bacillus siamensis | MN166187 | 100.0 | ER36 | Pseudomonas stutzeri | FJ768951 | 99.9 | |
ER10 | Bacillus subtilis | MK860021 | 100.0 | ER37 | Proteus mirabilis | MK332376 | 100.0 | |
ER11 | Bacillus anthracis | CP031642 | 99.9 | ER38 | Micrococcus luteus | MH045862 | 100.0 | |
ER12 | Bacillus aryabhattai | MK859946 | 100.0 | ER39 | Stenotrophomonas maltophilia | MH000623 | 100.0 | |
ER13 | Bacillus vallismortis | NR024696 | 100.0 | ER40 | Lysinibacillus parvibpronicapiens | NR114213 | 99.7 | |
ER14 | Bacillus oryzaecorticis | KU877642 | 99.9 | ER41 | Brachybacterium paraconglomeratum | NR025502 | 100.0 | |
ER15 | Bacillus aquimaris | KF358255 | 99.8 | ER42 | Agrobacterium tumefaciens | MN094859 | 99.9 | |
ER16 | Bacillus marisflavi | KX495310 | 99.8 | ER43 | Lysinibacillus fusiformis | KP980567 | 99.9 | |
ER17 | Bacillus sonerensis | MK860002 | 100.0 | ER44 | Enterobacter cloacae | KM538690 | 99.9 | |
ER18 | Bacillus thuringiensis | KJ769222 | 99.5 | ER45 | Enterobacter bugandensis | CP039453 | 99.8 | |
ER19 | Bacillus safensis | MK859936 | 100.0 | ER46 | Enterobacter hormaechei | CP027142 | 100.0 | |
ER20 | Bacillus simplex | KF818647 | 99.9 | ER47 | Enterobacter ludwigii | NR042349 | 99.9 | |
ER21 | Bacillus firmus | KP165527 | 99.9 | ER48 | Enterobacter xiangfangensis | MH200641 | 99.5 | |
ER22 | Bacillus altitudinis | KU663665 | 100.0 | ER49 | Enterobacter soli | NR117547 | 99.3 | |
ER23 | Bacillus flexus | KR999917 | 100.0 | ER50 | Terribacillus goriensis | CP008876 | 100.0 | |
ER24 | Bacillus horikoshii | CP020880 | 99.9 | ER51 | Kocuria rosea | MK696247 | 100.0 | |
ER25 | Bacillus tequilensis | MH762888 | 100.0 | ER52 | Brevibacterium frigoritolerans | KY753242 | 99.9 | |
ER26 | Bacillus pseudomycoides | MH578628 | 99.6 | ER53 | Halomonas hydrothermalis | CP023656 | 99.8 | |
ER27 | Bacillus mycoides | JN215520 | 99.6 | ER54 | Microbacterium barkeri | KY882051 | 99.6 |
Table 1 Identification of endophytic bacteria in R. glutinosa via16S rRNA
菌株 Strain | 最相近菌种 The closest strain | 登录号 Login number | 相似性 Similarity/% | 菌株 Strain | 最相近菌种 The closest strain | 登录号 Login number | 相似性 Similarity/% | |
---|---|---|---|---|---|---|---|---|
ER1 | Bacillus proteolyticus | NR157735 | 99.9 | ER28 | Bacillus paramycoides | MT124553 | 99.72 | |
ER2 | Bacillus methylotrophicus | KC790266 | 99.9 | ER29 | Pseudomonas plecoglossicida | MT124554 | 100.0 | |
ER3 | Bacillus toyoneusis | NR121761 | 100.0 | ER30 | Pseudomonas monteilii | MT124555 | 98.0 | |
ER4 | Bacillus licheniformis | MH842141 | 99.9 | ER31 | Pseudomonas taiwanensis | JF911384 | 100.0 | |
ER5 | Bacillus cereus | FJ501984 | 100.0 | ER32 | Pseudomonas aeruginosa | NR117678 | 100.0 | |
ER6 | Bacillus wiedmannii | MK088275 | 100.0 | ER33 | Pseudomonas fluorescens | MN256396 | 99.0 | |
ER7 | Bacillus amyloliquefacieus | KU291367 | 100.0 | ER34 | Pseudomonas oryzihabitans | JQ660200 | 100.0 | |
ER8 | Bacillus velezensis | MG996871 | 100.0 | ER35 | Pseudomonas psychrotolerans | KY882047 | 99.9 | |
ER9 | Bacillus siamensis | MN166187 | 100.0 | ER36 | Pseudomonas stutzeri | FJ768951 | 99.9 | |
ER10 | Bacillus subtilis | MK860021 | 100.0 | ER37 | Proteus mirabilis | MK332376 | 100.0 | |
