Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 72-83.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0687
Previous Articles Next Articles
LIU Li-hui1(), CHU Jin-hua1, SUI Yu-xin1, CHEN Yang1, CHENG Gu-yue1,2()
Received:
2022-06-04
Online:
2022-09-26
Published:
2022-10-11
Contact:
CHENG Gu-yue
E-mail:1244025002@qq.com;chengguyue@mail.hzau.edu.cn
LIU Li-hui, CHU Jin-hua, SUI Yu-xin, CHEN Yang, CHENG Gu-yue. Research Progress of Main Virulence Factors in Salmonella[J]. Biotechnology Bulletin, 2022, 38(9): 72-83.
毒力岛 SPI | 分泌系统 Secretion system | 主要基因 Major gene | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
SPI-1 | T3SS1 | iacB | 与沙门氏菌入侵宿主上皮细胞引起肠病有关 Associated with host epithelial cell invasion and enteropathy | [ |
avrA | 抑制促炎因子的激活、诱导细胞凋亡以及促进肠上皮细胞增殖及肿瘤形成 Inhibit the activation of proinflammatory factor,induce apoptosis,and promote intestinal epithelial cell proliferation and tumor formation | [ | ||
sipA | 与细胞内入侵有关、促进caspase-3的激活和释放 Associated with intracellular invasion and promote activation and release of caspase-3 | [ | ||
sipB | 促进沙门氏菌诱导的caspase-1依赖型细胞的凋亡、促进IL-18的释放 Promote Salmonella-induced caspase-1-dependent apoptosis and the release of IL-18 | [ | ||
sipC | 与沙门氏菌的易位蛋白有关、促进病原体内化 Associated with translocated proteins in Salmonella,and promote pathogen internalization | [ | ||
sptP | 破坏宿主细胞骨架、促进沙门氏菌在宿主细胞内复制 Destroy host cellular actin cytoskeleton,and promote Salmonella intracellular replication | [ | ||
sopA | E3泛素连接酶,泛素化细菌和/或宿主细胞底物 E3 ubiquitin ligase,ubiquitinating bacterial and/or host cell substrates | [ | ||
sopE | 诱导快速的肌动蛋白细胞骨架重排、膜皱褶和随后的病原体巨胞饮,促进细菌侵袭 Induce rapid actin cytoskeletal rearrangement,membrane ruffling,and subsequent pathogen macropinocytosis,and facilitate bacterial invasion | [ | ||
sopE2 | Cdc42 的鸟嘌呤核苷酸交换因子(通过SPI-1-TTSS) Guanine nucleotide exchange factor for Cdc42(via SPI-1-TTSS) | [ | ||
invB | 维持SopA蛋白的稳定性和易位 Maintain the stability and translocation of SopA protein | [ | ||
sicA | 维持分子伴侣InvF的活动 Maintain the activity of chaperone InvF | [ | ||
sicP | 其编码的蛋白SicP是SptP蛋白的分子伴侣 Its encoded protein SicP is a chaperone of the SptP protein | [ | ||
SPI-2 | T3SS2 | ssrB | 其编码的SsrB蛋白激活转录和解除H-NS介导的抑制作用 Its encoded SsrB protein activates transcription and relieves H-NS-mediated repression | [ |
ssaB | 分泌 sseB 和 sseC 所需 Required for the secretion of sseB and sseC | [ | ||
ssaE | 能识别转运体sseB并通过SPI-2的T3SS控制其分泌 Recognize the transporter sseB and controls its secretion through the T3SS of SPI-2 | [ | ||
sscA | sseC易位子的伴侣 Partner of the sseC translocon | [ | ||
sscB | 诱导沙门氏菌上皮细胞连续丝形成、其编码的蛋白sscB是效应子sseF的伴侣 Induce the continuous filament formation in Salmonella epithelial cells,its encoded protein sscB is a partner of the effector sseF | [ | ||
sseC | SPI-2 转座子 SPI-2 transposon | [ | ||
sseL | 抑制宿主炎性作用,对巨噬细胞具有杀伤作用 Inhibit host inflammatory effects and has killing effect on macrophages | [ | ||
sseFG | 将沙门氏菌液泡(SCV)运输到高尔基网络 Transport Salmonella vacuole(SCV)to the Golgi network | [ | ||
ttr | 与四硫酸还原酶的产生有关 Associated with the production of tetrasulfate reductase | [ | ||
SPI-3 | - | mgtCB | 与菌体在宿主细胞内存活以及在宿主肠道定殖有关 Associated with bacterial survival in host cells and the colonization of the host gut | [ |
misL | 编码自体转运蛋白MisL Code autotransporter MisL | [ | ||
SPI-4 | T1SS | siiE | 会对小鼠和牛产生毒力,与宿主肠道上皮细胞的黏附和侵袭有关 Host virulent in mice and cattle,associated with the adhesion and invasion of host intestinal epithelial cells | [ |
SPI-5 | - | pipA | 刺激促炎细胞因子的信号转导 Stimulate signal transduction of pro-inflammatory cytokines | [ |
pipB | 把kinesin-1募集到SCV中 Recruitment of kinesin-1 into SCV | [ | ||
pipC | 与肠上皮侵袭有关 Associated with the invasion of intestinal epithelium | [ | ||
sopB | 具有抗凋亡活性、与细胞内复制有关、损害宿主的肠上皮屏障功能 Having anti-apoptotic activity,associated with intracellular replication,and impair intestinal epithelial barrier function in the host | [ | ||
sigD | 促进中性粒细胞募集、具有抗凋亡活性、与细胞内复制有关 Facilitate neutrophil recruitment,have anti-apoptotic activity,and associated with intracellular replication | [ | ||
sigE | 与肠上皮侵袭有关 Associated with the invasion of intestinal epithelium | [ | ||
