Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (11): 217-225.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0123
Previous Articles Next Articles
CHE Yong-mei(), LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin()
Received:
2023-02-15
Online:
2023-11-26
Published:
2023-12-20
Contact:
LIU Xin
E-mail:yongmeiche@163.com;liuxin6080@126.com
CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect[J]. Biotechnology Bulletin, 2023, 39(11): 217-225.
水平 Level | 葡萄糖 Glucose/(g·L-1) | 酵母膏 Yeast extract/(g·L-1) | NaCl/(g·L-1) |
---|---|---|---|
1 | 8 | 5 | 2.5 |
2 | 10 | 10 | 4.5 |
3 | 12 | 15 | 6.5 |
Table 1 Factors and levels of orthogonal test
水平 Level | 葡萄糖 Glucose/(g·L-1) | 酵母膏 Yeast extract/(g·L-1) | NaCl/(g·L-1) |
---|---|---|---|
1 | 8 | 5 | 2.5 |
2 | 10 | 10 | 4.5 |
3 | 12 | 15 | 6.5 |
因素Factor | 水平Level | ||
---|---|---|---|
-1 | 1 | ||
pH | 5 | 9 | |
温度 Temperature/oC | 20 | 30 | |
装瓶量 Bottling amount/% | 10 | 30 | |
转速 Rotation speed/(r·min-1) | 130 | 180 | |
接种量 Inoculation amount/% | 1 | 3 |
Table 2 Factors and levels of Plackett-Burman design
因素Factor | 水平Level | ||
---|---|---|---|
-1 | 1 | ||
pH | 5 | 9 | |
温度 Temperature/oC | 20 | 30 | |
装瓶量 Bottling amount/% | 10 | 30 | |
转速 Rotation speed/(r·min-1) | 130 | 180 | |
接种量 Inoculation amount/% | 1 | 3 |
水平 Level | 温度 Temperature/℃ | pH | 转速 Rotation speed/(r·min-1) |
---|---|---|---|
α | 33.4 | 10.4 | 200.5 |
1 | 30 | 9 | 180 |
0 | 25 | 7 | 150 |
-1 | 20 | 5 | 120 |
-α | 16.6 | 3.6 | 99.5 |
Table 3 Factors and levels of CCD
水平 Level | 温度 Temperature/℃ | pH | 转速 Rotation speed/(r·min-1) |
---|---|---|---|
α | 33.4 | 10.4 | 200.5 |
1 | 30 | 9 | 180 |
0 | 25 | 7 | 150 |
-1 | 20 | 5 | 120 |
-α | 16.6 | 3.6 | 99.5 |
Fig. 1 Effects of mixed culture on the abilities of C8 and B4 dissolving potassium, organic and inorganic phosphorus as well as producing auxin The result is the mean ± standard deviation. Different lowercase letters on the column in the figure indicate significant difference between different treatments(P<0.05), the same below
序号 No. | 葡萄糖Glucose(A)/(g·L-1) | 酵母膏Yeast extract(B)/(g·L-1) | NaCl(C)/(g·L-1) | OD600 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1.17 |
2 | 1 | 2 | 2 | 1.28 |
3 | 1 | 3 | 3 | 1.12 |
4 | 2 | 1 | 2 | 1.30 |