ER11 | Bacillus anthracis | CP031642 | 99.9 | ER38 | Micrococcus luteus | MH045862 | 100.0 | |
ER12 | Bacillus aryabhattai | MK859946 | 100.0 | ER39 | Stenotrophomonas maltophilia | MH000623 | 100.0 | |
ER13 | Bacillus vallismortis | NR024696 | 100.0 | ER40 | Lysinibacillus parvibpronicapiens | NR114213 | 99.7 | |
ER14 | Bacillus oryzaecorticis | KU877642 | 99.9 | ER41 | Brachybacterium paraconglomeratum | NR025502 | 100.0 | |
ER15 | Bacillus aquimaris | KF358255 | 99.8 | ER42 | Agrobacterium tumefaciens | MN094859 | 99.9 | |
ER16 | Bacillus marisflavi | KX495310 | 99.8 | ER43 | Lysinibacillus fusiformis | KP980567 | 99.9 | |
ER17 | Bacillus sonerensis | MK860002 | 100.0 | ER44 | Enterobacter cloacae | KM538690 | 99.9 | |
ER18 | Bacillus thuringiensis | KJ769222 | 99.5 | ER45 | Enterobacter bugandensis | CP039453 | 99.8 | |
ER19 | Bacillus safensis | MK859936 | 100.0 | ER46 | Enterobacter hormaechei | CP027142 | 100.0 | |
ER20 | Bacillus simplex | KF818647 | 99.9 | ER47 | Enterobacter ludwigii | NR042349 | 99.9 | |
ER21 | Bacillus firmus | KP165527 | 99.9 | ER48 | Enterobacter xiangfangensis | MH200641 | 99.5 | |
ER22 | Bacillus altitudinis | KU663665 | 100.0 | ER49 | Enterobacter soli | NR117547 | 99.3 | |
ER23 | Bacillus flexus | KR999917 | 100.0 | ER50 | Terribacillus goriensis | CP008876 | 100.0 | |
ER24 | Bacillus horikoshii | CP020880 | 99.9 | ER51 | Kocuria rosea | MK696247 | 100.0 | |
ER25 | Bacillus tequilensis | MH762888 | 100.0 | ER52 | Brevibacterium frigoritolerans | KY753242 | 99.9 | |
ER26 | Bacillus pseudomycoides | MH578628 | 99.6 | ER53 | Halomonas hydrothermalis | CP023656 | 99.8 | |
ER27 | Bacillus mycoides | JN215520 | 99.6 | ER54 | Microbacterium barkeri | KY882051 | 99.6 |
菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) |
---|---|---|---|---|---|---|---|
ER1 | 3.94±0.45r | ER31 | 11.24±0.18gh | ER18 | 6.52±0.26nop | ER44 | 27.29±1.86a |
ER2 | 9.22±0.29ij | ER32 | 5.21±0.22pqr | ER19 | 5.98±0.35opq | ER45 | 25.93±0.54a |
ER4 | 4.76±0.20qr | ER35 | 8.26±0.13jkl | ER20 | 7.60±0.08klmn | ER46 | 11.43±0.35fg |
ER5 | 5.91±0.19opq | ER36 | 10.74±0.11gh | ER21 | 8.64±0.18ijk | ER48 | 22.02±0.89b |
ER6 | 7.49±0.42klmn | ER37 | 13.89±0.24de | ER24 | 6.72±0.21mno | ER49 | 27.35±0.20a |
ER7 | 7.63±0.33klmn | ER38 | 4.12±0.33r | ER25 | 5.13±0.09pqr | ER50 | 6.96±0.50lmno |
ER8 | 5.19±0.34pqr | ER40 | 7.30±0.22klmno | ER27 | 8.08±0.12jklm | ER51 | 16.20±0.21c |
ER9 | 2.15±0.14s | ER41 | 16.05±0.14c | ER28 | 12.73±0.14ef | ER52 | 15.29±0.24cd |
ER10 | 15.64±0.25c | ER42 | 3.89±0.27r | ER29 | 7.50±0.69klmn | ER53 | 11.61±0.34fg |
ER12 | 13.8±0.94e | ER43 | 7.59±0.22klmn | ER30 | 7.01±0.15lmno | ER54 | 9.93±0.23hi |
ER17 | 6.37±0.25nop |
Table 2 IAA secretion from endophytic bacteria
菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) | 菌株 Strain | 产IAA量 IAA yield/(mg·L-1) |
---|---|---|---|---|---|---|---|
ER1 | 3.94±0.45r | ER31 | 11.24±0.18gh | ER18 | 6.52±0.26nop | ER44 | 27.29±1.86a |
ER2 | 9.22±0.29ij | ER32 | 5.21±0.22pqr | ER19 | 5.98±0.35opq | ER45 | 25.93±0.54a |
ER4 | 4.76±0.20qr | ER35 | 8.26±0.13jkl | ER20 | 7.60±0.08klmn | ER46 | 11.43±0.35fg |
