Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (7): 224-235.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1251
Previous Articles Next Articles
ZHAO Zhong-juan1(), YANG Kai1, HU Jin-dong1, WEI Yan-li1, LI Ling1, XU Wei-sheng2, LI Ji-shun1()
Received:
2021-09-28
Online:
2022-07-26
Published:
2022-08-09
Contact:
LI Ji-shun
E-mail:zzjfrances@aliyun.com;yewu2@sdas.org
ZHAO Zhong-juan, YANG Kai, HU Jin-dong, WEI Yan-li, LI Ling, XU Wei-sheng, LI Ji-shun. Effects of Trichoderma harzianum ST02 on the Growth of Peppermint and Physicochemical Properties of Root Zone Soil Under Salt Stress[J]. Biotechnology Bulletin, 2022, 38(7): 224-235.
分组Group | 处理方法Processing method | |
---|---|---|
实验组 Experimental group | NaCl处理 NaCl treatment | 椒样薄荷茎段扦插7 d后,用200 mL水浇灌;再7 d后,用200 mmol/L NaCl溶液200 mL浇灌,每隔3 d 进行1次NaCl处理,连续浇灌3次后用正常水浇灌 |
ST02处理 ST02 treatment | 椒样薄荷茎段扦插7 d后,将ST02菌剂用水按1∶100(V∶V)比例混匀(活菌数2×107 CFU/g)制成菌液,用200 mL菌液进行浇灌;ST02处理7 d后,NaCl处理组用NaCl浇灌的同一时间,用正常水浇灌 | |
NaCl+ST02处理 NaCl+ST02 treatment | 椒样薄荷茎段扦插7 d后,将ST02菌剂用水按1∶100(V∶V)比例混匀(活菌数2×107 CFU/g)制成菌液,用200 mL菌液进行浇灌;ST02处理7 d后,用200 mmol/L NaCl溶液200 mL浇灌,每隔3 d进行1次NaCl处理,连续浇灌3次后用正常水浇灌 | |
对照组Control | 实验组用ST02菌液和NaCl处理的同时,用200 mL水浇灌 |
Table 1 Experimental grouping and processing method
分组Group | 处理方法Processing method | |
---|---|---|
实验组 Experimental group | NaCl处理 NaCl treatment | 椒样薄荷茎段扦插7 d后,用200 mL水浇灌;再7 d后,用200 mmol/L NaCl溶液200 mL浇灌,每隔3 d 进行1次NaCl处理,连续浇灌3次后用正常水浇灌 |
ST02处理 ST02 treatment | 椒样薄荷茎段扦插7 d后,将ST02菌剂用水按1∶100(V∶V)比例混匀(活菌数2×107 CFU/g)制成菌液,用200 mL菌液进行浇灌;ST02处理7 d后,NaCl处理组用NaCl浇灌的同一时间,用正常水浇灌 | |
NaCl+ST02处理 NaCl+ST02 treatment | 椒样薄荷茎段扦插7 d后,将ST02菌剂用水按1∶100(V∶V)比例混匀(活菌数2×107 CFU/g)制成菌液,用200 mL菌液进行浇灌;ST02处理7 d后,用200 mmol/L NaCl溶液200 mL浇灌,每隔3 d进行1次NaCl处理,连续浇灌3次后用正常水浇灌 | |
对照组Control | 实验组用ST02菌液和NaCl处理的同时,用200 mL水浇灌 |
Fig.1 Growth and photosynthesis intensity of peppermint under different treatments A:The stem length of peppermint(Mentha×piperita L). B:The fresh weight of peppermint aboveground parts. C:The Pn value of peppermint. D:The chlorophyll content of peppermint leaves.(CK:control check;+NaCl:NaCl treatment;+ST02:ST02 treatment;+NaCl+ST02:NaCl and ST02 combined treatment. The bars are standard error of the mean(n=5),different letters were significantly different according to ANOVA analysis(P<0.05), the same below
Fig.2 Oxidative damage and osmotic regulatory substances contents of peppermint under different treatments A:The malondialdehyde(MDA)content of peppermint leaves. B:The content of soluble protein(SP)in peppermint leaves. C:The content of proline(Pro)in peppermint leaves
Fig.3 Influences of different treatments on peppermint antioxidase activity A:The activity of superoxide dismutase(SOD)in peppermint leaves. B:The activity of peroxidase(POD)in peppermint leaves. C:The activity of catalase(CAT)in peppermint leaves
不同处理 Treatment | PGI1 SL | PGI2 FW | PGI3 Pn | PGI4 SPAD | PGI5 SOD | PGI6 POD | PGI7 CAT | PGCI |
