Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (8): 179-187.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1511
Previous Articles Next Articles
LIU Guang-chao(), YE Qing, CHE yong-mei, LI Ya-hua, AN Dong, LIU Xin()
Received:
2021-12-06
Online:
2022-08-26
Published:
2022-09-14
Contact:
LIU Xin
E-mail:jaysmilly@sina.com;liuxin6080@126.com
LIU Guang-chao, YE Qing, CHE yong-mei, LI Ya-hua, AN Dong, LIU Xin. Screening and Identification of High-efficiency Phosphate Solubilizing Bacteria in Tobacco Rhizosphere and Its Growth-promoting Effects[J]. Biotechnology Bulletin, 2022, 38(8): 179-187.
菌株编号 Strain No. | 有机磷含量Organic phosphorus content /(mg·L-1) | 无机磷含量Inorganic phosphorus content /(mg·L-1) |
---|---|---|
2P1 | 11.210 | 9.260 |
2P10 | 9.260 | 14.490 |
2P14 | 2.620 | 23.250 |
2P23 | 10.210 | 10.690 |
2P24 | 7.750 | 23.920 |
3P25 | 3.040 | 25.330 |
3P28 | 2.890 | 26.190 |
3P29 | 13.380 | 19.830 |
3P33 | 0.000 | 24.870 |
3P37 | 0.000 | 23.520 |
Table 1 Phosphorus solubilizing ability of strain 3P29
菌株编号 Strain No. | 有机磷含量Organic phosphorus content /(mg·L-1) | 无机磷含量Inorganic phosphorus content /(mg·L-1) |
---|---|---|
2P1 | 11.210 | 9.260 |
2P10 | 9.260 | 14.490 |
2P14 | 2.620 | 23.250 |
2P23 | 10.210 | 10.690 |
2P24 | 7.750 | 23.920 |
3P25 | 3.040 | 25.330 |
3P28 | 2.890 | 26.190 |
3P29 | 13.380 | 19.830 |
3P33 | 0.000 | 24.870 |
3P37 | 0.000 | 23.520 |
Fig. 6 Effects of strain 3P29 on tobacco growth CKt:Aseptic processing. CTt:Inoculation with 3P29. 1 represents phosphorus-free Hoagland nutrient solution culture,and 2 represents flower-free whole nutrient solution culture,bar=10 cm
处理Treatment | 株高Height/cm | 叶面积Leaf area/cm2 | 叶片数Number of blades | 茎粗Stem thick/cm |
---|---|---|---|---|
CKt1 | 10.70±0.40 | 304±0.42 | 6.67±0.58 | 0.83±0.03 |
CTt1 | 13.40±0.46** | 370.67±0.55** | 8.67±0.57** | 1.13±0.06** |
CKt2 | 12.23±0.25 | 342.67±0.15 | 8.00±0.35 | 1.03±0.15 |
CTt2 | 17.13±0.32** | 489±0.49** | 11.33±0.49** | 1.33±0.03** |
Table 2 Effects of strain 3P29 on the growth index of tobacco
处理Treatment | 株高Height/cm | 叶面积Leaf area/cm2 | 叶片数Number of blades | 茎粗Stem thick/cm |
---|---|---|---|---|
CKt1 | 10.70±0.40 | 304±0.42 | 6.67±0.58 | 0.83±0.03 |
CTt1 | 13.40±0.46** | 370.67±0.55** | 8.67±0.57** | 1.13±0.06** |
CKt2 | 12.23±0.25 | 342.67±0.15 | 8.00±0.35 | 1.03±0.15 |
CTt2 | 17.13±0.32** | 489±0.49** | 11.33±0.49** | 1.33±0.03** |
处理 Treatment | 地上鲜重 Fresh weight on the ground/g | 地上干重 Dry weight on the ground/g | 地下鲜重 Underground fresh weight/g | 地下干重 Underground dry weight/g |
---|---|---|---|---|
CKt1 | 34.37±0.42 | 3.12±0.03 | 1.30±0.10 | 0.12±0.01 |
CTt1 | 59.63±0.55** | 6.05±0.05** | 2.60±0.10** | 0.27±0.01** |
CKt2 | 53.83±0.15 | 5.45±0.04 | 1.80±0.10 | 0.18±0.01 |
CTt2 | 92.93±0.49** | 9.46±0.02** | 2.70±0.17** | 0.29±0.01** |
Table 3 Effects of strain 3P29 on the biomass of aerial and underground parts of tobacco
处理 Treatment | 地上鲜重 Fresh weight on the ground/g | 地上干重 Dry weight on the ground/g | 地下鲜重 Underground fresh weight/g | 地下干重 Underground dry weight/g |
---|---|---|---|---|
CKt1 | 34.37±0.42 | 3.12±0.03 | 1.30±0.10 | 0.12±0.01 |
CTt1 | 59.63±0.55** | 6.05±0.05** | 2.60±0.10** | 0.27±0.01** |
CKt2 | 53.83±0.15 | 5.45±0.04 | 1.80±0.10 | 0.18±0.01 |
CTt2 | 92.93±0.49** | 9.46±0.02** | 2.70±0.17** | 0.29±0.01** |
Fig. 7 Effects of strain 3P29 on contents of nitrogen,phosphorus and potassium in tobacco leaves **in the figure indicates significant differences at P<0.01 level
[1] |
Hameeda B, Harini G, Rupela OP, et al. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna[J]. Microbiol Res, 2008, 163(2):234-242.