ER5 | 5.91±0.19opq | ER36 | 10.74±0.11gh | ER21 | 8.64±0.18ijk | ER48 | 22.02±0.89b |
ER6 | 7.49±0.42klmn | ER37 | 13.89±0.24de | ER24 | 6.72±0.21mno | ER49 | 27.35±0.20a |
ER7 | 7.63±0.33klmn | ER38 | 4.12±0.33r | ER25 | 5.13±0.09pqr | ER50 | 6.96±0.50lmno |
ER8 | 5.19±0.34pqr | ER40 | 7.30±0.22klmno | ER27 | 8.08±0.12jklm | ER51 | 16.20±0.21c |
ER9 | 2.15±0.14s | ER41 | 16.05±0.14c | ER28 | 12.73±0.14ef | ER52 | 15.29±0.24cd |
ER10 | 15.64±0.25c | ER42 | 3.89±0.27r | ER29 | 7.50±0.69klmn | ER53 | 11.61±0.34fg |
ER12 | 13.8±0.94e | ER43 | 7.59±0.22klmn | ER30 | 7.01±0.15lmno | ER54 | 9.93±0.23hi |
ER17 | 6.37±0.25nop |
菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH | 菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH | 菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
ER4 | + | 36.56±0.58k | 5.07±0.07ef | ER35 | +++ | 23.25±1.53n | 6.35±0.23a | ER24 | + | 19.03±0.91op | 4.54±0.29gh |
ER5 | ++ | 60.50±1.16i | 5.49±0.07bcd | ER36 | + | 82.95±0.98ef | 5.69±0.10bc | ER26 | ++ | 59.38±1.03i | 5.48±0.17bcde |
ER6 | +++ | 34.75±0.91kl | 5.88±0.14b | ER37 | + | 73.67±0.77g | 5.49±0.15bcd | ER29 | ++ | 79.52±1.74f | 79.52±1.74f |
ER7 | + | 7.25±0.82a | 6.47±0.06a | ER39 | ++ | 54.65±1.04j | 4.78±0.21fg | ER32 | +++ | 133.65±0.64a | 133.65±0.64a |
ER9 | +++ | 120.52±1.49b | 4.39±0.10gh | ER41 | ++ | 84.20±0.58e | 5.75±0.11bc | ER33 | ++ | 67.27±1.41h | 5.65±0.21bc |
ER10 | ++ | 59.85±1.40i | 5.41±0.09cde | ER42 | ++ | 59.29±2.32i | 4.37±0.1gh | ER48 | + | 66.25±0.77h | 5.48±0.12bcde |
ER12 | ++ | 15.92±0.64p | 6.34±0.07a | ER43 | ++ | 29.14±1.21m | 5.17±0.08def | ER50 | + | 6.32±0.28q | 5.64±0.13bc |
ER15 | + | 103.27±0.66d | 4.42±0.06gh | ER45 | + | 17.36±0.49p | 6.34±0.06a | ER51 | +++ | 112.91±0.61c | 4.58±0.18gh |
ER17 | +++ | 7.94±1.74a | 5.46±0.09bcde | ER46 | + | 22.69±0.35no | 5.34±0.12cde | ER53 | ++ | 32.20±0.77lm | 6.46±0.09a |
ER20 | + | 60.73±2.02i | 4.64±0.07gh | ER47 | + | 53.86±1.53j | 4.34±0.04h |
Table 3 Determination of phosphorus dissolving capacity of endophytic bacteria(D/d)
菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH | 菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH | 菌株 Strain | D/d | 溶磷量P-solubilizing capability /(mg·L-1) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
ER4 | + | 36.56±0.58k | 5.07±0.07ef | ER35 | +++ | 23.25±1.53n | 6.35±0.23a | ER24 | + | 19.03±0.91op | 4.54±0.29gh |
ER5 | ++ | 60.50±1.16i | 5.49±0.07bcd | ER36 | + | 82.95±0.98ef | 5.69±0.10bc | ER26 | ++ | 59.38±1.03i | 5.48±0.17bcde |
ER6 | +++ | 34.75±0.91kl | 5.88±0.14b | ER37 | + | 73.67±0.77g | 5.49±0.15bcd | ER29 | ++ | 79.52±1.74f | 79.52±1.74f |
ER7 | + | 7.25±0.82a | 6.47±0.06a | ER39 | ++ | 54.65±1.04j | 4.78±0.21fg | ER32 | +++ | 133.65±0.64a | 133.65±0.64a |
ER9 | +++ | 120.52±1.49b | 4.39±0.10gh | ER41 | ++ | 84.20±0.58e | 5.75±0.11bc | ER33 | ++ | 67.27±1.41h | 5.65±0.21bc |
ER10 | ++ | 59.85±1.40i | 5.41±0.09cde | ER42 | ++ | 59.29±2.32i | 4.37±0.1gh | ER48 | + | 66.25±0.77h | 5.48±0.12bcde |
ER12 | ++ | 15.92±0.64p | 6.34±0.07a | ER43 | ++ | 29.14±1.21m | 5.17±0.08def | ER50 | + | 6.32±0.28q | 5.64±0.13bc |
ER15 | + | 103.27±0.66d | 4.42±0.06gh | ER45 | + | 17.36±0.49p | 6.34±0.06a | ER51 | +++ | 112.91±0.61c | 4.58±0.18gh |