---|---|---|---|---|---|---|---|---|
NaCl | -0.154 | -0.155 | -0.363 | -0.371 | -0.481 | -0.391 | -0.476 | -2.391 |
ST02 | 0.099 | 0.056 | 0.014 | 0.040 | 0.146 | 0.212 | 0.176 | 0.743 |
NaCl+ST02 | 0.007 | -0.024 | 0.011 | 0.037 | -0.146 | 0.061 | 0.029 | -0.025 |
Table 2 Physiological/growth comprehensive index(PGCI)of peppermint under different treatments
不同处理 Treatment | PGI1 SL | PGI2 FW | PGI3 Pn | PGI4 SPAD | PGI5 SOD | PGI6 POD | PGI7 CAT | PGCI |
---|---|---|---|---|---|---|---|---|
NaCl | -0.154 | -0.155 | -0.363 | -0.371 | -0.481 | -0.391 | -0.476 | -2.391 |
ST02 | 0.099 | 0.056 | 0.014 | 0.040 | 0.146 | 0.212 | 0.176 | 0.743 |
NaCl+ST02 | 0.007 | -0.024 | 0.011 | 0.037 | -0.146 | 0.061 | 0.029 | -0.025 |
不同处理 Treatment | pH | EC/(μs·cm-1) | CEC/(cmol·kg-1) | OM/(g·kg-1) | AN/(mg·kg-1) | AP/(mg·kg-1) | AK/(mg·kg-1) |
---|---|---|---|---|---|---|---|
CK | 7.56±0.09b | 182.80±6.02c | 16.13±2.01b | 20.04±3.5a | 99.70±21.69a,b | 26.84±9.02a | 140.22±17.64a |
NaCl | 7.66±0.06a | 406.54±35.10a | 16.72±3.32b | 17.00±4.7a | 87.62±13.83b | 19.38±4.58a | 125.20±15.53a |
ST02 | 7.56±0.05b | 183.28±3.14c | 21.98±3.53a | 21.48±5.9a | 119.05±23.33a,b | 28.78±5.22a | 126.88±14.32a |
NaCl+ST02 | 7.68±0.06a | 335.98±49.07b | 18.28±0.98b | 22.50±6.0a | 128.60±30.96a | 27.18±9.73a | 125.85±14.74a |
Table 3 Physicochemical properties of peppermint root zone soil under different treatments
不同处理 Treatment | pH | EC/(μs·cm-1) | CEC/(cmol·kg-1) | OM/(g·kg-1) | AN/(mg·kg-1) | AP/(mg·kg-1) | AK/(mg·kg-1) |
---|---|---|---|---|---|---|---|
CK | 7.56±0.09b | 182.80±6.02c | 16.13±2.01b | 20.04±3.5a | 99.70±21.69a,b | 26.84±9.02a | 140.22±17.64a |
NaCl | 7.66±0.06a | 406.54±35.10a | 16.72±3.32b | 17.00±4.7a | 87.62±13.83b | 19.38±4.58a | 125.20±15.53a |
ST02 | 7.56±0.05b | 183.28±3.14c | 21.98±3.53a | 21.48±5.9a | 119.05±23.33a,b | 28.78±5.22a | 126.88±14.32a |
NaCl+ST02 | 7.68±0.06a | 335.98±49.07b | 18.28±0.98b | 22.50±6.0a | 128.60±30.96a | 27.18±9.73a | 125.85±14.74a |
Fig. 4 Influences of different treatments on the activities of soil enzyme A:The activity of soil urease. B:The activity of soil saccharase. C:The activity of soil cellulose. D:The activity of soil neutrality phosphatase. E:The activity of soil catalase
Fig.5 Correlation analysis between physiological/growth index of peppermint and physicochemical properties of its root zone soil Abbreviated notes are the same as above
指标Index | pH | EC | CEC | OM | AN | AP | AK | SUE | SSC | SCL | SNEP | SCAT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SL | -0.528* | -0.719** | 0.398 | 0.282 | 0.413 | 0.28 | -0.012 | -0.427 | 0.359 | 0.644* | 0.424 | 0.084 |
FW | -0.253 | -0.735** | 0.546* | 0.669** | 0.333 | 0.562** | 0.334 | 0.358 | 0.478* | 0.574** | 0.451* | 0.065 |
Pn | -0.355 | -0.619** | 0.244 | 0.299 | 0.196 | 0.340 | 0.279 | 0.020 | 0.331 | 0.397 | 0.441 | 0.167 |