SPI-6 | T6SS | saf | 介导细胞间寡聚体机制、促进细菌聚集、定殖和最终生物膜的形成 Mediate cell-cell oligomer mechanisms,and promote bacterial aggregation,colonization,and ultimately biofilm formation | [ |
tcf | 编码功能性菌毛并作为黏附素、有助于伤寒期间的定殖 Encode functional pili and act as an adhesin,and contribute to colonization during typhoid fever | [ | ||
SPI-19 | T6SS | 无 | 与细菌在宿主巨噬细胞内存活以及鸡的定殖有关 Associated with bacterial survival within host macrophages,colonization of chickens | [ |
Table 1 Salmonella pathogenicity island and encoded secretion system,major gene,and gene function
毒力岛 SPI | 分泌系统 Secretion system | 主要基因 Major gene | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
SPI-1 | T3SS1 | iacB | 与沙门氏菌入侵宿主上皮细胞引起肠病有关 Associated with host epithelial cell invasion and enteropathy | [ |
avrA | 抑制促炎因子的激活、诱导细胞凋亡以及促进肠上皮细胞增殖及肿瘤形成 Inhibit the activation of proinflammatory factor,induce apoptosis,and promote intestinal epithelial cell proliferation and tumor formation | [ | ||
sipA | 与细胞内入侵有关、促进caspase-3的激活和释放 Associated with intracellular invasion and promote activation and release of caspase-3 | [ | ||
sipB | 促进沙门氏菌诱导的caspase-1依赖型细胞的凋亡、促进IL-18的释放 Promote Salmonella-induced caspase-1-dependent apoptosis and the release of IL-18 | [ | ||
sipC | 与沙门氏菌的易位蛋白有关、促进病原体内化 Associated with translocated proteins in Salmonella,and promote pathogen internalization | [ | ||
sptP | 破坏宿主细胞骨架、促进沙门氏菌在宿主细胞内复制 Destroy host cellular actin cytoskeleton,and promote Salmonella intracellular replication | [ | ||
sopA | E3泛素连接酶,泛素化细菌和/或宿主细胞底物 E3 ubiquitin ligase,ubiquitinating bacterial and/or host cell substrates | [ | ||
sopE | 诱导快速的肌动蛋白细胞骨架重排、膜皱褶和随后的病原体巨胞饮,促进细菌侵袭 Induce rapid actin cytoskeletal rearrangement,membrane ruffling,and subsequent pathogen macropinocytosis,and facilitate bacterial invasion | [ | ||
sopE2 | Cdc42 的鸟嘌呤核苷酸交换因子(通过SPI-1-TTSS) Guanine nucleotide exchange factor for Cdc42(via SPI-1-TTSS) | [ | ||
invB | 维持SopA蛋白的稳定性和易位 Maintain the stability and translocation of SopA protein | [ | ||
sicA | 维持分子伴侣InvF的活动 Maintain the activity of chaperone InvF | [ | ||
sicP | 其编码的蛋白SicP是SptP蛋白的分子伴侣 Its encoded protein SicP is a chaperone of the SptP protein | [ | ||
SPI-2 | T3SS2 | ssrB | 其编码的SsrB蛋白激活转录和解除H-NS介导的抑制作用 Its encoded SsrB protein activates transcription and relieves H-NS-mediated repression | [ |
ssaB | 分泌 sseB 和 sseC 所需 Required for the secretion of sseB and sseC | [ | ||
ssaE | 能识别转运体sseB并通过SPI-2的T3SS控制其分泌 Recognize the transporter sseB and controls its secretion through the T3SS of SPI-2 | [ | ||
sscA | sseC易位子的伴侣 Partner of the sseC translocon | [ | ||
sscB | 诱导沙门氏菌上皮细胞连续丝形成、其编码的蛋白sscB是效应子sseF的伴侣 Induce the continuous filament formation in Salmonella epithelial cells,its encoded protein sscB is a partner of the effector sseF | [ | ||
sseC | SPI-2 转座子 SPI-2 transposon | [ | ||
sseL | 抑制宿主炎性作用,对巨噬细胞具有杀伤作用 Inhibit host inflammatory effects and has killing effect on macrophages | [ | ||
sseFG | 将沙门氏菌液泡(SCV)运输到高尔基网络 Transport Salmonella vacuole(SCV)to the Golgi network | [ | ||
ttr | 与四硫酸还原酶的产生有关 Associated with the production of tetrasulfate reductase | [ | ||
SPI-3 | - | mgtCB | 与菌体在宿主细胞内存活以及在宿主肠道定殖有关 Associated with bacterial survival in host cells and the colonization of the host gut | [ |
misL | 编码自体转运蛋白MisL Code autotransporter MisL | [ | ||
SPI-4 | T1SS | siiE | 会对小鼠和牛产生毒力,与宿主肠道上皮细胞的黏附和侵袭有关 Host virulent in mice and cattle,associated with the adhesion and invasion of host intestinal epithelial cells | [ |
SPI-5 | - | pipA | 刺激促炎细胞因子的信号转导 Stimulate signal transduction of pro-inflammatory cytokines | [ |
pipB | 把kinesin-1募集到SCV中 Recruitment of kinesin-1 into SCV | [ | ||
pipC | 与肠上皮侵袭有关 Associated with the invasion of intestinal epithelium | [ | ||
sopB | 具有抗凋亡活性、与细胞内复制有关、损害宿主的肠上皮屏障功能 Having anti-apoptotic activity,associated with intracellular replication,and impair intestinal epithelial barrier function in the host | [ | ||
sigD | 促进中性粒细胞募集、具有抗凋亡活性、与细胞内复制有关 Facilitate neutrophil recruitment,have anti-apoptotic activity,and associated with intracellular replication | [ | ||
