Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (10): 246-255.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0590
Previous Articles Next Articles
ZOU Lan1(), WANG Qian1, LI Mu-yi1, YE Kun-hao2, HUANG Jing1()
Received:
2023-06-21
Online:
2023-10-26
Published:
2023-11-28
Contact:
HUANG Jing
E-mail:zoulan@swust.edu.cn;huang.jing@swust.edu.cn
ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx.[J]. Biotechnology Bulletin, 2023, 39(10): 246-255.
基因Gene | 引物Primer(5'-3') | 反应程序Reaction procedure |
---|---|---|
16S rRNA | 27F: AGAGTTTGATCCTGGCTCAG 1492R: TACGGCTACCTTGTTACGACTT | 94℃ for 3 min, 30 cycles of 94℃ for 1 min, 56℃ for 1 min, 72℃ for 2 min, final extension for 72℃ 10 min |
atpD | atpDF: RTAATYGGMGCSGTRGTNGAYGT’ atpDR:TCATCCGCMGGWACRTAWAYNGC’ | 98℃ for 2 min, 35 cycles of 98℃ for 30 s, 56℃ for 1 min, 72℃ for 45 s, final extension for 72℃ 10 min |
gyrA | gyrA2F: ATGAGCGATCTGGCCAGAGA gyrA9R: CGCGCCTTGTTCACCTGATA | 98℃ for 2 min, 35 cycles of 98℃ for 30 s, 57℃ for 1 min, 72℃ for 45 s, final extension for 72℃ 10 min |
rpoB | rpoBF: AGGTCAACTAGTTCAGTATGGAC rpoBR: AAGAACCGTAACCGGCAACTT | 94℃ for 3 min, 30 cycles of 94℃ for 30 s, 54℃ for 45 s, 72℃ for 30 min, final extension for 72℃ 10 min |
Table 1 Primers and reaction procedure for housekeeping genes
基因Gene | 引物Primer(5'-3') | 反应程序Reaction procedure |
---|---|---|
16S rRNA | 27F: AGAGTTTGATCCTGGCTCAG 1492R: TACGGCTACCTTGTTACGACTT | 94℃ for 3 min, 30 cycles of 94℃ for 1 min, 56℃ for 1 min, 72℃ for 2 min, final extension for 72℃ 10 min |
atpD | atpDF: RTAATYGGMGCSGTRGTNGAYGT’ atpDR:TCATCCGCMGGWACRTAWAYNGC’ | 98℃ for 2 min, 35 cycles of 98℃ for 30 s, 56℃ for 1 min, 72℃ for 45 s, final extension for 72℃ 10 min |
gyrA | gyrA2F: ATGAGCGATCTGGCCAGAGA gyrA9R: CGCGCCTTGTTCACCTGATA | 98℃ for 2 min, 35 cycles of 98℃ for 30 s, 57℃ for 1 min, 72℃ for 45 s, final extension for 72℃ 10 min |
rpoB | rpoBF: AGGTCAACTAGTTCAGTATGGAC rpoBR: AAGAACCGTAACCGGCAACTT | 94℃ for 3 min, 30 cycles of 94℃ for 30 s, 54℃ for 45 s, 72℃ for 30 min, final extension for 72℃ 10 min |
菌株 Strain | PDA平板抑菌率 Inhibition rate on PDA plate /% | 乌头切片抑菌率 Inhibition rate on A. carmichaelii root slice/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
S. rolfsii-1 | S. rolfsii-2 | F. oxysporum-1 | F. oxysporum-2 | S. rolfsii-1 | S. rolfsii-2 | F. oxysporum-1 | F. oxysporum-2 | |||
JY-3-1 R | 53.13±0.39 | 51.30±1.09 | 52.07±0.21 | 44.58±0.18 | 16.32±9.76 | 49.68±3.05 | 42.19±0.09 | 46.30±3.27 |
Table 2 Inhibition effects of JY-3-1R against pathogenic fungi
菌株 Strain | PDA平板抑菌率 Inhibition rate on PDA plate /% | 乌头切片抑菌率 Inhibition rate on A. carmichaelii root slice/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
S. rolfsii-1 | S. rolfsii-2 | F. oxysporum-1 | F. oxysporum-2 | S. rolfsii-1 | S. rolfsii-2 | F. oxysporum-1 | F. oxysporum-2 | |||
JY-3-1 R | 53.13±0.39 | 51.30±1.09 | 52.07±0.21 | 44.58±0.18 | 16.32±9.76 | 49.68±3.05 | 42.19±0.09 | 46.30±3.27 |
Fig. 2 Phylogenetic analysis of JY-3-1R based on 16S rRNA gene(A)and multi-locus sequence analysis of gyrA, rpoB and atpD genes(B) Accession numbers of either gene or whole genome of reference strains are indicated in brackets. T indicates type strain