SPAD | -0.140 | -0.596** | 0.284 | 0.377 | 0.410 | 0.271 | 0.021 | 0.237 | 0.262 | 0.663** | 0.192 | -0.029 |
MDA | 0.468* | 0.785** | -0.332 | -0.312 | -0.373 | -0.377 | -0.214 | -0.374 | -0.523* | -0.568** | -0.355 | -0.021 |
SP | 0.500* | 0.844** | -0.209 | -0.241 | -0.326 | -0.433 | -0.116 | -0.309 | -0.537* | -0.514* | -0.317 | 0.029 |
Pro | 0.560* | 0.882** | -0.356 | -0.256 | -0.340 | -0.454* | -0.155 | -0.319 | -0.617** | -0.454* | -0.427 | 0.113 |
SOD | -0.487* | -0.884** | 0.408 | 0.300 | 0.373 | 0.464* | 0.110 | 0.473* | 0.558* | 0.549* | 0.578** | -0.074 |
POD | -0.421 | -0.758** | 0.548* | 0.408 | 0.424 | 0.535* | 0.131 | 0.358 | 0.333 | 0.706** | 0.510* | 0.148 |
CAT | -0.445* | -0.775** | 0.453* | 0.420 | 0.473 | 0.481* | 0.248 | 0.422 | 0.440 | 0.619** | 0.389 | 0.121 |
SUE | -0.214 | -0.323 | 0.480* | 0.000 | 0.445* | 0.050 | -0.167 | 1 | 0.220 | 0.215 | 0.508* | -0.058 |
SSC | -0.669** | -0.813** | -0.020 | 0.151 | -0.191 | 0.229 | 0.388 | 0.220 | 1 | -0.178 | 0.302 | -0.553* |
SCL | -0.094 | -0.215 | 0.327 | 0.413 | 0.560* | 0.433 | -0.103 | 0.215 | -0.178 | 1 | 0.195 | 0.534* |
SNEP | -0.374 | -0.505* | 0.648** | 0.100 | 0.091 | 0.222 | 0.121 | 0.508* | 0.302 | 0.195 | 1 | -0.083 |
SCAT | 0.161 | 0.330 | 0.161 | 0.052 | 0.476* | 0.257 | 0.137 | -0.058 | -0.553* | 0.534* | -0.083 | 1 |
Table 4 Correlation coefficient between physiological/growth indexes of peppermint and physicochemical properties of its root zone soil
指标Index | pH | EC | CEC | OM | AN | AP | AK | SUE | SSC | SCL | SNEP | SCAT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SL | -0.528* | -0.719** | 0.398 | 0.282 | 0.413 | 0.28 | -0.012 | -0.427 | 0.359 | 0.644* | 0.424 | 0.084 |
FW | -0.253 | -0.735** | 0.546* | 0.669** | 0.333 | 0.562** | 0.334 | 0.358 | 0.478* | 0.574** | 0.451* | 0.065 |
Pn | -0.355 | -0.619** | 0.244 | 0.299 | 0.196 | 0.340 | 0.279 | 0.020 | 0.331 | 0.397 | 0.441 | 0.167 |
SPAD | -0.140 | -0.596** | 0.284 | 0.377 | 0.410 | 0.271 | 0.021 | 0.237 | 0.262 | 0.663** | 0.192 | -0.029 |
MDA | 0.468* | 0.785** | -0.332 | -0.312 | -0.373 | -0.377 | -0.214 | -0.374 | -0.523* | -0.568** | -0.355 | -0.021 |
SP | 0.500* | 0.844** | -0.209 | -0.241 | -0.326 | -0.433 | -0.116 | -0.309 | -0.537* | -0.514* | -0.317 | 0.029 |
Pro | 0.560* | 0.882** | -0.356 | -0.256 | -0.340 | -0.454* | -0.155 | -0.319 | -0.617** | -0.454* | -0.427 | 0.113 |
SOD | -0.487* | -0.884** | 0.408 | 0.300 | 0.373 | 0.464* | 0.110 | 0.473* | 0.558* | 0.549* | 0.578** | -0.074 |
POD | -0.421 | -0.758** | 0.548* | 0.408 | 0.424 | 0.535* | 0.131 | 0.358 | 0.333 | 0.706** | 0.510* | 0.148 |
CAT | -0.445* | -0.775** | 0.453* | 0.420 | 0.473 | 0.481* | 0.248 | 0.422 | 0.440 | 0.619** | 0.389 | 0.121 |
SUE | -0.214 | -0.323 | 0.480* | 0.000 | 0.445* | 0.050 | -0.167 | 1 | 0.220 | 0.215 | 0.508* | -0.058 |