ER17 | +++ | 7.94±1.74a | 5.46±0.09bcde | ER46 | + | 22.69±0.35no | 5.34±0.12cde | ER53 | ++ | 32.20±0.77lm | 6.46±0.09a |
ER20 | + | 60.73±2.02i | 4.64±0.07gh | ER47 | + | 53.86±1.53j | 4.34±0.04h |
菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier | 菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier | 菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier |
---|---|---|---|---|---|---|---|---|
ER1 | 0.29±0.03m | ++++ | ER13 | 0.28±0.01m | ++++ | ER36 | 0.32±0.03klm | ++++ |
ER3 | 0.31±0.03lm | ++++ | ER15 | 0.74±0.03ab | ++ | ER41 | 0.46±0.04fgh | +++ |
ER4 | 0.39±0.05hijkl | ++++ | ER16 | 0.69±0.03bc | ++ | ER43 | 0.16±0.01n | +++++ |
ER7 | 0.20±0.01n | +++++ | ER17 | 0.43±0.02hij | +++ | ER45 | 0.17±0.02n | +++++ |
ER8 | 0.66±0.01bc | ++ | ER24 | 0.33±0.02klm | ++++ | ER47 | 0.79±0.02a | ++ |
ER9 | 0.45±0.04gh | +++ | ER30 | 0.44±0.04hi | +++ | ER48 | 0.57±0.03de | +++ |
ER10 | 0.14±0.02n | +++++ | ER32 | 0.36±0.01ijklm | ++++ | ER49 | 0.53±0.05efg | +++ |
ER11 | 0.54±0.02def | +++ | ER33 | 0.47±0.01fgh | +++ | ER52 | 0.39±0.01hijk | ++++ |
ER12 | 0.35±0.03jklm | ++++ | ER35 | 0.57±0.03de | +++ | ER53 | 0.62±0.03cd | ++ |
ER22 | 0.42±0.03hij | +++ |
Table 4 Abilities of producing iron carrier by endophytic bacteria
菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier | 菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier | 菌株 Strain | 产铁载体 Iron-producing carrier | 产铁载体能力 Capacity of iron-producing carrier |
---|---|---|---|---|---|---|---|---|
ER1 | 0.29±0.03m | ++++ | ER13 | 0.28±0.01m | ++++ | ER36 | 0.32±0.03klm | ++++ |
ER3 | 0.31±0.03lm | ++++ | ER15 | 0.74±0.03ab | ++ | ER41 | 0.46±0.04fgh | +++ |
ER4 | 0.39±0.05hijkl | ++++ | ER16 | 0.69±0.03bc | ++ | ER43 | 0.16±0.01n | +++++ |
ER7 | 0.20±0.01n | +++++ | ER17 | 0.43±0.02hij | +++ | ER45 | 0.17±0.02n | +++++ |
ER8 | 0.66±0.01bc | ++ | ER24 | 0.33±0.02klm | ++++ | ER47 | 0.79±0.02a | ++ |
ER9 | 0.45±0.04gh | +++ | ER30 | 0.44±0.04hi | +++ | ER48 | 0.57±0.03de | +++ |
ER10 | 0.14±0.02n | +++++ | ER32 | 0.36±0.01ijklm | ++++ | ER49 | 0.53±0.05efg | +++ |
ER11 | 0.54±0.02def | +++ | ER33 | 0.47±0.01fgh | +++ | ER52 | 0.39±0.01hijk | ++++ |
ER12 | 0.35±0.03jklm | ++++ | ER35 | 0.57±0.03de | +++ | ER53 | 0.62±0.03cd | ++ |
ER22 | 0.42±0.03hij | +++ |
菌株Strain | 菌膜Biofilm | nifH基因NifH gene | 菌株Strain | 菌膜Biofilm | nifH基因NifH gene | 菌株Strain | 菌膜Biofilm | nifH基因NifH gene |
---|---|---|---|---|---|---|---|---|
ER1 | - | - | ER28 | - | - | ER45 | - | - |
ER2 | - | - | ER29 | - | - | ER46 | - | - |
ER3 | + | + | ER30 | + | + | ER47 | - | - |
ER4 | + | + | ER31 | + | + | ER48 | - | - |
ER5 | + | + | ER32 | + | + | ER49 | + | + |
ER6 | - | - | ER33 | + | + | ER50 | + | + |
ER7 | + | + | ER34 | - | - | ER51 | + | + |
ER8 | - | - | ER35 | - | - | ER52 | - | - |
ER9 | + | + | ER36 | + | + | ER53 | + | + |
ER10 | + | + | ER37 | - | - | ER54 | + | + |
ER11 | - | - | ER38 | - | - | ER18 | - | - |
ER12 | + | + | ER39 | - | - | ER19 | - | - |
ER13 | - | - | ER40 | + | + | ER20 | + | + |
ER14 | - | - | ER41 | + | + | ER21 | - | - |
ER15 | - | - | ER42 | - | - | ER22 | - | - |
ER16 | + | + | ER43 | + | + | ER23 | + | + |