Fig. 5 Abilities of JY-3-1R producing IAA, siderophore, and secretases Pictures from left to right showed the phenotypes of IAA, siderophore, protease,cellulase and glucanase producing capacity of JY-3-1R, respectively
Fig. 6 Biocontrol potential of.JY-3-1R against southern blight by field experiment P*indicates significant difference (P<0.05 ), and ns indicates not significant
测定指标 Character/(g·plant-1) | 处理 Treatment | ||
---|---|---|---|
JY-3-1R | CK | ||
茎鲜重 Stem fresh weight | 37.68±2.91 a | 27.98±3.25 b | |
茎干重Stem dry weight | 9.35±0.70 a | 6.96±0.90 b | |
乌头鲜重Main root fresh weight | 28.43±2.43 a | 19.44±1.02 b | |
乌头干重Main root dry weight | 5.77±0.78 a | 3.16±0.11 b | |
子根鲜重Lateral root fresh weight | 77.17±7.80 a | 48.54±5.95 b | |
子根干重Lateral root dry weight | 20.01±1.94 a | 12.82±1.91 a |
Table 3 Plant growth promoting effect of JY-3-1R on A. carmichaelii
测定指标 Character/(g·plant-1) | 处理 Treatment | ||
---|---|---|---|
JY-3-1R | CK | ||
茎鲜重 Stem fresh weight | 37.68±2.91 a | 27.98±3.25 b | |
茎干重Stem dry weight | 9.35±0.70 a | 6.96±0.90 b | |
乌头鲜重Main root fresh weight | 28.43±2.43 a | 19.44±1.02 b | |
乌头干重Main root dry weight | 5.77±0.78 a | 3.16±0.11 b | |
子根鲜重Lateral root fresh weight | 77.17±7.80 a | 48.54±5.95 b | |
子根干重Lateral root dry weight | 20.01±1.94 a | 12.82±1.91 a |
[1] |
Wu JJ, Guo ZZ, Zhu YF, et al. A systematic review of pharmacokinetic studies on herbal drug Fuzi: implications for Fuzi as personalized medicine[J]. Phytomedicine, 2018, 44: 187-203.
doi: 10.1016/j.phymed.2018.03.001 URL |
[2] |
Zhou GH, Tang LY, Zhou XD, et al. A review on phytochemistry and pharmacological activities of the processed lateral root of Aconitum carmichaelii Debeaux[J]. J Ethnopharmacol, 2015, 160: 173-193.
doi: 10.1016/j.jep.2014.11.043 URL |
[3] | 钱长敏, 宋兆辉, 张兰兰, 等. 四川道地产区乌头药材不同部位6种生物碱含量对比研究[J]. 中国中药杂志, 2013, 38(17): 2761-2767. |
Qian CM, Song ZH, Zhang LL, et al. Difference evaluation of three kinds of root of Aconitum carmichaelii in Sichuan based on UPLC analysis of six alkaloids and chemometrics[J]. China J Chin Mater Med, 2013, 38(17): 2761-2767. | |
[4] |
Zou L, Wang Q, Li MY, et al. Culturable bacterial endophytes of Aconitum carmichaelii Debx. were diverse in phylogeny, plant growth promotion, and antifungal potential[J]. Front Microbiol, 2023, 14: 1192932.
doi: 10.3389/fmicb.2023.1192932 URL |
[5] |
Li Y, Guo Q, Wei X, et al. Biocontrol effects of Penicillium griseofulvum against monkshood(Aconitum carmichaelii Debx.) root diseases caused by Sclerotium rolfsiii and Fusarium spp[J]. J Appl Microbiol, 2019, 127(5): 1532-1545.
doi: 10.1111/jam.14382 pmid: 31304623 |
[6] |
Yan LY, Wang ZH, Song WD, et al. Genome sequencing and comparative genomic analysis of highly and weakly aggressive strains of Sclerotium rolfsii, the causal agent of peanut stem rot[J]. BMC Genomics, 2021, 22(1): 276.
doi: 10.1186/s12864-021-07534-0 |
[7] |
De Silva NI, Brooks S, Lumyong S, et al. Use of endophytes as biocontrol agents[J]. Fungal Biol Rev, 2019, 33(2): 133-148.
doi: 10.1016/j.fbr.2018.10.001 |
[8] |
Afzal I, Shinwari ZK, Sikandar S, et al. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants[J]. Microbiol Res, 2019, 221: 36-49.
doi: S0944-5013(18)30459-2 pmid: 30825940 |
[9] |
Wei Z, Jousset A. Plant breeding goes microbial[J]. Trends Plant Sci, 2017, 22(7): 555-558.