SSC | -0.669** | -0.813** | -0.020 | 0.151 | -0.191 | 0.229 | 0.388 | 0.220 | 1 | -0.178 | 0.302 | -0.553* |
SCL | -0.094 | -0.215 | 0.327 | 0.413 | 0.560* | 0.433 | -0.103 | 0.215 | -0.178 | 1 | 0.195 | 0.534* |
SNEP | -0.374 | -0.505* | 0.648** | 0.100 | 0.091 | 0.222 | 0.121 | 0.508* | 0.302 | 0.195 | 1 | -0.083 |
SCAT | 0.161 | 0.330 | 0.161 | 0.052 | 0.476* | 0.257 | 0.137 | -0.058 | -0.553* | 0.534* | -0.083 | 1 |
成分 Component | 特征根 Characteristic root | 方差贡献率 Variance contribution ratio/% | 累计贡献率 Accumulated variance contribution rate/% |
---|---|---|---|
1 | 10.949 | 49.766 | 49.766 |
2 | 2.991 | 13.595 | 63.361 |
3 | 1.929 | 8.770 | 72.131 |
4 | 1.635 | 7.430 | 79.561 |
5 | 1.092 | 4.962 | 84.523 |
Table 5 Principal component analysis
成分 Component | 特征根 Characteristic root | 方差贡献率 Variance contribution ratio/% | 累计贡献率 Accumulated variance contribution rate/% |
---|---|---|---|
1 | 10.949 | 49.766 | 49.766 |
2 | 2.991 | 13.595 | 63.361 |
3 | 1.929 | 8.770 | 72.131 |
4 | 1.635 | 7.430 | 79.561 |
5 | 1.092 | 4.962 | 84.523 |
Fig.6 Principal component analysis of peppermint physiological/growth index and physicochemical properties of root zone soil A:The score for principal component analysis. B:The loading factor of principal component analysis
椒样薄荷生长生理指标 Physiological /growth index of peppermint | 主成分载荷Loading factors | 土壤理化性质 Physicochemical properties of root zone soil | 主成分载荷Loading factor | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | |||
SL | 0.892 | 0.084 | pH | -0.508 | 0.507 | |
FW | 0.879 | 0.079 | EC | -0.751 | 0.579 | |
Pn | 0.752 | 0.004 | SCEC | 0.491 | 0.291 | |
SPAD | 0.789 | 0.196 | OM | 0.418 | 0.289 | |
MDA | -0.938 | 0.021 | AN | 0.407 | 0.610 | |
SP | -0.913 | 0.090 | AP | 0.513 | 0.159 | |
Pro | -0.931 | 0.166 | AK | 0.223 | -0.228 | |
SOD | 0.963 | -0.087 | SUE | 0.439 | 0.022 | |
POD | 0.959 | 0.165 | SSC | 0.535 | -0.777 | |
CAT | 0.953 | 0.088 | SCL | 0.611 | 0.664 | |
SNEP | 0.535 | -0.153 | ||||
SCAT | 0.037 | 0.763 |
Table 6 Loading factors and contribution ratio of principal component analysis for each index
椒样薄荷生长生理指标 Physiological /growth index of peppermint | 主成分载荷Loading factors | 土壤理化性质 Physicochemical properties of root zone soil | 主成分载荷Loading factor | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | |||
SL | 0.892 | 0.084 | pH | -0.508 | 0.507 | |
FW | 0.879 | 0.079 | EC | -0.751 | 0.579 | |
Pn | 0.752 | 0.004 | SCEC | 0.491 | 0.291 | |
SPAD | 0.789 | 0.196 | OM | 0.418 | 0.289 | |
MDA | -0.938 | 0.021 | AN | 0.407 | 0.610 | |
SP | -0.913 | 0.090 | AP | 0.513 | 0.159 | |
Pro | -0.931 | 0.166 | AK | 0.223 | -0.228 | |
SOD | 0.963 | -0.087 | SUE | 0.439 | 0.022 | |
POD | 0.959 | 0.165 | SSC | 0.535 | -0.777 | |
CAT | 0.953 | 0.088 | SCL | 0.611 | 0.664 | |
SNEP | 0.535 | -0.153 | ||||
SCAT | 0.037 | 0.763 |
[1] |
Pascale SD, Maggio A, Barbieri G. Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli[J]. Eur J Agron, 2005, 23(3):254-264.