pmid: 16831538 |
[2] |
Yang L, Liu YQ, Cao XY, et al. Community composition specificity and potential role of phosphorus solubilizing bacteria attached on the different bloom-forming cyanobacteria[J]. Microbiol Res, 2017, 205:59-65.
doi: S0944-5013(16)30969-7 pmid: 28942845 |
[3] |
Vejan P, Abdullah R, Khadiran T, et al. Role of plant growth promoting rhizobacteria in agricultural sustainability-A review[J]. Molecules, 2016, 21(5):573.
doi: 10.3390/molecules21050573 URL |
[4] |
Wang Z, Xu GY, Ma PD, et al. Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese cabbage(Brassica campestris ssp. chinensis)[J]. Front Microbiol, 2017, 8:1270.
doi: 10.3389/fmicb.2017.01270 URL |
[5] |
Wu GF, Zhou XP. Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, Eastern China[J]. Water Res, 2005, 39(19):4623-4632.
doi: 10.1016/j.watres.2005.08.036 URL |
[6] |
Ahuja A, Ghosh SB, D’Souza SF. Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization[J]. Bioresour Technol, 2007, 98(17):3408-3411.
doi: 10.1016/j.biortech.2006.10.041 URL |
[7] | Jain R, Saxena J, Sharma V. Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean(Vigna radiata cv. RMG 492)growth[J]. Folia Microbiol(Praha), 2012, 57(6):533-541. |
[8] |
Matos ADM, Gomes ICP, Nietsche S, et al. Phosphate solubilization by endophytic bacteria isolated from banana trees[J]. An Acad Bras Cienc, 2017, 89(4):2945-2954.
doi: 10.1590/0001-3765201720160111 URL |
[9] |
Son HJ, Park GT, Cha MS, et al. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere[J]. Bioresour Technol, 2006, 97(2):204-210.
doi: 10.1016/j.biortech.2005.02.021 URL |
[10] |
Suleman M, Yasmin S, Rasul M, et al. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat[J]. PLoS One, 2018, 13(9):e0204408.
doi: 10.1371/journal.pone.0204408 URL |
[11] |
Prakash J, Arora NK. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L[J]. 3 Biotech, 2019, 9(4):1-9.
doi: 10.1007/s13205-018-1515-5 URL |
[12] |
Ku YL, Xu GY, Tian XH, et al. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6[J]. PLoS One, 2018, 13(11):e0200181.
doi: 10.1371/journal.pone.0200181 URL |
[13] |
Manzoor M, Abbasi MK, Sultan T. Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization-mineralization and plant growth promotion[J]. Geomicrobiol J, 2017, 34(1):81-95.
doi: 10.1080/01490451.2016.1146373 URL |
[14] |
Chakdar H, Dastager SG, Khire JM, et al. Characterization of mineral phosphate solubilizing and plant growth promoting bacteria from termite soil of arid region[J]. 3 Biotech, 2018, 8(11):463.
doi: 10.1007/s13205-018-1488-4 pmid: 30402365 |
[15] | 宁德富, 黄必志. 坡地不同利用方式对土壤氮、磷、钾的影响研究[J]. 云南农业大学学报, 2006, 21(1):61-65. |
Ning DF, Huang BZ. Effect of different utilization types on soil N, P, K content at sloping land[J]. J Yunnan Agric Univ, 2006, 21(1):61-65. | |
[16] |
Kou TJ, Lam SK, Chen DL, et al. Soil urease and catalase responses to ozone pollution are affected by the ozone sensitivity of wheat cultivars[J]. J Agro Crop Sci, 2018, 204(4):424-428.
doi: 10.1111/jac.12268 URL |
[17] |
Wang ZQ, Tan XP, Lu GN, et al. Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity[J]. Ecotoxicol Environ Saf, 2018, 147:266-274.
doi: 10.1016/j.ecoenv.2017.08.050 URL |
[18] | 周瑶, 马红彬, 贾希洋, 等. 不同生态恢复措施下宁夏黄土丘陵典型草原土壤质量评价[J]. 农业工程学报, 2017, 33(18):102-110. |
Zhou Y, Ma HB, Jia XY, et al. Soil quality assessment under different ecological restoration measures in typical steppe in loess hilly area in Ningxia[J]. Trans Chin Soc Agric Eng, 2017, 33(18):102-110. | |
[19] | Wang T, Liu MQ, Li HX. Inoculation of phosphate-solubilizing bacteria Bacillus thuringiensis B1 increases available phosphorus and growth of peanut in acidic soil[J]. Acta Agric Scand Sect B — Soil Plant Sci, 2014, 64(3):252-259. |
[20] |
Scagliola M, Pii Y, Mimmo T, et al. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley(Hordeum vulgare L. )and tomato(Solanum lycopersicon L. )grown under Fe sufficiency and deficiency[J]. Plant Physiol Biochem, 2016, 107:187-196.