doi: S1360-1385(17)30111-5 pmid: 28592368 |
[10] | 樊新新. 乌头内生菌群落时空结构及其多样性研究[D]. 西安: 陕西师范大学, 2015. |
Fan XX. Temporal and spatial structure and diversity of endophytic fungi community in Aconitum carmichaeli[D]. Xi'an: Shaanxi Normal University, 2015. | |
[11] | 邱浩, 陈佳阳, 赖佑圳, 等. 附子内生菌及根际土壤性质与附子生物碱积累的关系研究[J]. 植物科学学报, 2021, 39(6): 643-653. |
Qiu H, Chen JY, Lai YZ, et al. Relationships between endophytic structure, rhizosphere soil properties and aconite alkaloids accumulations in Aconitum carmichaelii Debx[J]. Plant Sci J, 2021, 39(6): 643-653. | |
[12] | 贺鹏飞. 乌头内生菌的分离鉴定及其次生代谢产物研究[D]. 沈阳: 沈阳农业大学, 2020. |
He PF. Isolation and identification of endophytes in Aconitum and its secondary metabolites[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[13] |
Ben Khedher S, Mejdoub-Trabelsi B, Tounsi S. Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth[J]. Biol Contr, 2021, 152: 104444.
doi: 10.1016/j.biocontrol.2020.104444 URL |
[14] | 罗兴, 邹兰, 吴清山, 等. 乌头产吲哚乙酸内生细菌遗传多样性、抗逆性及其对水稻幼苗生长的影响[J]. 微生物学报, 2022, 62(4): 1485-1500. |
Luo X, Zou L, Wu QS, et al. Genetic diversity, stress resistance, and effect on rice seedling growth of indoleacetic acid-producing endophytic bacteria isolated from Aconitum carmichaelii Debeaux[J]. Acta Microbiol Sin, 2022, 62(4): 1485-1500. | |
[15] | Sharma SK, Singh UB, Sahu PK, et al. Rhizosphere microbes[M]. Singapore: Springer, 2021. |
[16] |
Chen L, Wu YD, Chong XY, et al. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii[J]. J Appl Microbiol, 2020, 128(3): 803-813.
doi: 10.1111/jam.14508 pmid: 31705716 |
[17] |
Sahu PK, Singh S, Gupta A, et al. Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato[J]. Biol Contr, 2019, 137: 104014.
doi: 10.1016/j.biocontrol.2019.104014 URL |
[18] |
Li YL, Guo Q, He F, et al. Biocontrol of root diseases and growth promotion of the tuberous plant Aconitum carmichaelii induced by actinomycetes are related to shifts in the rhizosphere microbiota[J]. Microb Ecol, 2020, 79(1): 134-147.
doi: 10.1007/s00248-019-01388-6 |
[19] |
Wang J, Wang JR, Liu TT, et al. Bacillus amyloliquefaciens FG14 as a potential biocontrol strain against rusty root rot of Panax ginseng, and its impact on the rhizosphere microbial community[J]. Biol Contr, 2023, 182: 105221.
doi: 10.1016/j.biocontrol.2023.105221 URL |
[20] |
Liu L, Galileya Medison R, Zheng TW, et al. Biocontrol potential of Bacillus amyloliquefaciens YZU-SG146 from Fraxinus hupehensis against Verticillium wilt of cotton[J]. Biol Contr, 2023, 183: 105246.
doi: 10.1016/j.biocontrol.2023.105246 URL |
[21] | Bidima MGS, Chtaina N, Ezzahiri B, et al. Antifungal activity of bioactive compounds produced by the endophyte Bacillus velezensis NC318 against the soil borne pathogen Sclerotium rolfsii Sacc[J]. Journal of Plant Protection Research, 2022, 62(4):326-333. |
[22] |
Luo L, Zhao CZ, Wang ET, et al. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: an overview for its mechanisms[J]. Microbiol Res, 2022, 259: 127016.
doi: 10.1016/j.micres.2022.127016 URL |
[23] |
Card S, Johnson L, Teasdale S, et al. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents[J]. FEMS Microbiol Ecol, 2016, 92(8): fiw114.
doi: 10.1093/femsec/fiw114 URL |
[24] |
Kim H, Mohanta TK, Park YH, et al. Complete genome sequence of the mountain-cultivated ginseng endophyte Burkholderia stabilis and its antimicrobial compounds against ginseng root rot disease[J]. Biol Contr, 2020, 140: 104126.
doi: 10.1016/j.biocontrol.2019.104126 URL |
[25] |
Mohamadpoor M, Amini J, Ashengroph M, et al. Evaluation of biocontrol potential of Achromobacter xylosoxidans strain CTA8689 against common bean root rot[J]. Physiol Mol Plant Pathol, 2022, 117: 101769.
doi: 10.1016/j.pmpp.2021.101769 URL |
[26] |
Dimkić I, Janakiev T, Petrović M, et al. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review[J]. Physiol Mol Plant Pathol, 2022, 117: 101754.