ER17 | - | - | ER44 | + | + | ER24 | - | - |
ER26 | - | - | ER27 | + | + | ER25 | - | - |
Table 5 Screening the nitrogen fixation abilities of endophytic bacteria
菌株Strain | 菌膜Biofilm | nifH基因NifH gene | 菌株Strain | 菌膜Biofilm | nifH基因NifH gene | 菌株Strain | 菌膜Biofilm | nifH基因NifH gene |
---|---|---|---|---|---|---|---|---|
ER1 | - | - | ER28 | - | - | ER45 | - | - |
ER2 | - | - | ER29 | - | - | ER46 | - | - |
ER3 | + | + | ER30 | + | + | ER47 | - | - |
ER4 | + | + | ER31 | + | + | ER48 | - | - |
ER5 | + | + | ER32 | + | + | ER49 | + | + |
ER6 | - | - | ER33 | + | + | ER50 | + | + |
ER7 | + | + | ER34 | - | - | ER51 | + | + |
ER8 | - | - | ER35 | - | - | ER52 | - | - |
ER9 | + | + | ER36 | + | + | ER53 | + | + |
ER10 | + | + | ER37 | - | - | ER54 | + | + |
ER11 | - | - | ER38 | - | - | ER18 | - | - |
ER12 | + | + | ER39 | - | - | ER19 | - | - |
ER13 | - | - | ER40 | + | + | ER20 | + | + |
ER14 | - | - | ER41 | + | + | ER21 | - | - |
ER15 | - | - | ER42 | - | - | ER22 | - | - |
ER16 | + | + | ER43 | + | + | ER23 | + | + |
ER17 | - | - | ER44 | + | + | ER24 | - | - |
ER26 | - | - | ER27 | + | + | ER25 | - | - |
[1] |
Hallmann J, Quadt-Hallmann A, Mahaffee WF, et al. Bacterial endophytes in agricultural crops[J]. Can J Microbiol, 1997, 43(10):895-914.
doi: 10.1139/m97-131 URL |
[2] | Xu CP, Zhao SS, Liu YS, et al. Chemical composition and comparison of the Rehmannia glutinosa Libosch oil using steam distillation and solvent extraction[J]. J Biol Active Prod From Nat, 2016, 6(1):25-31. |
[3] | 王丰青, 王丽娜, 智惊宇, 等. 不同品种地黄中毛蕊花糖苷的动态积累规律变化[J]. 中国实验方剂学杂志, 2017, 23(24):78-83. |
Wang FQ, Wang LN, Zhi JY, et al. Changes in dynamic accumulation of acteoside from different Rehmannia glutinosa cultivars[J]. Chin J Exp Tradit Med Formulae, 2017, 23(24):78-83. | |
[4] |
Feng WS, Li M, Zheng XK, et al. Two new ionone glycosides from the roots of Rehmannia glutinosa Libosch[J]. Nat Prod Res, 2015, 29(1):59-63.
doi: 10.1080/14786419.2014.958735 URL |
[5] |
Teng ZQ, Shen Y, Li J, et al. Construction and quality analysis of transgenic Rehmannia glutinosa containing TMV and CMV coat protein[J]. Molecules, 2016, 21(9):1134.
doi: 10.3390/molecules21091134 URL |
[6] |
Chao CH, Hsu JL, Chen MF, et al. Anti-hypertensive effects of Radix Rehmanniae and its active ingredients[J]. Nat Prod Res, 2020, 34(11):1547-1552.
doi: 10.1080/14786419.2018.1516660 URL |
[7] | 赵龙飞, 徐亚军, 邓振山, 等. 拮抗棉花枯萎病菌的地黄内生细菌筛选、鉴定和促生潜能[J]. 微生物学报, 2021, 61(8):2338-2357. |
Zhao LF, Xu YJ, Deng ZS, et al. Screening, identification and growth-promoting of antagonistic endophytic bacteria associated with Rehmannia glutinosa against Fusarium oxysporum f. sp. vasinfectum[J]. Acta Microbiol Sin, 2021, 61(8):2338-2357. | |
[8] |
Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system[J]. Appl Environ Microbiol, 2002, 68(8):3795-3801.
doi: 10.1128/AEM.68.8.3795-3801.2002 URL |
[9] | 唐玉娟. 山豆根内生细菌的促生活性菌株筛选及其促生作用研究[D]. 南宁:广西大学, 2017. |
Tang YJ. Selection of survivorous strains for endophytic bacteria of Sophora tonkinensis gagnep. and its promoting effect research[D]. Nanning:Guangxi University, 2017. | |
[10] |
Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores[J]. Anal Biochem, 1987, 160(1):47-56.
