Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (7): 215-223.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1287
Previous Articles Next Articles
ZHAO Lin-yan1(), GUAN Hui-lin1, WANG Ke-shu1, LU Yan-lei1, XIANG Ping2, WEI Fu-gang3, YANG Shao-zhou3, XU Wu-mei1()
Received:
2021-10-11
Online:
2022-07-26
Published:
2022-08-09
Contact:
XU Wu-mei
E-mail:zhaolinyan1166@163.com;xuwumei@ynnu.edu.cn
ZHAO Lin-yan, GUAN Hui-lin, WANG Ke-shu, LU Yan-lei, XIANG Ping, WEI Fu-gang, YANG Shao-zhou, XU Wu-mei. Effects of Soil Moisture on the Microbial Community Under Continuous Cropping of Panax notoginseng[J]. Biotechnology Bulletin, 2022, 38(7): 215-223.
Fig. 1 Relative abundances of microorganisms at the phyl-um level under different soil moisture treatments A:Fungal community;B:bacterial community,W1,W2,W3,and W4 indicate the soil moisture content at 10%,20%,30%,and 40% respectively,the same below
Fig. 2 Relative abundances of soil representative microbial genera under different soil moisture treatments Different letters indicate significant difference at P<0.05
Fig. 6 NMDS and ANOSIM results of microbial communities under different treatments based on Bray-Curtis distance A and C:The results of NMDS and ANOSIM of fungal community;B and D:the results of NMDS and ANOSIM of bacterial community
土壤理化性质 Soil property | SS | df | s2 | F | P |
---|---|---|---|---|---|
pH | 0.03 | 3 | 0.01 | 1.76 | 0.23 |
EC | 22 856.33 | 3 | 7 618.78 | 1.53 | 0.28 |
NH4+-N | 11.42 | 3 | 3.81 | 17.30 | <0.01 |
NO3--N | 1 099.20 | 3 | 366.40 | 32.27 | <0.01 |
AP | 0.31 | 3 | 0.10 | 0.86 | 0.50 |
AK | 789.12 | 3 | 263.04 | 1.09 | 0.41 |
Table 1 Results of one-way ANOVA for the soil physico-chemical properties under continuous cropping of P. notoginseng with different moisture treatments
土壤理化性质 Soil property | SS | df | s2 | F | P |
---|---|---|---|---|---|
pH | 0.03 | 3 | 0.01 | 1.76 | 0.23 |
EC | 22 856.33 | 3 | 7 618.78 | 1.53 | 0.28 |
NH4+-N | 11.42 | 3 | 3.81 | 17.30 | <0.01 |
NO3--N | 1 099.20 | 3 | 366.40 | 32.27 | <0.01 |
AP | 0.31 | 3 | 0.10 | 0.86 | 0.50 |
AK | 789.12 | 3 | 263.04 | 1.09 | 0.41 |
[1] | 孙雪婷, 李磊, 龙光强, 等. 三七连作障碍研究进展[J]. 生态学杂志, 2015, 34(3):885-893. |
Sun XT, Li L, Long GQ, et al. The progress and prospect on consecutive monoculture problems of Panax notoginseng[J]. Chin J Ecol, 2015, 34(3):885-893. | |
[2] |
朱义族, 李雅颖, 韩继刚, 等. 水分条件变化对土壤微生物的影响及其响应机制研究进展[J]. 应用生态学报, 2019, 30(12):4323-4332.
doi: 10.13287/j.1001-9332.201912.031 |
Zhu YZ, Li YY, Han JG, et al. Effects of changes in water status on soil microbes and their response mechanism:a review[J]. Chin J Appl Ecol, 2019, 30(12):4323-4332. | |
[3] |
Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress:results from a meta-analysis[J]. Ecology, 2012, 93(4):930-938.
doi: 10.1890/11-0026.1 URL |
[4] |
Evans SE, Wallenstein MD. Soil microbial community response to drying and rewetting stress:does historical precipitation regime matter?[J]. Biogeochemistry, 2012, 109:101-116.
doi: 10.1007/s10533-011-9638-3 URL |
[5] |
de Vries FT, Liiri ME, Bjørnlund L, et al. Land use alters the resistance and resilience of soil food webs to drought[J]. Nat Clim Change, 2012, 2(4):276-280.
doi: 10.1038/nclimate1368 URL |
[6] |
Kaisermann A, Maron PA, Beaumelle L, et al. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities[J]. Appl Soil Ecol, 2015, 86:158-164.