sigE | 与肠上皮侵袭有关 Associated with the invasion of intestinal epithelium | [ | ||
SPI-6 | T6SS | saf | 介导细胞间寡聚体机制、促进细菌聚集、定殖和最终生物膜的形成 Mediate cell-cell oligomer mechanisms,and promote bacterial aggregation,colonization,and ultimately biofilm formation | [ |
tcf | 编码功能性菌毛并作为黏附素、有助于伤寒期间的定殖 Encode functional pili and act as an adhesin,and contribute to colonization during typhoid fever | [ | ||
SPI-19 | T6SS | 无 | 与细菌在宿主巨噬细胞内存活以及鸡的定殖有关 Associated with bacterial survival within host macrophages,colonization of chickens | [ |
其他毒力因子 Other virulence factor | 主要基因 Major gene | 功能 Function | 参考文献 Reference |
---|---|---|---|
毒力质粒 Virulence plasmid | spvR | 激活毒力操纵子spvABCD的转录 Activate the transcription of the virulence operon spvABCD | [ |
spvA | 与细菌的多重耐药有关 Associated with multidrug resistance in bacteria | [ | |
spvB | 干扰巨噬细胞铁代谢、促进沙门氏菌的存活和细胞内复制 Interfer with macrophage iron metabolism,and promote Salmonella survival and intracellular replication | [ | |
spvC | 显著促进小鼠早期肠外传播 Significantly promote early parenteral transmission in mice | [ | |
spvD | 负性调节NF-κB信号通路并促进鼠伤寒沙门氏菌血清型的毒力 Negatively regulate NF-κB signaling pathway and promote the virulence of Salmonella typhimurium serotypes | [ | |
鞭毛 Flagella | fliC | 编码沙门氏菌的抗原亚基鞭毛蛋白第一相 Encode the phase 1 flagellar antigens of Salmonella | [ |
fljB | 编码沙门氏菌的抗原亚基鞭毛蛋白第二相 Encode the phase 2 flagellar antigens of Salmonella | [ | |
flpA | 编码沙门氏菌的抗原亚基鞭毛蛋白第三相 Encode the phase 3 flagellar antigens of Salmonella | [ | |
菌毛 Pili | agf | 编码卷曲型聚集性菌毛、促进细菌的黏附和入侵 Encode curly clustered pili,and promote bacterial adhesion and invasion | [ |
bfp | 编码Ⅳ型菌毛、促进感染早期在宿主上皮表面形成黏附菌落 Encode type Ⅳ pili,and promote the formation of adherent colonies on host epithelial surfaces early in infection | [ | |
pil | 编码Ⅳ型菌毛 Encode type Ⅳ pili | [ | |
fim | 影响宿主趋性 Impact host chemotaxis | [ | |
肠毒素 Enterotoxin | stn | 与细菌细胞膜的完整性相关 Associated with integrity of bacterial membrane membranes | [ |
Table 2 Major genes and functions in other virulence factors of Salmonella
其他毒力因子 Other virulence factor | 主要基因 Major gene | 功能 Function | 参考文献 Reference |
---|---|---|---|
毒力质粒 Virulence plasmid | spvR | 激活毒力操纵子spvABCD的转录 Activate the transcription of the virulence operon spvABCD | [ |
spvA | 与细菌的多重耐药有关 Associated with multidrug resistance in bacteria | [ | |
spvB | 干扰巨噬细胞铁代谢、促进沙门氏菌的存活和细胞内复制 Interfer with macrophage iron metabolism,and promote Salmonella survival and intracellular replication | [ | |
spvC | 显著促进小鼠早期肠外传播 Significantly promote early parenteral transmission in mice | [ | |
spvD | 负性调节NF-κB信号通路并促进鼠伤寒沙门氏菌血清型的毒力 Negatively regulate NF-κB signaling pathway and promote the virulence of Salmonella typhimurium serotypes | [ | |
鞭毛 Flagella | fliC | 编码沙门氏菌的抗原亚基鞭毛蛋白第一相 Encode the phase 1 flagellar antigens of Salmonella | [ |
fljB | 编码沙门氏菌的抗原亚基鞭毛蛋白第二相 Encode the phase 2 flagellar antigens of Salmonella | [ | |
flpA | 编码沙门氏菌的抗原亚基鞭毛蛋白第三相 Encode the phase 3 flagellar antigens of Salmonella | [ | |
菌毛 Pili | agf | 编码卷曲型聚集性菌毛、促进细菌的黏附和入侵 Encode curly clustered pili,and promote bacterial adhesion and invasion | [ |
bfp | 编码Ⅳ型菌毛、促进感染早期在宿主上皮表面形成黏附菌落 Encode type Ⅳ pili,and promote the formation of adherent colonies on host epithelial surfaces early in infection | [ | |
pil | 编码Ⅳ型菌毛 Encode type Ⅳ pili | [ | |
fim | 影响宿主趋性 Impact host chemotaxis | [ | |
肠毒素 Enterotoxin | stn | 与细菌细胞膜的完整性相关 Associated with integrity of bacterial membrane membranes | [ |
报道年份 Reported Year | 国家 Country | 来源 Origin | 毒力基因检出率 Detection rate of virulence gene | 与毒力的关系 Relationship to virulence | 参考文献 Reference |
---|---|---|---|---|---|
2021 | 中国-山东(n=60) Shandong Province,China | 鸭胚 Duck embryo | 毒力岛基因:invA、sipC、sipA、sopA、ssaB、orf319、pipC、misL均为100% 毒力质粒基因:spvA、spvB、spvC、spvD、spvR均>50% 菌毛基因:sefA(38%) 肠毒素:stn为100% | 与毒力基因的数量呈正相关 Positive correlation with the number of virulence genes | [ |
2021 | 伊朗(n=27) Iran | 人 Human | 毒力岛基因:invA、sipA、sopB、sopE2和hilA均为100%;sopE、ssrA和ssaR均>90% 肠毒素基因:stn>90% | 与毒力基因呈正相关 Positive association with virulence genes | [ |