pmid: 2952030 |
[11] | Garrity G. Bergey’s manual of systematic bacteriology[J]. Bergeys Manual of Systematic Bacteriology, 1984, 38(4):443-491. |
[12] | 东秀珠, 蔡妙英, 等. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 418-419. |
Dong XZ, Cai MY, et al. Handbook for identification of common bacterial systems[M]. Beijing: Science Press, 2001: 418-419. | |
[13] | 李朝辉, 包艳, 苗成琪, 等. 梨炭疽菌拮抗细菌CL01的鉴定及其抗菌活性[J]. 中国生物防治学报, 2021, 37(4):837-845. |
Li CH, Bao Y, Miao CQ, et al. Identification of antagonistic bacteria CL01 against pear anthracnose and its anti-pathogenic activity[J]. Chin J Biol Control, 2021, 37(4):837-845. | |
[14] |
Schmidt CS, Lovecká P, Mrnka L, et al. Distinct communities of poplar endophytes on an unpolluted and a risk element-polluted site and their plant growth-promoting potential in vitro[J]. Microb Ecol, 2018, 75(4):955-969.
doi: 10.1007/s00248-017-1103-y pmid: 29127500 |
[15] | 王欢, 韩丽珍. 4株茶树根际促生菌菌株的鉴定及促生作用[J]. 微生物学通报, 2019, 46(3):548-562. |
Wang H, Han LZ. Identification of four plant growth-promoting rhizobacteria isolated from tea rhizosphere[J]. Microbiol China, 2019, 46(3):548-562. | |
[16] |
Andrade LF, de Souza GL, Nietsche S, et al. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth[J]. J Microbiol, 2014, 52(1):27-34.
doi: 10.1007/s12275-014-3019-2 URL |
[17] | 李振东, 陈秀蓉, 李鹏, 等. 珠芽蓼内生固氮菌鉴定及其固氮基因分析[J]. 草地学报, 2009, 17(5):552-557. |
Li ZD, Chen XR, Li P, et al. Identification of endogenous nitrogen-fixing bacteria of Polygonum viviparum and analysis on nitrogen fixation gene(nifH)[J]. Acta Agrestia Sin, 2009, 17(5):552-557. | |
[18] |
Ali S, Isaacson J, Kroner Y, et al. Corn Sap bacterial endophytes and their potential in plant growth-promotion[J]. Environ Sustain, 2018, 1(4):341-355.
doi: 10.1007/s42398-018-00030-4 URL |
[19] | 许进娇, 宋萍, 封磊, 等. 雷公藤内生细菌的促生作用及其对雷公藤甲素生成的影响[J]. 应用生态学报, 2014, 25(6):1681-1687. |
Xu JJ, Song P, Feng L, et al. Growth-promoting effect and triptolide production regulation of endophytic bacteria from Tripterygium wilfordii[J]. Chin J Appl Ecol, 2014, 25(6):1681-1687. | |
[20] | 杨清香, 谢永生, 张昊, 等. 怀地黄活性内生菌的分离鉴定及抗菌抗肿瘤活性[J]. 微生物学通报, 2010, 37(10):1467-1474. |
Yang QX, Xie YS, Zhang H, et al. Isolation, identification and antagonism on microorganisms and cancer cells by active endophytes from Rehmannia glutinosa libosch[J]. Microbiol China, 2010, 37(10):1467-1474. | |
[21] | 王瑞飞, 康春晓, 许圆圆, 等. 怀地黄内生细菌的分离鉴定及抗菌活性[J]. 江苏农业科学, 2017, 45(13):82-86. |
Wang RF, Kang CX, Xu YY, et al. Isolation, identification and antibacterial activity of endophytic bacteria from Rehmannia glutinosa[J]. Jiangsu Agric Sci, 2017, 45(13):82-86. | |
[22] | 杜晓宁, 徐惠娟, 黄盼盼, 等. 宁夏枸杞内生细菌的多样性及其抑菌活性研究[J]. 微生物学通报, 2015, 42(9):1779-1787. |
Du XN, Xu HJ, Huang PP, et al. Diversity and antimicrobial activity of endophytic bacteria isolated from Lycium barbarum of Ningxia[J]. Microbiol China, 2015, 42(9):1779-1787. | |
[23] |
Dias ACF, Costa FEC, Andreote FD, et al. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion[J]. World J Microbiol Biotechnol, 2009, 25(2):189-195.
doi: 10.1007/s11274-008-9878-0 URL |
[24] |
Forchetti G, Masciarelli O, Alemano S, et al. Endophytic bacteria in sunflower(Helianthus annuus L.):isolation, characterization, and production of jasmonates and abscisic acid in culture medium[J]. Appl Microbiol Biotechnol, 2007, 76(5):1145-1152.
pmid: 17657487 |
[25] |
王华笑, 刘环, 杨国平, 等. Bacillus amyloliquefaciens YM6对盐胁迫条件下玉米促生长作用研究[J]. 生物技术通报, 2019, 35(12):45-49.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0263 |
Wang HX, Liu H, Yang GP, et al. Effect of Bacillus amyloliquefaciens YM6 on growth promotion of maize under salt stress[J]. Biotechnol Bull, 2019, 35(12):45-49. | |
[26] |
Lee JC, Whang KS. Optimization of indole-3-acetic acid(IAA)production by Bacillus megaterium BM5[J]. Korean J Soil Sci Fertil, 2016, 49(5):461-468.