5 | 2 | 2 | 3 | 1.35 |
6 | 2 | 3 | 1 | 1.32 |
7 | 3 | 1 | 3 | 1.34 |
8 | 3 | 2 | 1 | 1.27 |
9 | 3 | 3 | 2 | 1.32 |
k1 | 1.27 | 1.28 | 1.28 | |
k2 | 1.30 | 1.30 | 1.31 | |
k3 | 1.25 | 1.27 | 1.23 | |
R | 0.05 | 0.03 | 0.09 |
Table 4 Design and results of orthogonal experiment
序号 No. | 葡萄糖Glucose(A)/(g·L-1) | 酵母膏Yeast extract(B)/(g·L-1) | NaCl(C)/(g·L-1) | OD600 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1.17 |
2 | 1 | 2 | 2 | 1.28 |
3 | 1 | 3 | 3 | 1.12 |
4 | 2 | 1 | 2 | 1.30 |
5 | 2 | 2 | 3 | 1.35 |
6 | 2 | 3 | 1 | 1.32 |
7 | 3 | 1 | 3 | 1.34 |
8 | 3 | 2 | 1 | 1.27 |
9 | 3 | 3 | 2 | 1.32 |
k1 | 1.27 | 1.28 | 1.28 | |
k2 | 1.30 | 1.30 | 1.31 | |
k3 | 1.25 | 1.27 | 1.23 | |
R | 0.05 | 0.03 | 0.09 |
序号 No. | 因素Factor | OD600 | ||||
---|---|---|---|---|---|---|
pH | 温度Temperature/℃ | 装瓶量Bottling volunm/% | 转速Rotating speed/(r·min-1) | 接种量Inoculation amount/% | ||
1 | -1 | 1 | 1 | 1 | -1 | 0.79 |
2 | 1 | -1 | 1 | 1 | -1 | 0.81 |
3 | -1 | 1 | -1 | 1 | 1 | 1.12 |
4 | -1 | 1 | 1 | -1 | 1 | 1.29 |
5 | 1 | -1 | -1 | -1 | 1 | 1.37 |
6 | -1 | -1 | -1 | -1 | -1 | 1.14 |
7 | -1 | -1 | -1 | 1 | -1 | 0.80 |
8 | -1 | -1 | 1 | -1 | 1 | 1.11 |
9 | 1 | 1 | -1 | 1 | 1 | 1.30 |
10 | 1 | -1 | 1 | 1 | 1 | 1.48 |
11 | 1 | 1 | 1 | -1 | -1 | 1.20 |
12 | 1 | 1 | -1 | -1 | -1 | 1.10 |
Table 5 Plackett-Burman design and results
序号 No. | 因素Factor | OD600 | ||||
---|---|---|---|---|---|---|
pH | 温度Temperature/℃ | 装瓶量Bottling volunm/% | 转速Rotating speed/(r·min-1) | 接种量Inoculation amount/% | ||
1 | -1 | 1 | 1 | 1 | -1 | 0.79 |
2 | 1 | -1 | 1 | 1 | -1 | 0.81 |
3 | -1 | 1 | -1 | 1 | 1 | 1.12 |
4 | -1 | 1 | 1 | -1 | 1 | 1.29 |
5 | 1 | -1 | -1 | -1 | 1 | 1.37 |
6 | -1 | -1 | -1 | -1 | -1 | 1.14 |
7 | -1 | -1 | -1 | 1 | -1 | 0.80 |
8 | -1 | -1 | 1 | -1 | 1 | 1.11 |
9 | 1 | 1 | -1 | 1 | 1 | 1.30 |
10 | 1 | -1 | 1 | 1 | 1 | 1.48 |
11 | 1 | 1 | 1 | -1 | -1 | 1.20 |
12 | 1 | 1 | -1 | -1 | -1 | 1.10 |
运行序 Sequence | 温度 Temperature/℃ | pH | 转速Rotational speed/(r·min-1) | OD600 |
---|---|---|---|---|
1 | 1 | -1 | 1 | 1.035 |
2 | -1 | -1 | -1 | 1.028 |
3 | 1 | 1 | 1 | 1.173 |
4 | 0 | 0 | 1 | 1.320 |
5 | 33.409 | 0 | 1 | 1.241 |
6 | 0 | 0 | 99.546 | 1.273 |
7 | 0 | 0 | 1 | 1.350 |
8 | 0 | 0 | 200.454 | 0.984 |
9 | -1 | 1 | -1 | 1.126 |
10 | -1 | 1 | 1 | 1.011 |