doi: 10.1016/j.pmpp.2021.101754 URL |
[27] | Mehnaz S. Rhizotrophs: plant growth promotion to bioremediation[M]. Sigapore: Spinger, 2017. |
[28] |
Gu SH, Wei Z, Shao ZY, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nat Microbiol, 2020, 5(8): 1002-1010.
doi: 10.1038/s41564-020-0719-8 pmid: 32393858 |
[29] |
Niu B, Wang WX, Yuan ZB, et al. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease[J]. Front Microbiol, 2020, 11: 585404.
doi: 10.3389/fmicb.2020.585404 URL |
[30] |
Jin MR, Liu YL, Shi BS, et al. Exogenous IAA improves the seedling growth of Syringa villosa via regulating the endogenous hormones and enhancing the photosynthesis[J]. Sci Hortic, 2023, 308: 111585.
doi: 10.1016/j.scienta.2022.111585 URL |
[31] |
Kloepper JW, Leong J, Teintze M, et al. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria[J]. Nature, 1980, 286(5776): 885-886.
doi: 10.1038/286885a0 |
[1] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[2] | WANG Yu, YIN Ming-shen, YIN Xiao-yan, XI Jia-qin, YANG Jian-wei, NIU Qiu-hong. Screening, Identification and Degradation Characteristics of Nicotine-degrading Bacteria in Lasioderma serricorne [J]. Biotechnology Bulletin, 2023, 39(6): 308-315. |
[3] | REN Pei-dong, PENG Jian-ling, LIU Sheng-hang, YAO Zi-ting, ZHU Gui-ning, LU Guang-tao, LI Rui-fang. Isolation and Identification of a Bacillus safensis Strain GX-H6 and Its Biocontrol Effect on Bacterial Leaf Streak of Rice [J]. Biotechnology Bulletin, 2023, 39(5): 243-253. |
[4] | LI Yi-jun, WU Chen-chen, LI Rui, WANG Zhe, HE Shan-wen, WEI Shan-jun, ZHANG Xiao-xia. Exploring Cultivation Approaches for New Endophytic Bacterial Resource in Oryza sativa [J]. Biotechnology Bulletin, 2023, 39(4): 201-211. |
[5] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[6] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[7] | HE Li-na, FENG Yuan, SHI Hui-min, YE Jian-ren. Screening and Identification of Endophytic Bacteria with Nematicidal Activity Against Bursaphelenchus xylophilus in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(8): 159-166. |
[8] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[9] | WANG Chun-yan, LA Gui-xiao, SU Xiu-hong, LI Meng, DONG Cheng-ming. Screening of Endophytic Bacteria from Rehmannia glutinosa at Different Stages and Analysis of Their Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2022, 38(4): 242-252. |
[10] | YAN Cong-wen, SU Dai-fa, DAI Qing-zhong, ZHANG Zhen-rong, TIAN Yun-xia, DONG Qiong-e, ZHOU Wen-xing, CHEN Shan-yan, TONG Jiang-yun, CUI Xiao-long. Advances in Biological Control of Strawberry Diseases [J]. Biotechnology Bulletin, 2022, 38(12): 73-87. |
[11] | WANG Zhi-shan, LI Ni, WANG Wei-ping, LIU Yang. Research Progress in Endophytic Bacteria in Rice Seeds [J]. Biotechnology Bulletin, 2022, 38(1): 236-246. |
[12] | TANG Jia-cheng, LIANG Yi-min, MA Jia-si, PENG Gui-xiang, TAN Zhi-yuan. Diversity and Growth Promotion of Endophytic Bacteria Isolated from Passiflora edulia Sims [J]. Biotechnology Bulletin, 2022, 38(1): 86-97. |
[13] | ZHANG Jie, XIA Ming-cong, ZHU Wen-qian, LIANG Juan, SUN Run-hong, XU Wen, WU Chao, YANG Li-rong. Screening of Bacillus sp. Against Vegetable Root-knot Nematode and Study on Its Biocontrol Mechanism [J]. Biotechnology Bulletin, 2021, 37(7): 175-182. |
[14] | ZHU Hai-yun, MA Yu, KE Yang, LI Bo. Screening and Identification of an Antagonist Against the Pathogen of Kiwifruit Canker and Its Antifungal Activity to the Phytopathogenic Fungus [J]. Biotechnology Bulletin, 2021, 37(6): 66-72. |
[15] | ZHANG Ya-jing, SONG Mei-yan, ZHANG Yi-jing, FANG Qing, YANG Jun, PENG De-liang, HUANG Wen-kun, PENG Huan, ZHU Ying-bo, KONG Ling-an. Identification of Purpureocillium lilacinum and Trichoderma harzianum Strains for Simultaneously Controlling Cucumber Root Rot and Root-knot Nematode Diseases [J]. Biotechnology Bulletin, 2021, 37(2): 40-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||