2020 | 中国-广西 (n=55) Guangxi Province,China | 鸡 Chicken | 毒力岛基因:ttrB、hilA、sopB、sopA、rhuM、siiE、spi4H、sipA、sseL和sipB均>80.00%;pipC、ssaB、misL、prgk、rmbA、iacP、ssrA、mgtC、invH 和orf319为50.00%-80.00%;sugR、avrA、sopD和siiD为20.00%-50.00%;ssaQ和sifA为0.00-20.00% 毒力质粒基因:spvR、spvA、spvB、spvC、spvD均>60.00% | 与毒力基因的数量呈正相关 Positive correlation with the number of virulence genes | [ |
2018 | 中国-四川(n=156) Sichuan Province,China | 鸭 Duck | 毒力岛基因:avr A、ssa Q和 mgt C均>90.0%;sii D和sop B均>80.0%;sop E 为0% 毒力质粒基因:spv R>80.0%;spv B 和 spv C 均>10% Virulence island genes:avr A,ssa Q and mgt C > 90.0%;sii D and sop B > 80.0%;sop E 0% Virulence plasmid genes:spv R > 80.0%;spv B and spv C > 10%; | 与毒力基因呈正相关 Positive association with virulence genes | [ |
2016 | 英国 (n=95) Britain | 鸡 Chicken | 105个毒力岛基因和毒力质粒基因中:40个为100%,2个为0%,63个为0-100% | 与毒力基因的数量呈正相关 Positive correlation with the number of virulence genes | [ |
2014 | 中国-黑龙江 (n=44) Heilongjiang Province,China | 鸡 Chicken | 毒力岛基因:sopA(95.5%)、invJ、virK、sipA、ssaB、misL、orf319和pipC为0% 毒力质粒基因:spvC(68.2%) 菌毛基因:fimA(82%) 肠毒素基因:stn(0%) | 与毒力基因的种类呈正相关 Positive correlation with species of virulence genes | [ |
2013 | 中国-安徽 (n=7) Anhui Province,China | 鸡 Chicken | 毒力岛基因:sscA、sseC、sseD和sseE为100%;sseC(51.14%) 毒力质粒基因:spvA、spvB、spvC、spvD和spvR为14.29% | 与毒力基因的分布存在相关性 Correlation with distribution of virulence genes | [ |
2013 | 中国-黑龙江 (n=44) Heilongjiang Province,China | 鸡 Chicken | 毒力岛基因:invJ、virK、sipA、ssaB、misL、orf319、pipC为100%;sopA(95.5%) 毒力质粒基因:spvC(68.2%) | 与毒力基因呈正相关 Positive association with virulence genes | [ |
Table 3 Prevalence of Salmonella virulence genes at home and abroad and their relationship with virulence
报道年份 Reported Year | 国家 Country | 来源 Origin | 毒力基因检出率 Detection rate of virulence gene | 与毒力的关系 Relationship to virulence | 参考文献 Reference |
---|---|---|---|---|---|
2021 | 中国-山东(n=60) Shandong Province,China | 鸭胚 Duck embryo | 毒力岛基因:invA、sipC、sipA、sopA、ssaB、orf319、pipC、misL均为100% 毒力质粒基因:spvA、spvB、spvC、spvD、spvR均>50% 菌毛基因:sefA(38%) 肠毒素:stn为100% | 与毒力基因的数量呈正相关 Positive correlation with the number of virulence genes | [ |
2021 | 伊朗(n=27) Iran | 人 Human | 毒力岛基因:invA、sipA、sopB、sopE2和hilA均为100%;sopE、ssrA和ssaR均>90% 肠毒素基因:stn>90% | 与毒力基因呈正相关 Positive association with virulence genes | [ |
2020 | 中国-广西 (n=55) Guangxi Province,China | 鸡 Chicken | 毒力岛基因:ttrB、hilA、sopB、sopA、rhuM、siiE、spi4H、sipA、sseL和sipB均>80.00%;pipC、ssaB、misL、prgk、rmbA、iacP、ssrA、mgtC、invH 和orf319为50.00%-80.00%;sugR、avrA、sopD和siiD为20.00%-50.00%;ssaQ和sifA为0.00-20.00% 毒力质粒基因:spvR、spvA、spvB、spvC、spvD均>60.00% | 与毒力基因的数量呈正相关 Positive correlation with the number of virulence genes | [ |
2018 | 中国-四川(n=156) Sichuan Province,China | 鸭 Duck | 毒力岛基因:avr A、ssa Q和 mgt C均>90.0%;sii D和sop B均>80.0%;sop E 为0% 毒力质粒基因:spv R>80.0%;spv B 和 spv C 均>10% Virulence island genes:avr A,ssa Q and mgt C > 90.0%;sii D and sop B > 80.0%;sop E 0% Virulence plasmid genes:spv R > 80.0%;spv B and spv C > 10%; | 与毒力基因呈正相关 Positive association with virulence genes | [ |
2016 | 英国 (n=95) Britain | 鸡 Chicken | 105个毒力岛基因和毒力质粒基因中:40个为100%,2个为0%,63个为0-100% | 与毒力基因的数量呈正相关 Positive correlation with the number of virulence genes | [ |
2014 | 中国-黑龙江 (n=44) Heilongjiang Province,China | 鸡 Chicken | 毒力岛基因:sopA(95.5%)、invJ、virK、sipA、ssaB、misL、orf319和pipC为0% 毒力质粒基因:spvC(68.2%) 菌毛基因:fimA(82%) 肠毒素基因:stn(0%) | 与毒力基因的种类呈正相关 Positive correlation with species of virulence genes | [ |
2013 | 中国-安徽 (n=7) Anhui Province,China | 鸡 Chicken | 毒力岛基因:sscA、sseC、sseD和sseE为100%;sseC(51.14%) 毒力质粒基因:spvA、spvB、spvC、spvD和spvR为14.29% | 与毒力基因的分布存在相关性 Correlation with distribution of virulence genes | [ |
2013 | 中国-黑龙江 (n=44) Heilongjiang Province,China | 鸡 Chicken | 毒力岛基因:invJ、virK、sipA、ssaB、misL、orf319、pipC为100%;sopA(95.5%) 毒力质粒基因:spvC(68.2%) | 与毒力基因呈正相关 Positive association with virulence genes | [ |
[1] |
Sırıken B. Salmonella pathogenicity islands[J]. Mikrobiyol Bul, 2013, 47(1):181-188.
pmid: 23390917 |
[2] |
Cheng RA, Eade CR, Wiedmann M. Embracing diversity:differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of nontyphoidal Salmonella as a foodborne pathogen[J]. Front Microbiol, 2019, 10:1368.