doi: 10.1016/j.eja.2004.11.007 URL |
[2] | 李亚静, 李冰. 盐渍土改良措施及盐生植物的利用现状[J]. 黑龙江粮食, 2021(5):109-110. |
Li YJ, Li B. Improvement of saline soil and utilization of halophyte resources[J]. Heilongjiang Grain, 2021(5):109-110. | |
[3] |
潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制[J]. 地球科学进展, 2018, 33(4):361-372.
doi: 10.11867/j.issn.1001-8166.2018.04.0361 |
Pan J, Huang CH, Luo J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants[J]. Adv Earth Sci, 2018, 33(4):361-372. | |
[4] |
Li Z, Yang H, Wu X, et al. Some aspects of salinity responses in peppermint(Mentha×piperita L.)to NaCl treatment[J]. Protoplasma, 2015, 252(3):885-899.
doi: 10.1007/s00709-014-0728-7 URL |
[5] |
Zhang FL, Wang YH, Liu C, et al. Trichoderma harzianum mitigates salt stress in cucumber via multiple responses[J]. Ecotoxicol Environ Saf, 2019, 170:436-445.
doi: 10.1016/j.ecoenv.2018.11.084 URL |
[6] |
Pang G, Cai F, Li RX, et al. Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth[J]. Plant Soil, 2017, 416(1/2):181-192.
doi: 10.1007/s11104-017-3178-0 URL |
[7] |
Velmourougane K, Prasanna R, Singh S, et al. Modulating rhizosphere colonisation, plant growth, soil nutrient availability and plant defense enzyme activity through Trichoderma viride-Azotobacter chroococcum biofilm inoculation in chickpea[J]. Plant Soil, 2017, 421(1/2):157-174.
doi: 10.1007/s11104-017-3445-0 URL |
[8] | 顾建芹, 顾晓雯, 黄蕾. 木霉菌剂对玉米产量与土壤养分的影响[J]. 上海农业科技, 2021(1):108-109. |
Gu JQ, Gu XW, Huang L. Effects of Trichoderma agent on maize yield and soil nutrients[J]. Shanghai Agric Sci Technol, 2021(1):108-109. | |
[9] | 陈建爱, 陈为京, 杨焕明, 等. 黄绿木霉T1010对日光温室耕层土壤酶活性的调控效应[J]. 天津农业科学, 2013, 19(1):20-23. |
Chen JA, Chen WJ, Yang HM, et al. Regulating Effect of Trichoderma aureoviride 1010 on Enzyme Activity in the Solar-greenhouse Soil[J]. Tianjin Agriculture Science, 2013, 19(1):20-23. | |
[10] | 刘晴, 董爱荣, 邓世林, 等. 降解菌短密木霉对土壤酶活性的影响[J]. 森林工程, 2019, 35(3):9-12, 19. |
Liu Q, Dong AR, Deng SL, et al. Effects of Trichoderma brevicompactum on Soil Enzyme[J]. For Eng, 2019, 35(3):9-12, 19. | |
[11] | 赵忠娟, 陈凯, 扈进冬, 等. 黄河三角洲湿地木霉分离与耐盐活性鉴定[J]. 科学技术与工程, 2018, 18(31):119-125. |
Zhao ZJ, Chen K, Hu JD, et al. Isolation and salt tolerance study of Trichoderma from the Yellow River Delta wetland[J]. Sci Technol Eng, 2018, 18(31):119-125. | |
[12] | 赵忠娟, 扈进冬, 陈凯, 等. 耐盐木霉ST02对番茄种子和幼苗盐耐受能力的影响[J]. 科学技术与工程, 2021, 21(7):2632-2639. |
Zhao ZJ, Hu JD, Chen K, et al. Effect of salt-tolerant Trichoderma ST02 on salt tolerance of tomato seed and seedling[J]. Sci Technol Eng, 2021, 21(7):2632-2639. | |
[13] |
Fu J, Xiao Y, Wang YF, et al. Trichoderma affects the physiochemical characteristics and bacterial community composition of saline-alkaline maize rhizosphere soils in the cold-region of Heilongjiang Province[J]. Plant Soil, 2019, 436(1/2):211-227.