doi: 10.1016/j.apsoil.2014.10.009 URL |
[7] | 刘汉军, 陈强, 杨玉国, 等. 犍为县姜瘟病发生与土壤养分及环境因子关系研究[J]. 四川农业大学学报, 2015, 33(1):39-44. |
Liu HJ, Chen Q, Yang YG, et al. Correlation between ginger wilt and soil nutrients and environmental factors in Qianwei County[J]. J Sichuan Agric Univ, 2015, 33(1):39-44. | |
[8] | Thomas S. C. Li. 土壤水分对西洋参生长的影响[J]. 特产研究, 2000, 22(4):60-62. |
Thomas S. C. Li. Effect of soil moisture on the growth of American ginseng[J]. Special Wild Econ Animal Plant Res, 2000, 22(4):60-62. | |
[9] | 刘芳洁. 土壤水分对不同番茄品种筋腐病发生的影响[J]. 农业工程, 2017, 7(6):149-150. |
Liu FJ. Effects of soil water on gluten rot occurrence of different tomato varieties[J]. Agric Eng, 2017, 7(6):149-150. | |
[10] | 王豪吉, 王昆艳, 李双丽, 等. 影响连作地三七存活率的相关土壤因子研究[J]. 时珍国医国药, 2019, 30(12):2982-2984. |
Wang HJ, Wang KY, Li SL, et al. Effects of different soil factors on the survival rate of Panax notoginseng in continuous cropping land[J]. Lishizhen Med Mater Med Res, 2019, 30(12):2982-2984. | |
[11] |
Xia PG, Guo HB, Zhao HG, et al. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents[J]. J Ginseng Res, 2016, 40(1):38-46.
doi: 10.1016/j.jgr.2015.04.003 URL |
[12] | 官会林, 陈昱君, 朱海春, 等. 三七病株根际土壤微生物特征研究[J]. 农业与技术, 2005, 25(6):56-58. |
Guan HL, Chen YJ, Zhu HC, et al. Characteristic study of rhizome-microorganism in soil of diseased Panax notoginseng[J]. Agric Technol, 2005, 25(6):56-58. | |
[13] | 刘莉, 赵安洁, 杨雁, 等. 三七不同间隔年限种植土壤的理化性状比较分析[J]. 西南农业学报, 2013, 26(5):1946-1952. |
Liu L, Zhao AJ, Yang Y, et al. Comparative analysis of physical and chemical properties of Panax notoginseng replant soils in different intervals[J]. Southwest China J Agric Sci, 2013, 26(5):1946-1952. | |
[14] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999:146-195. |
Lu RK. Methods in analyzing agricultural soil chemistry[M]. Beijing: China Agricultural Science and Technology Press, 1999:146-195. | |
[15] |
Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963.
doi: 10.1093/bioinformatics/btr507 URL |
[16] |
Bolger AM, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.
doi: 10.1093/bioinformatics/btu170 URL |
[17] |
Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200.
doi: 10.1093/bioinformatics/btr381 URL |
[18] |
Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998.
doi: 10.1038/nmeth.2604 URL |
[19] |
Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75(23):7537-7541.
doi: 10.1128/AEM.01541-09 URL |
[20] | Oksanen J, Blanchet FG, Friendly M, et al. vegan:Community Ecology Package[CP]. R package version 2. 5-3, 2018. https://CRAN.R-project.org/package=vegan |
[21] | R Core Team. R:A language and environment for statistical computing[CP]. R foundation for statistical computing, Vienna, Austria 2017.URL https://www.R-project.org/ |
[22] |
Kaiser M, Kleber M, Berhe AA. How air-drying and rewetting modify soil organic matter characteristics:an assessment to improve data interpretation and inference[J]. Soil Biol Biochem, 2015, 80:324-340.
doi: 10.1016/j.soilbio.2014.10.018 URL |
[23] |
Norton J, Ouyang Y. Controls and adaptive management of nitrification in agricultural soils[J]. Front Microbiol, 2019, 10:1931.
doi: 10.3389/fmicb.2019.01931 URL |
[24] |
Chen ZM, Ding WX, Xu YH, et al. Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil:Evidences from a 15N tracing study to literature synthesis[J]. Soil Biol Biochem, 2015, 91:65-75.
doi: 10.1016/j.soilbio.2015.08.026 URL |
[25] |
Ou XH, Cui XM, Zhu DW, et al. Cultivation mode of Panax notoginseng causes NH4+ accumulation in planting soil[J]. Arch Agron Soil Sci, 2021, 67(7):960-973.
doi: 10.1080/03650340.2020.1771314 URL |
[26] |
Xie CH, Yokota A. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa[J]. Int J Syst Evol Microbiol, 2006, 56(4):889-893.