doi: 10.3389/fmicb.2019.01368 URL |
[3] |
Lou L, Zhang P, Piao R, et al. Salmonella pathogenicity island 1(SPI-1)and its complex regulatory network[J]. Front Cell Infect Microbiol, 2019, 9:270.
doi: 10.3389/fcimb.2019.00270 URL |
[4] |
Zhang Y, Higashide WM, McCormick BA, et al. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase[J]. Mol Microbiol, 2006, 62(3):786-793.
pmid: 17076670 |
[5] |
Lim JS, Shin M, Kim HJ, et al. Caveolin-1 mediates Salmonella invasion via the regulation of SopE-dependent Rac1 activation and actin reorganization[J]. J Infect Dis, 2014, 210(5):793-802.
doi: 10.1093/infdis/jiu152 URL |
[6] |
Eswarappa SM, Janice J, Balasundaram SV, et al. Host-specificity of Salmonella enterica serovar Gallinarum:Insights from comparative genomics[J]. Infect Genet Evol, 2009, 9(4):468-473.
doi: 10.1016/j.meegid.2009.01.004 pmid: 19454277 |
[7] |
Ehrbar K, Hapfelmeier S, Stecher B, et al. InvB is required for type III-dependent secretion of SopA in Salmonella enterica serovar Typhimurium[J]. J Bacteriol, 2004, 186(4):1215-1219.
doi: 10.1128/JB.186.4.1215-1219.2004 URL |
[8] |
Darwin KH, Miller VL. The putative invasion protein chaperone SicA acts together with InvF to activate the expression of Salmonella typhimurium virulence genes[J]. Mol Microbiol, 2000, 35(4):949-960.
pmid: 10692170 |
[9] |
Zhou D, Galán J. Salmonella entry into host cells:the work in concert of type III secreted effector proteins[J]. Microbes Infect, 2001, 3(14-15):1293-1298.
pmid: 11755417 |
[10] |
Walthers D, Carroll RK, Navarre WW, et al. The response regulator SsrB activates expression of diverse Salmonella pathogenicity island 2 promoters and counters silencing by the nucleoid-associated protein H-NS[J]. Mol Microbiol, 2007, 65(2):477-493.
pmid: 17630976 |
[11] |
Miki T, Shibagaki Y, Danbara H, et al. Functional characterization of SsaE, a novel chaperone protein of the type III secretion system encoded by Salmonella pathogenicity island 2[J]. J Bacteriol, 2009, 191(22):6843-6854.
doi: 10.1128/JB.00863-09 URL |
[12] |
Cooper CA, Mulder DT, Allison SE, et al. The SseC translocon component in Salmonella enterica serovar typhimurium is chaperoned by SscA[J]. BMC Microbiol, 2013, 13:221.
doi: 10.1186/1471-2180-13-221 pmid: 24090070 |
[13] |
Jennings E, Thurston TLM, Holden DW. Salmonella SPI-2 type III secretion system effectors:molecular mechanisms and physiological consequences[J]. Cell Host Microbe, 2017, 22(2):217-231.
doi: S1931-3128(17)30292-5 pmid: 28799907 |
[14] |
Cerny O, Holden DW. Salmonella SPI-2 type III secretion system-dependent inhibition of antigen presentation and T cell function[J]. Immunol Lett, 2019, 215:35-39.
doi: 10.1016/j.imlet.2019.01.006 URL |
[15] |
Sun H, Kamanova J, Lara-Tejero M, et al. A family of Salmonella type III secretion effector proteins selectively targets the NF-κB signaling pathway to preserve host homeostasis[J]. PLoS Pathog, 2016, 12(3):e1005484.
doi: 10.1371/journal.ppat.1005484 URL |
[16] | Bertelsen LS, Paesold G, Marcus SL, et al. Modulation of chloride secretory responses and barrier function of intestinal epithelial cells by the Salmonella effector protein SigD[J]. Am J Physiol Cell Physiol, 2004, 287(4):C939-C948. |
[17] |
Zeng LH, Zhang L, Wang PR, et al. Structural basis of host recognition and biofilm formation by Salmonella Saf pili[J]. eLife, 2017, 6:e28619.
doi: 10.7554/eLife.28619 URL |
[18] | Leclerc JM, Quevillon EL, Houde Y, et al. Regulation and production of Tcf, a cable-like fimbriae from Salmonella enterica serovar Typhi[J]. Microbiology(Reading), 2016, 162(5):777-788. |
[19] |
Lerminiaux NA, MacKenzie KD, Cameron ADS. Salmonella Pathogenicity Island 1(SPI-1):the evolution and stabilization of a core genomic type three secretion system[J]. Microorganisms, 2020, 8(4):576.
doi: 10.3390/microorganisms8040576 URL |
[20] | Jiang LY, Li XM, Lv RX, et al. LoiA directly represses lon gene expression to activate the expression of Salmonella pathogenicity island-1 genes[J]. Res Microbiol, 2019, 170(3):131-137. |
[21] | Aurass P, Düvel J, Karste S, et al. glnA truncation in Salmonella enterica results in a small colony variant phenotype, attenuated host cell entry, and reduced expression of flagellin and SPI-1-associated effector genes[J]. Appl Environ Microbiol, 2018, 84(2):e01838-e01817. |
[22] |
Zhang Y, Liu Y, Wang TT, et al. Natural compound sanguinarine chloride targets the type III secretion system of Salmonella enterica serovar Typhimurium[J]. Biochem Biophys Rep, 2018, 14:149-154.
doi: 10.1016/j.bbrep.2018.04.011 pmid: 29761161 |
[23] | Bourgeois JS, Zhou DG, Thurston TLM, et al. Methylthioadenosine suppresses Salmonella virulence[J]. Infect Immun, 2018, 86(9):e00429-e00418. |
[24] |
Zhao XC, Tang XD, Guo N, et al. Biochanin a enhances the defense against Salmonella enterica infection through AMPK/ULK1/mTOR-mediated autophagy and extracellular traps and reversing SPI-1-dependent macrophage(MΦ)M2 polarization[J]. Front Cell Infect Microbiol, 2018, 8:318.