doi: 10.7745/KJSSF.2016.49.5.461 URL |
[27] | 翟颖妍, 崔传斌, 张家韬, 等. 一株拮抗烟草炭疽病的菌株ZYY-4的筛选、鉴定及生防活性测定[J]. 四川农业大学学报, 2020, 38(1):29-35. |
Zhai YY, Cui CB, Zhang JT, et al. Screening, identification and biocontrol activity of the strain ZYY-4 against tobacco anthracnose[J]. J Sichuan Agric Univ, 2020, 38(1):29-35. | |
[28] |
Rahman M, Prasad KN, Gupta S, et al. Prevalence and molecular characterization of new Delhi metallo-beta-lactamases in multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from India[J]. Microb Drug Resist, 2018, 24(6):792-798.
doi: 10.1089/mdr.2017.0078 URL |
[29] | 马荣琴, 曹毅, 周俊雄, 等. 番茄根内生假单胞菌的分离与鉴定[J]. 生物技术, 2015, 25(6):564-568, 580. |
Ma RQ, Cao Y, Zhou JX, et al. Isolation and identification of endophytic Pseudomonas from tomato roots[J]. Biotechnology, 2015, 25(6):564-568, 580. | |
[30] |
Strano CP, Bella P, Licciardello G, et al. Role of secondary metabolites in the biocontrol activity of Pseudomonas corrugata and Pseudomonas mediterranea[J]. Eur J Plant Pathol, 2017, 149(1):103-115.
doi: 10.1007/s10658-017-1169-x URL |
[31] | 徐幼平, 臧荣春, 陈卫良, 等. 阴沟肠杆菌B8发酵液对植物的促生作用和IAA分析[J]. 浙江大学学报:农业与生命科学版, 2001, 27(3):282-284. |
Xu YP, Zang RC, Chen WL, et al. Promoting plant growth and IAA analysis of Enterobacter cloacae B8 fermentation liquid[J]. J Zhejiang Agric Univ:Agric& Life Sci, 2001, 27(3):282-284. | |
[32] |
Wilkinson KG, Sivasithamparam K, Dixon KW, et al. Identification and characterisation of bacteria associated with Western Australian orchids[J]. Soil Biol Biochem, 1994, 26(1):137-142.
doi: 10.1016/0038-0717(94)90205-4 URL |
[33] |
Ye DH, Li TX, Liu JB, et al. Characteristics of endophytic bacteria from Polygonum hydropiper and their use in enhancing P-phytoextraction[J]. Plant Soil, 2020, 448(1/2):647-663.
doi: 10.1007/s11104-020-04456-w URL |
[34] | 孙磊, 邵红, 刘琳, 等. 可产生铁载体的春兰根内生细菌多样性[J]. 微生物学报, 2011, 51(2):189-195. |
Sun L, Shao H, Liu L, et al. Diversity of siderophore-producing endophytic bacteria of Cymbidium goeringii roots[J]. Acta Microbiol Sin, 2011, 51(2):189-195. | |
[35] | 顾小平, 吴晓丽. 毛竹根际分离的地衣芽孢杆菌固氮特性研究[J]. 竹子研究汇刊, 1998, 17(4):59-63. |
Gu XP, Wu XL. Studies on nitrogen fixation characters of several Bacillus licheniformis strains from Phyllostachys pubescens roots[J]. J Bamboo Res, 1998, 17(4):59-63. | |
[36] | 王逸群, 郑金贵, 陈文列, 等. 水稻内生固氮细菌的分离及鹑鸡肠球菌在水稻根中的分布[J]. 热带亚热带植物学报, 2005, 13(4):296-302. |
Wang YQ, Zheng JG, Chen WL, et al. Isolation of an endophytic diazotroph from rice and the distribution of Enterococcus gallinarum in rice roots[J]. J Trop Subtrop Bot, 2005, 13(4):296-302. | |
[37] | 林红梅, 施建飞, 李岳桦, 等. 西洋参病原菌拮抗细菌的分离筛选与鉴定[J]. 吉林农业科学, 2013, 38(6):62-65, 75. |
Lin HM, Shi JF, Li YH, et al. Isolation and identification of antagonistic bacteria of Panax quinquefolium L. pathogeny fungus[J]. J Jilin Agric Sci, 2013, 38(6):62-65, 75. | |
[38] | 杨成德, 李振东, 陈秀蓉, 等. 高寒草地珠芽蓼内生拮抗固氮菌Z19的鉴定及其固氮功能[J]. 微生物学通报, 2014, 41(2):267-273. |
Yang CD, Li ZD, Chen XR, et al. Identification, pathogen inhibiting and nitrogen fixation of endophytic bacterium Z19 of Polygonum viviparum[J]. Microbiol China, 2014, 41(2):267-273. | |
[39] |
邓超, 杜秀娟, 黄涛, 等. 碳氮比对固氮菌株WN-F合成胞外多糖的影响[J]. 生物技术通报, 2018, 34(3):194-199.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0583 |
Deng C, Du XJ, Huang T, et al. The promotion of proper carbon nitrogen ratio in the synjournal of extracellular polysaccharide by nitrogen-fixing strains WN-F[J]. Biotechnol Bull, 2018, 34(3):194-199. | |
[40] | 丁延芹, 王建平, 刘元, 等. 几株固氮芽孢杆菌的分离与鉴定[J]. 农业生物技术学报, 2004, 12(6):690-697. |