doi: 10.1099/ijs.0.64056-0 URL |
[27] |
Singh P, Yadav V, Deshmukh Y, et al. Decoding the link between bacterial diversity and enzymatic activities of soil from Cymbopogon flexuosus growing dryland[J]. Appl Soil Ecol, 2021, 168:104150.
doi: 10.1016/j.apsoil.2021.104150 URL |
[28] |
Leung HT, Maas KR, Wilhelm RC, et al. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils[J]. Isme J, 2016, 10(2):363-375.
doi: 10.1038/ismej.2015.118 URL |
[29] | Baron NC, de Souza Pollo A, Rigobelo EC. Purpureocillium lilacinum and Metarhizium marquandii as plant growth-promoting fungi[J]. PeerJ, 2020, 8:e9005. |
[30] |
Khan SA, Hamayun M, Yoon H, et al. Plant growth promotion and Penicillium citrinum[J]. BMC Microbiol, 2008, 8:231.
doi: 10.1186/1471-2180-8-231 URL |
[31] | Lan XJ, Zhang J, Zong ZF, et al. Evaluation of the biocontrol potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in eggplant[J]. Biomed Res Int, 2017, 2017:4101357. |
[32] |
Larena I, Sabuquillo P, Melgarejo P, et al. Biocontrol of Fusarium and Verticillium wilt of tomato by Penicillium oxalicum under greenhouse and field conditions[J]. J Phytopathol, 2003, 151(9):507-512.
doi: 10.1046/j.1439-0434.2003.00762.x URL |
[33] |
Oritsejafor JJ. Influence of moisture and pH on growth and survival of Fusarium oxysporum f. sp. elaeidis in soil[J]. Trans Br Mycol Soc, 1986, 87(4):511-517.
doi: 10.1016/S0007-1536(86)80091-2 URL |
[34] |
Stover RH. The effect of soil moisture on Fusarium species[J]. Can J Bot, 1953, 31(5):693-697.
doi: 10.1139/b53-050 URL |
[35] |
Miao CP, Mi QL, Qiao XG, et al. Rhizospheric fungi of Panax notoginseng:diversity and antagonism to host phytopathogens[J]. J Ginseng Res, 2016, 40(2):127-134.
doi: 10.1016/j.jgr.2015.06.004 URL |
[36] |
Tan Y, Cui YS, Li HY, et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiol Res, 2017, 194:10-19.
doi: 10.1016/j.micres.2016.09.009 URL |
[37] | Miao CP, Qiao XG, Zheng YK, et al. First report of Fusarium flocciferum causing root rot of Sanqi(Panax notoginseng)in Yunnan, China[J]. Plant Dis, 2015, 99(11):1650. |
[38] | Kredics L, Antal Z, Manczinger L, et al. Influence of environmental parameters on Trichoderma strains with biocontrol potential[J]. Food Technol Biotechnol, 2003, 41(1):37-42. |
[39] |
Chen JL, Liu K, Miao CP, et al. Salt tolerance of endophytic Trichoderma koningiopsis YIM PH30002 and its volatile organic compounds(VOCs)allelopathic activity against phytopathogens associated with Panax notoginseng[J]. Ann Microbiol, 2016, 66(3):981-990.
doi: 10.1007/s13213-015-1171-5 URL |
[40] |
Kredics L, Antal Z, Manczinger L. Influence of water potential on growth, enzyme secretion and in vitro enzyme activities of Trichoderma harzianum at different temperatures[J]. Curr Microbiol, 2000, 40(5):310-314.
pmid: 10706661 |
[41] |
Paula Júnior TJ, Rotter C, Hau B. Effects of soil moisture and sowing depth on the development of bean plants grown in sterile soil infested by Rhizoctonia solani and Trichoderma harzianum[J]. Eur J Plant Pathol, 2007, 119(2):193-202.