doi: 10.3389/fcimb.2018.00318 URL |
[25] |
Wang MY, Qazi IH, Wang LL, et al. Salmonella virulence and immune escape[J]. Microorganisms, 2020, 8(3):407.
doi: 10.3390/microorganisms8030407 URL |
[26] |
Dos Santos AMP, Ferrari RG, Conte-Junior CA. Type three secretion system in Salmonella typhimurium:the key to infection[J]. Genes Genomics, 2020, 42(5):495-506.
doi: 10.1007/s13258-020-00918-8 URL |
[27] |
Kim JS, Liu L, Davenport B, et al. Oxidative stress activates transcription of Salmonella pathogenicity island-2 genes in macrophages[J]. J Biol Chem, 2022, 298(7):102130.
doi: 10.1016/j.jbc.2022.102130 URL |
[28] |
Pérez-Morales D, Banda MM, Chau NYE, et al. The transcriptional regulator SsrB is involved in a molecular switch controlling virulence lifestyles of Salmonella[J]. PLoS Pathog, 2017, 13(7):e1006497.
doi: 10.1371/journal.ppat.1006497 URL |
[29] | Jiang LY, Wang PS, Li XM, et al. PagR mediates the precise regulation of Salmonella pathogenicity island 2 gene expression in response to magnesium and phosphate signals in Salmonella typhimurium[J]. Cell Microbiol, 2020, 22(2):e13125. |
[30] | Wang S, Yang D, Wu X, et al. Autotransporter MisL of Salmonella enterica serotype Typhimurium facilitates bacterial aggregation and biofilm formation[J]. FEMS Microbiol Lett, 2018 Sep 1, 365(17). |
[31] |
Choi S, Choi E, Cho YJ, et al. The Salmonella virulence protein MgtC promotes phosphate uptake inside macrophages[J]. Nat Commun, 2019, 10:3326.
doi: 10.1038/s41467-019-11318-2 URL |
[32] |
Männe C, Takaya A, Yamasaki Y, et al. Salmonella SiiE prevents an efficient humoral immune memory by interfering with IgG+ plasma cell persistence in the bone marrow[J]. PNAS, 2019, 116(15):7425-7430.
doi: 10.1073/pnas.1818242116 URL |
[33] |
Kiss T, Morgan E, Nagy G. Contribution of SPI-4 genes to the virulence of Salmonella enterica[J]. FEMS Microbiol Lett, 2007, 275(1):153-159.
doi: 10.1111/j.1574-6968.2007.00871.x URL |
[34] |
Takemura M, Haneda T, Idei H, et al. A Salmonella type III effector, PipA, works in a different manner than the PipA family effectors GogA and GtgA[J]. PLoS One, 2021, 16(3):e0248975.
doi: 10.1371/journal.pone.0248975 URL |
[35] |
Hu GQ, Song PX, Chen W, et al. Cirtical role for Salmonella effector SopB in regulating inflammasome activation[J]. Mol Immunol, 2017, 90:280-286.
doi: 10.1016/j.molimm.2017.07.011 URL |
[36] |
Truong D, Boddy KC, Canadien V, et al. Salmonella exploits host Rho GTPase signalling pathways through the phosphatase activity of SopB[J]. Cell Microbiol, 2018, 20(10):e12938.
doi: 10.1111/cmi.12938 URL |
[37] |
Steele-Mortimer O, Knodler LA, Marcus SL, et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector SigD[J]. J Biol Chem, 2000, 275(48):37718-37724.
doi: 10.1074/jbc.M008187200 pmid: 10978351 |
[38] |
Sibinelli-Sousa S, Hespanhol JT, Nicastro GG, et al. A family of T6SS antibacterial effectors related to l, d-transpeptidases targets the peptidoglycan[J]. Cell Rep, 2020, 31(12):107813.
doi: 10.1016/j.celrep.2020.107813 URL |
[39] |
Nguyen VS, Douzi B, Durand E, et al. Towards a complete structural deciphering of type VI secretion system[J]. Curr Opin Struct Biol, 2018, 49:77-84.
doi: 10.1016/j.sbi.2018.01.007 URL |
[40] | Sana TG, Flaugnatti N, Lugo KA, et al. Salmonella typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut[J]. PNAS, 2016, 113(34):E5044-E5051. |
[41] |
Brunet YR, Khodr A, Logger L, et al. H-NS silencing of the Salmonella pathogenicity island 6-encoded type VI secretion system limits Salmonella enterica serovar Typhimurium interbacterial killing[J]. Infect Immun, 2015, 83(7):2738-2750.
doi: 10.1128/IAI.00198-15 URL |
[42] |
Ray S, Pandey NK, Kushwaha GS, et al. Structural investigation on SPI-6-associated Salmonella typhimurium VirG-like stress protein that promotes pathogen survival in macrophages[J]. Protein Sci, 2022, 31(4):835-849.
doi: 10.1002/pro.4272 URL |
[43] |
Xian HH, Yuan Y, Yin C, et al. The SPI-19 encoded T6SS is required for Salmonella Pullorum survival within avian macrophages and initial colonization in chicken dependent on inhibition of host immune response[J]. Vet Microbiol, 2020, 250:108867.
doi: 10.1016/j.vetmic.2020.108867 URL |
[44] |
Passaris I, Cambré A, Govers SK, et al. Bimodal expression of the Salmonella typhimurium spv operon[J]. Genetics, 2018, 210(2):621-635.
doi: 10.1534/genetics.118.300822 pmid: 30143595 |
[45] |
Gebreyes WA, Thakur S, Dorr P, et al. Occurrence of spvA virulence gene and clinical significance for multidrug-resistant Salmonella strains[J]. J Clin Microbiol, 2009, 47(3):777-780.
doi: 10.1128/JCM.01660-08 URL |
[46] |
Sun LQ, Yang SD, Deng QF, et al. Salmonella effector SpvB disrupts intestinal epithelial barrier integrity for bacterial translocation[J]. Front Cell Infect Microbiol, 2020, 10:606541.