doi: 10.1007/s11104-018-03916-8 URL |
[14] |
Lv S, Yang AF, Zhang KW, et al. Increase of glycinebetaine synthesis improves drought tolerance in cotton[J]. Mol Breed, 2007, 20(3):233-248.
doi: 10.1007/s11032-007-9086-x URL |
[15] |
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72:248-254.
pmid: 942051 |
[16] |
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies[J]. Plant Soil, 1973, 39(1):205-207.
doi: 10.1007/BF00018060 URL |
[17] |
Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. J Exp Bot, 1981, 32(1):93-101.
doi: 10.1093/jxb/32.1.93 URL |
[18] |
Lurie S, Fallik E, Handros A, et al. The possible involvement of peroxidase in resistance to Botrytis cinerea in heat treated tomato fruit[J]. Physiol Mol Plant Pathol, 1997, 50(3):141-149.
doi: 10.1006/pmpp.1996.0074 URL |
[19] |
Bruce Williamson G, Richardson D. Bioassays for allelopathy:Measuring treatment responses with independent controls[J]. J Chem Ecol, 1988, 14(1):181-187.
doi: 10.1007/BF01022540 pmid: 24277003 |
[20] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. |
Guan SY. Soil enzymes and research methods[M]. Beijing: Agricultural Publishing House, 1986. | |
[21] |
Zhou C, Busso CA, Yang YG, et al. Effect of mixed salt stress on malondialdehyde, proteins and antioxidant enzymes of Leymus chinensis in three leaf colors[J]. Phyton, 2017, 86(1):205-213.
doi: 10.32604/phyton.2017.86.205 URL |
[22] |
Verbruggen N, Hermans C. Proline accumulation in plants:a review[J]. Amino Acids, 2008, 35(4):753-759.
doi: 10.1007/s00726-008-0061-6 pmid: 18379856 |
[23] | 吴晓卫, 付瑞敏, 郭彦钊, 等. 耐盐碱微生物复合菌剂的选育、复配及其对盐碱地的改良效果[J]. 江苏农业科学, 2015, 43(6):346-349. |
Wu XW, Fu RM, Guo YZ, et al. Breeding and redistribution of saline-resistant microbial agents and their improvement effect on saline-alkali soil[J]. Jiangsu Agric Sci, 2015, 43(6):346-349. | |
[24] |
Qin Y, Druzhinina IS, Pan XY, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnol Adv, 2016, 34(7):1245-1259.
doi: 10.1016/j.biotechadv.2016.08.005 URL |
[25] | 逄焕成, 李玉义, 于天一, 等. 不同盐胁迫条件下微生物菌剂对土壤盐分及苜蓿生长的影响[J]. 植物营养与肥料学报, 2011, 17(6):1403-1408. |
Pang HC, Li YY, Yu TY, et al. Effects of microorganism agent on soil salination and alfalfa growth under different salt stress[J]. Plant Nutr Fertil Sci, 2011, 17(6):1403-1408. | |
[26] |
Rodrigues MÂ, Ladeira LC, Arrobas M. Azotobacter-enriched organic manures to increase nitrogen fixation and crop productivity[J]. Eur J Agron, 2018, 93:88-94.
doi: 10.1016/j.eja.2018.01.002 URL |
[27] | 张利, 邱松, 刘建霞, 等. 植物根际土壤生态研究进展[J]. 四川农业科技, 2021(7):39-40. |
Zhang L, Qiu S, Liu JX, et al. The research progress of rhizosphere soil ecology[J]. Sichuan Agric Sci Technol, 2021(7):39-40. |
[1] | WU Qi-man, TIAN Shi-han, LI Yun-ye, PAN Ying-jie, ZHANG Ying. Effects of Microbial Fertilizer on Cucumis sativus L. Growth,Yield and Quality [J]. Biotechnology Bulletin, 2022, 38(1): 125-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||