doi: 10.1007/s10658-007-9161-5 URL |
[42] | 王勇, 范昌, 陈昱君, 等. 三七的主要病害及防治现状[J]. 人参研究, 2003, 15(1):43-45. |
Wang Y, Fan C, Chen YJ, et al. Main diseases and control status of Panax notoginseng[J]. Renshen Yanjiu, 2003, 15(1):43-45. | |
[43] | 文增叶, 李定华, 代梦瑶, 等. 三七根腐病病原菌尖孢镰刀菌的生物学特性分析[J]. 中药材, 2019, 42(9):1978-1984. |
Wen ZY, Li DH, Dai MY, et al. Biological characteristics of Fusarium oxysporum, A pathogen of Panax notoginseng root rot[J]. J Chin Med Mater, 2019, 42(9):1978-1984. | |
[44] | 王朝梁, 崔秀明, 李忠义, 等. 三七根腐病发生与环境条件关系的研究[J]. 中国中药杂志, 1998, 23(12):714-716. |
Wang CL, Cui XM, Li ZY, et al. Studies on relationship between root rot on Panax notoginseng Burk. F. H. Chen and its environmental conditions[J]. China J Chin Mater Med, 1998, 23(12):714-716. |
[1] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[2] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[3] | LEI Jun, CHEN Qin, DENG Bing, ZHANG Jin-yu, LIU Di-qiu, CUI Xiu-ming, GE Feng. Biosynthesis of Panax notoginseng Saponins Regulated by R2R3-MYB Transcription Factor PnMYB1 [J]. Biotechnology Bulletin, 2022, 38(5): 74-83. |
[4] | ZHAO Lin-yan, GUAN Hui-lin, XIANG Ping, LI Ze-cheng, BAI Yu-long, SONG Hong-chuan, SUN Shi-zhong, XU Wu-mei. Composition Features of Microbial Community in the Rhizospheric Soil of Bletilla striata with Root Rot [J]. Biotechnology Bulletin, 2022, 38(2): 67-74. |
[5] | GAO Hui-hui, JIA Chen-bo, HAN Qin, SU Jian-yu, XU Chun-yan. Microbiological Mechanism of Root Rot of Lycium barbarum Ningqi-7 [J]. Biotechnology Bulletin, 2022, 38(12): 244-251. |
[6] | YAN Hui-lin, LU Guang-xin, DENG Ye, GU Song-song, YAN Cheng-liang, MA Kun, ZHAO Yang-an, ZHANG Hai-juan, WANG Ying-cheng, ZHOU Xue-li, DOU Sheng-yun. Effects of Rhizobium Seed Dressing on the Soil Microbial Community of Grass-legume Mixtures in Alpine Regions [J]. Biotechnology Bulletin, 2022, 38(10): 204-215. |
[7] | CHEN Meng-yan, BAI Jie, KE Wen-can, XU Dong-mei, AI Lin, GUO Xu-sheng. Research Advances in Silage Microbial Communities and Functions [J]. Biotechnology Bulletin, 2021, 37(9): 11-23. |
[8] | MAO Ting, NIU Yong-yan, ZHENG Qun, YANG Tao, MU Yong-song, ZHU Ying, JI Bin, WANG Zhi-ye. Effects of Microbial Inoculants on the Fermentation Quality and Microbial Community Diversity of Alfalfa Silage [J]. Biotechnology Bulletin, 2021, 37(9): 86-94. |
[9] | YUAN Yuan, HUANG Hai-chen, LI Lin, LIU Guo-hui, FU Jun-sheng, WU Xiao-ping. Effect of Lime on Preventing and Controlling Continuous Cropping Obstacle of Ganoderma lingzhi and Analysis of Its Microbial Community [J]. Biotechnology Bulletin, 2021, 37(4): 70-84. |
[10] | ZHAO Xu, WANG Wen-li, LI Juan. Effects of Weathered Coal Additives on the Odor and Microbial Community Diversity During Cow Manure Aerobic Composting [J]. Biotechnology Bulletin, 2021, 37(12): 104-112. |
[11] | TAN Hao, LIU Tian-hai, YAN Shi-jie, YU Yang, JIANG Lin, PENG Wei-hong. Impacts of Morel Cultivation on the Microbial Community and Physiochemical Characteristics in a Substratum of Desert Sand [J]. Biotechnology Bulletin, 2021, 37(11): 166-177. |
[12] | YANG Zong-zheng, ZHAO Xiao-yu, LIU Dan, XU Wen-shuai, WU Zhi-guo. Bioremediation of Cr(VI)-contaminated Farmland Soil by Microbacterium sp. BD6 [J]. Biotechnology Bulletin, 2021, 37(10): 81-90. |
[13] | PAN Feng, HOU Kai, LIU Yun, WU Wei. Review for Research on Polysaccharides Produced by Endophytic Fungi Derived from Plants [J]. Biotechnology Bulletin, 2020, 36(7): 158-169. |
[14] | ZHANG Yong-min, WANG Tian-hui, WANG Ping. Identification and Degradation Characteristics of Microbial Community Degrading Phenanthrene from Surface Sediments [J]. Biotechnology Bulletin, 2020, 36(6): 128-135. |
[15] | XU Guang, WANG Meng-jiao, DENG Bai-wan, GUO Miao-miao. Bacterial Diversity and Community Structure of Rhizosphere Soil of Tea Plants in Different Years of Planting [J]. Biotechnology Bulletin, 2020, 36(3): 124-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||