doi: 10.3389/fcimb.2020.606541 URL |
[47] |
Gopinath A, Allen TA, Bridgwater CJ, et al. The Salmonella type III effector SpvC triggers the reverse transmigration of infected cells into the bloodstream[J]. PLoS One, 2019, 14(12):e0226126.
doi: 10.1371/journal.pone.0226126 URL |
[48] |
Grabe GJ, Zhang Y, Przydacz M, et al. The Salmonella effector SpvD is a cysteine hydrolase with a serovar-specific polymorphism influencing catalytic activity, suppression of immune responses, and bacterial virulence[J]. J Biol Chem, 2016, 291(50):25853-25863.
doi: 10.1074/jbc.M116.752782 URL |
[49] |
McQuiston JR, Parrenas R, Ortiz-Rivera M, et al. Sequencing and comparative analysis of flagellin genes fliC, fljB, and flpA from Salmonella[J]. J Clin Microbiol, 2004, 42(5):1923-1932.
doi: 10.1128/JCM.42.5.1923-1932.2004 pmid: 15131150 |
[50] |
van Asten AJAM, van Dijk JE. Distribution of “classic” virulence factors among Salmonella spp[J]. FEMS Immunol Med Microbiol, 2005, 44(3):251-259.
doi: 10.1016/j.femsim.2005.02.002 URL |
[51] |
Yue M, Rankin SC, Blanchet RT, et al. Diversification of the Salmonella fimbriae:a model of macro- and microevolution[J]. PLoS One, 2012, 7(6):e38596.
doi: 10.1371/journal.pone.0038596 URL |
[52] |
Morris C, Tam CKP, Wallis TS, et al. Salmonella enterica serovar Dublin strains which are Vi antigen-positive use type IVB pili for bacterial self-association and human intestinal cell entry[J]. Microb Pathog, 2003, 35(6):279-284.
doi: 10.1016/j.micpath.2003.08.001 URL |
[53] |
Munhoz DD, Nara JM, Freitas NC, et al. Distribution of major pilin subunit genes among atypical enteropathogenic Escherichia coli and influence of growth media on expression of the ecp operon[J]. Front Microbiol, 2018, 9:942.
doi: 10.3389/fmicb.2018.00942 URL |
[54] | Nakano M, Yamasaki E, Moss J, et al. Study of the Stn protein in Salmonella;a regulator of membrane composition and integrity[J]. Methods Mol Biol, 2015, 1225:127-138. |
[55] | 焦旸, 黄瑞. 沙门菌属质粒毒力基因spv的研究[J]. 国外医学:流行病学. 传染病学分册, 2004(2):119-120, 124. |
Jiao Y, Huang R. The research on Salmonella spp. plasmid virulence spv gene[J]. Foreign Medical Epidemiology Infectious Diseases Volume, 2004(2):119-120, 124. | |
[56] |
Klasa B, Kędzierska AE, Grzymajło K. Pre-growth culture conditions affect type 1 fimbriae-dependent adhesion of Salmonella[J]. Int J Mol Sci, 2020, 21(12):4206.
doi: 10.3390/ijms21124206 URL |
[57] |
Han Y, Lee EJ. Detecting Salmonella Type II flagella production by transmission electron microscopy and immunocytochemistry[J]. J Microbiol, 2020, 58(4):245-251.
doi: 10.1007/s12275-020-9297-y URL |
[58] |
Horstmann JA, Lunelli M, Cazzola H, et al. Methylation of Salmonella typhimurium flagella promotes bacterial adhesion and host cell invasion[J]. Nat Commun, 2020, 11(1):2013.
doi: 10.1038/s41467-020-15738-3 pmid: 32332720 |
[59] | Nakano M, Yamasaki E, Ichinose A, et al. Salmonella enterotoxin(Stn)regulates membrane composition and integrity[J]. Dis Model Mech, 2012, 5(4):515-521. |
[60] | 黄建华, 徐心晶. 鼠伤寒沙门菌肠毒素基因功能与毒力作用的研究[J]. 中华微生物学和免疫学杂志, 2001, 21(1):10-13. |
Huang JH, Xu XJ. Study on effect of enterotoxin gene of Salmonella typhimurium in overall of organism[J]. Chin J Microbiol Immunol, 2001, 21(1):10-13. | |
[61] | 徐爱霞. 鸭胚源沙门氏菌的分离鉴定与毒力基因检测及分析[D]. 泰安: 山东农业大学, 2021. |
Xu AX. Isolation, identification and virulence genes detection and analysis of Salmonella from duck embryos[D]. Tai'an: Shandong Agricultural University, 2021. | |
[62] |
Fardsanei F, Soltan Dallal MM, Zahraei Salehi T, et al. Antimicrobial resistance patterns, virulence gene profiles, and genetic diversity of Salmonella enterica serotype Enteritidis isolated from patients with gastroenteritis in various Iranian cities[J]. Iran J Basic Med Sci, 2021, 24(7):914-921.