Ding YQ, Wang JP, Liu Y, et al. Isolation and identification of nitrogen-fixing bacilli[J]. J Agric Biotechnol, 2004, 12(6):690-697. | |
[41] |
刘晔, 刘晓丹, 张林利, 等. 花生根际多功能高效促生菌的筛选鉴定及其效应研究[J]. 生物技术通报, 2017, 33(10):125-134.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0233 |
Liu Y, Liu XD, Zhang LL, et al. Screening, identification of multifunctional peanut root-promoting rhizobacteria and its promoting effects on peanuts(Arachis hypogaea L.)[J]. Biotechnol Bull, 2017, 33(10):125-134. | |
[42] | 李晴晴, 徐松, 赵维, 等. 根际微生物组介导的解淀粉芽孢杆菌FH-1对水稻的促生机制[J]. 微生物学报, 2019, 59(12):2410-2426. |
Li QQ, Xu S, Zhao W, et al. Rhizosphere microbiome mediated growth-promoting mechanisms of Bacillus amyloliquefaciens FH-1 on rice[J]. Acta Microbiol Sin, 2019, 59(12):2410-2426. | |
[43] | 郜晨. 尼瓦拉野生稻内生菌多样性及促生作用[D]. 广州:华南农业大学, 2018. |
Gao C. Diversity and plant growth promotion of endophytic bacteria isolated from Oryza nivara. Guangzhou:South China Agricultural University, 2018. | |
[44] | 钟宇舟, 余秀梅, 陈强, 等. 四川盆地大豆根瘤内生细菌的分离鉴定及促生效果[J]. 应用与环境生物学报, 2017, 23(1):46-53. |
Zhong YZ, Yu XM, Chen Q, et al. Isolation, identification and plant growth promotion ability evaluation of the endophytic bacteria isolated from soybean root nodule in Sichuan Basin[J]. Chin J Appl Environ Biol, 2017, 23(1):46-53. |
[1] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[2] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[3] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[4] | WANG Yu, YIN Ming-shen, YIN Xiao-yan, XI Jia-qin, YANG Jian-wei, NIU Qiu-hong. Screening, Identification and Degradation Characteristics of Nicotine-degrading Bacteria in Lasioderma serricorne [J]. Biotechnology Bulletin, 2023, 39(6): 308-315. |
[5] | CHE Yong-mei, GUO Yan-ping, LIU Guang-chao, YE Qing, LI Ya-hua, ZHAO Fang-gui, LIU Xin. Isolation and Identification of Bacterial Strain C8 and B4 and Their Halotolerant Growth-promoting Effects and Mechanisms [J]. Biotechnology Bulletin, 2023, 39(5): 276-285. |
[6] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
[7] | LI Yi-jun, WU Chen-chen, LI Rui, WANG Zhe, HE Shan-wen, WEI Shan-jun, ZHANG Xiao-xia. Exploring Cultivation Approaches for New Endophytic Bacterial Resource in Oryza sativa [J]. Biotechnology Bulletin, 2023, 39(4): 201-211. |
[8] | WANG Feng-ting, WANG Yan, SUN Ying, CUI Wen-jing, QIAO Kai-bin, PAN Hong-yu, LIU Jin-liang. Isolation and Identification of Saline-alkali Tolerant Aspergillus terreus SYAT-1 and Its Activities Against Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(2): 203-210. |
[9] | CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2023, 39(11): 217-225. |
[10] | ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx. [J]. Biotechnology Bulletin, 2023, 39(10): 246-255. |
[11] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[12] | HE Li-na, FENG Yuan, SHI Hui-min, YE Jian-ren. Screening and Identification of Endophytic Bacteria with Nematicidal Activity Against Bursaphelenchus xylophilus in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(8): 159-166. |
[13] | JIANG Mei-yan, ZHOU Yang, LIU Ren-lang, YAO Fei, YANG Yun-shu, HOU Kai, FENG Dong-ju, WU Wei. Screening and Plant Growth Promoting of Grow-promoting Bacteria in Rhizosphere Bacteria of Angelica dahurica var. formosana [J]. Biotechnology Bulletin, 2022, 38(8): 167-178. |
[14] | ZU Xue, ZHOU Hu, ZHU Hua-jun, REN Zuo-hua, LIU Er-ming. Isolation and Identification of Bacillus subtilis K-268 and Its Biological Control Effect on Rice Blast [J]. Biotechnology Bulletin, 2022, 38(6): 136-146. |
[15] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||