doi: 10.1016/j.plaphy.2016.06.002 URL |
[21] |
Telesiński A, Krzyśko-Łupicka T, Cybulska K, et al. Response of soil phosphatase activities to contamination with two types of tar oil[J]. Environ Sci Pollut Res Int, 2018, 25(28):28642-28653.
doi: 10.1007/s11356-018-2912-3 URL |
[22] |
Błońska E, Lasota J, Gruba P. Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand[J]. Ecol Res, 2016, 31(5):655-664.
doi: 10.1007/s11284-016-1375-6 URL |
[23] |
Xun FF, Xie BM, Liu SS, et al. Effect of plant growth-promoting bacteria(PGPR)and arbuscular mycorrhizal fungi(AMF)inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation[J]. Environ Sci Pollut Res Int, 2015, 22(1):598-608.
doi: 10.1007/s11356-014-3396-4 URL |
[24] | 刘丽英, 刘珂欣, 迟晓丽, 等. 枯草芽孢杆菌SNB-86菌肥对连作平邑甜茶幼苗生长及土壤环境的影响[J]. 园艺学报, 2018, 45(10):2008-2018. |
Liu LY, Liu KX, Chi XL, et al. Effects of bioorganic fertilizer SNB-86 special for continuous cropping apple on Malus hupehensis seedlings and soil environment under replant disease condition[J]. Acta Hortic Sin, 2018, 45(10):2008-2018. | |
[25] |
Xiao SY, Luo M, Liu YX, et al. Rhizosphere effect and its associated soil-microbe interactions drive iron fraction dynamics in tidal wetland soils[J]. Sci Total Environ, 2021, 756:144056.
doi: 10.1016/j.scitotenv.2020.144056 URL |
[26] |
Wei F, Zhao LH, Xu XM, et al. Cultivar-dependent variation of the cotton rhizosphere and endosphere microbiome under field conditions[J]. Front Plant Sci, 2019, 10:1659.
doi: 10.3389/fpls.2019.01659 URL |
[27] |
You M, Fang SM, MacDonald J, et al. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth[J]. Microbiol Res, 2020, 233:126395.
doi: 10.1016/j.micres.2019.126395 URL |
[28] |
Dharni S, Srivastava AK, Samad A, et al. Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite(monoterpenes)by rose-scented Geranium(Pelargonium graveolens cv. bourbon)grown on tannery sludge amended soil[J]. Chemosphere, 2014, 117:433-439.
doi: 10.1016/j.chemosphere.2014.08.001 pmid: 25194330 |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[3] | LIU Zhen-yin, DUAN Zhi-zhen, PENG Ting, WANG Tong-xin, WANG Jian. Establishment and Optimization of Virus-induced Gene Silencing System in Bougainvillea peruviana ‘Thimma’ [J]. Biotechnology Bulletin, 2023, 39(7): 123-130. |
[4] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[5] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[6] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[7] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[8] | YU Shi-zhou, CAO Ling-gai, WANG Shi-ze, LIU Yong, BIAN Wen-jie, REN Xue-liang. Development Core SNP Markers for Tobacco Germplasm Genotyping [J]. Biotechnology Bulletin, 2023, 39(3): 89-100. |
[9] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[10] | WANG Ge-ge, QIU Shi-rui, ZHANG Lin-han, YANG Guo-wei, XU Xiao-yun, WANG Ai-ling, ZENG Shu-hua, LIU Ya-jie. Molecular Cytology at Meiosis in Allotriploid Nicotiana tabacum(SST) [J]. Biotechnology Bulletin, 2023, 39(2): 183-192. |
[11] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[12] | CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2023, 39(11): 217-225. |
[13] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[14] | ZHANG Hao-xin, WANG Zhong-hua, NIU bing, GUO Kang, LIU Lu, JIANG Ying, ZHANG Shi-xiang. Screening,Identification and Broad-spectrum Application of Efficient IAA-producing Bacteria Dissolving Phosphorus and Potassium [J]. Biotechnology Bulletin, 2022, 38(5): 100-111. |
[15] | FU Si-tong, SI Wei-jia, LIU Ying, CHENG Tang-ren, WANG Jia, ZHANG Qi-xiang, PAN Hui-tang. Establishing Tobacco Rattle Virus-mediated Gene Silencing System for Primula forbesii [J]. Biotechnology Bulletin, 2022, 38(4): 295-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||