doi: 10.22038/ijbms.2021.54019.12142 pmid: 34712421 |
[63] | 施开创, 黎宗强, 屈素洁, 等. 鸡源沙门氏菌(Salmonella)致病基因与致病性的相关性研究[J]. 基因组学与应用生物学, 2020, 39(6):2513-2520. |
Shi KC, Li ZQ, Qu SJ, et al. Analysis on the relationship between virulence genes and pathogenicity of chicken Salmonella isolates[J]. Genom Appl Biol, 2020, 39(6):2513-2520. | |
[64] | 彭峻烽. 肉鸭屠宰链沙门氏菌的污染情况、耐药特征、毒力基因及PFGE分型研究[D]. 雅安: 四川农业大学, 2018. |
Peng JF. Contamination, antimicrobial resistance patterns, virulence gene and pulsed-field gel electrophoresis analysis of Salmonella spp. isolated from duck slaughter chain[D]. Ya'an: Sichuan Agricultural University, 2018. | |
[65] | Card R, Vaughan K, Bagnall M, et al. Virulence characterisation of Salmonella enterica isolates of differing antimicrobial resistance recovered from UK livestock and imported meat samples[J]. Front Microbiol, 2016, 7:640. |
[66] | 王德宁. 鸡源沙门氏菌耐药性、致病性与毒力基因相关性分析[D]. 哈尔滨: 东北农业大学, 2014. |
Wang DN. Correlation analysis among drug-resistance, pathogenicity and virulence genes of Salmonella isolated from chickens[D]. Harbin: Northeast Agricultural University, 2014. | |
[67] | 程琼, 庞瑞亮, 王若晨, 等. 不同源沙门氏菌对小鼠致病力的比较与毒力基因检测[J]. 中国人兽共患病学报, 2013, 29(5):460-465. |
Cheng Q, Pang RL, Wang RC, et al. Comparative study on pathogenicity of Salmonella isolates from different sources of laboratory mice and the detection of their virulence genes[J]. Chin J Zoonoses, 2013, 29(5):460-465. | |
[68] | 刘芳萍, 王德宁, 等. 鸡源沙门氏菌耐药性的分析及毒力基因的检测[J]. 中国兽医科学, 2013, 43(12):1236-1239. |
Liu FP, Wang DN, et al. Analysis of antimicrobial resistance of Salmonella isolated from chickens and detection of virulence genes of isolates[J]. Chin Vet Sci, 2013, 43(12):1236-1239. | |
[69] |
Betancor L, Yim L, Fookes M, et al. Genomic and phenotypic variation in epidemic-spanning Salmonella enterica serovar Enteritidis isolates[J]. BMC Microbiol, 2009, 9:237.
doi: 10.1186/1471-2180-9-237 pmid: 19922635 |
[70] |
Sabbagh SC, Forest CG, Lepage C, et al. So similar, yet so different:uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi[J]. FEMS Microbiol Lett, 2010, 305(1):1-13.
doi: 10.1111/j.1574-6968.2010.01904.x URL |
[71] | Crouse A, Schramm C, Emond-Rheault JG, et al. Combining whole-genome sequencing and multimodel phenotyping to identify genetic predictors of Salmonella virulence[J]. mSphere, 2020, 5(3):e00293-e00220. |
[72] |
Dos Santos AMP, Ferrari RG, Panzenhagen P, et al. Virulence genes identification and characterization revealed the presence of the Yersinia High Pathogenicity Island(HPI)in Salmonella from Brazil[J]. Gene, 2021, 787:145646.
doi: 10.1016/j.gene.2021.145646 URL |
[73] |
Gao RM, Huang HS, Hamel J, et al. Application of a high-throughput targeted sequence AmpliSeq procedure to assess the presence and variants of virulence genes in Salmonella[J]. Microorganisms, 2022, 10(2):369.
doi: 10.3390/microorganisms10020369 URL |
[74] | 刘勃兴, 赵安奇, 张雪佳, 等. 狐源沙门氏菌的致病性及耐药性试验[J]. 动物医学进展, 2021, 42(7):120-124. |
Liu BX, Zhao AQ, Zhang XJ, et al. Pathogenicity and drug resistance tests of Salmonella strains from foxes[J]. Prog Vet Med, 2021, 42(7):120-124. | |
[75] |
Li J, Hao HH, Cheng GY, et al. Microbial shifts in the intestinal microbiota of Salmonella infected chickens in response to enrofloxacin[J]. Front Microbiol, 2017, 8:1711.
doi: 10.3389/fmicb.2017.01711 URL |
[76] | 吴翠蓉, 黄璐璐, 等. 我国猪、鸡源沙门菌和大肠埃希菌的耐药研究进展[J]. 中国抗生素杂志, 2021, 46(6):509-517. |
Wu CR, Huang LL, et al. Research progress on antimicrobial resistance of pig-and chicken-derived Salmonella and Escherichia coli in China[J]. Chin J Antibiot, 2021, 46(6):509-517. | |
[77] | 冯林, 王旭东, 李九彬, 等. 重庆部分羊场沙门氏菌的分离鉴定、耐药表型分析及耐药基因检测[J]. 中国畜牧兽医, 2020, 47(7):2256-2263. |
Feng L, Wang XD, Li JB, et al. Isolation, identification, drug-resistant phenotype analysis and drug resistant gene detection of Salmonella at goat farms in Chongqing[J]. China Animal Husb & Vet Med, 2020, 47(7):2256-2263. | |
[78] | 刘海霞, 钱晶, 杜冬冬, 等. 食源性沙门氏菌的分离鉴定与生物学特性分析[J]. 新疆农垦科技, 2020, 43(12):38-40. |
Liu HX, Qian J, Du DD, et al. Isolation, identification and biological characteristics of foodborne Salmonella[J]. Xinjiang Farm Res Sci Technol, 2020, 43(12):38-40. | |
[79] |
Osman KM, Marouf SH, Zolnikov TR, et al. Isolation and characterization of Salmonella enterica in day-old ducklings in Egypt[J]. Pathog Glob Health, 2014, 108(1):37-48.
doi: 10.1179/2047773213Y.0000000118 URL |
[1] | CHEN Bao-qiang, LI Ying-ying, MA Bo-ya, ROUZHAGULI Malike, YOULITUZI Naibi, SONG Jin-di, LIU Jun, WANG Xi-dong. Functional Analysis of the Type III Secreted Effector Gene aop2 in Acidovorax citrulli [J]. Biotechnology Bulletin, 2023, 39(6): 286-297. |
[2] | Meng Beiqian, Zhang Huiwen, Zhang Guojun, Xu Mingkai, Li Xu, Zhang Chenggong. Comparison of the Superantigen Sensitivity on Staphylococcal Enterotoxins C2 in Guinea Pigs and BALB/c Mice [J]. Biotechnology Bulletin, 2015, 31(9): 224-231. |
[3] | Ling Kong,Ding Shihua, Jin Juan,Wu Xingzhen. Detection of Pathogenic Aeromonas hydrophila in Andrias davidianus by Quadruple PCR [J]. Biotechnology Bulletin, 2014, 0(9): 201-207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||