11 | 0 | 0 | 1 | 1.363 |
12 | 0 | 0 | 1 | 1.285 |
13 | 0 | 10.364 | 1 | 1.118 |
14 | 1 | 1 | -1 | 1.329 |
15 | 1 | -1 | -1 | 1.285 |
16 | 16.591 | 0 | 1 | 0.925 |
17 | 0 | 3.636 | 1 | 1.044 |
18 | 0 | 0 | 1 | 1.387 |
19 | -1 | -1 | 1 | 0.998 |
20 | 0 | 0 | 1 | 1.387 |
Table 6 Results of CCD design
运行序 Sequence | 温度 Temperature/℃ | pH | 转速Rotational speed/(r·min-1) | OD600 |
---|---|---|---|---|
1 | 1 | -1 | 1 | 1.035 |
2 | -1 | -1 | -1 | 1.028 |
3 | 1 | 1 | 1 | 1.173 |
4 | 0 | 0 | 1 | 1.320 |
5 | 33.409 | 0 | 1 | 1.241 |
6 | 0 | 0 | 99.546 | 1.273 |
7 | 0 | 0 | 1 | 1.350 |
8 | 0 | 0 | 200.454 | 0.984 |
9 | -1 | 1 | -1 | 1.126 |
10 | -1 | 1 | 1 | 1.011 |
11 | 0 | 0 | 1 | 1.363 |
12 | 0 | 0 | 1 | 1.285 |
13 | 0 | 10.364 | 1 | 1.118 |
14 | 1 | 1 | -1 | 1.329 |
15 | 1 | -1 | -1 | 1.285 |
16 | 16.591 | 0 | 1 | 0.925 |
17 | 0 | 3.636 | 1 | 1.044 |
18 | 0 | 0 | 1 | 1.387 |
19 | -1 | -1 | 1 | 0.998 |
20 | 0 | 0 | 1 | 1.387 |
来源Source | 自由度Degree of freedom | Seq SS | Adj SS | Adj MS | F | P |
---|---|---|---|---|---|---|
回归 | 9 | 0.439 222 | 0.439 222 | 0.048 802 | 25.01 | 0.000 |
线性 | 3 | 0.195 425 | 0.123 644 | 0.041 215 | 21.12 | 0.000 |
平方 | 3 | 0.234 599 | 0.234 599 | 0.078 200 | 40.07 | 0.000 |
交互作用 | 3 | 0.009 197 | 0.009 197 | 0.003 066 | 1.57 | 0.257 |
残差误差 | 10 | 0.019 517 | 0.019 517 | 0.001 952 | ||
失拟 | 5 | 0.011 442 | 0.011 442 | 0.002 288 | 1.42 | 0.356 |
纯误差 | 5 | 0.008 075 | 0.008 075 | 0.001 615 | ||
合计 | 19 | 0.458 739 |
Table 7 Variance analysis of CCD design
来源Source | 自由度Degree of freedom | Seq SS | Adj SS | Adj MS | F | P |
---|---|---|---|---|---|---|
回归 | 9 | 0.439 222 | 0.439 222 | 0.048 802 | 25.01 | 0.000 |
线性 | 3 | 0.195 425 | 0.123 644 | 0.041 215 | 21.12 | 0.000 |
平方 | 3 | 0.234 599 | 0.234 599 | 0.078 200 | 40.07 | 0.000 |
交互作用 | 3 | 0.009 197 | 0.009 197 | 0.003 066 | 1.57 | 0.257 |
残差误差 | 10 | 0.019 517 | 0.019 517 | 0.001 952 | ||
失拟 | 5 | 0.011 442 | 0.011 442 | 0.002 288 | 1.42 | 0.356 |
纯误差 | 5 | 0.008 075 | 0.008 075 | 0.001 615 | ||
合计 | 19 | 0.458 739 |
Fig. 2 Response surface of the interactive effect of different factors on the biomass of bacteria strain A: Effect of rotating speed and pH on the biomass of bacteria strain. B: Effect of rotating speed and temperature on the biomass of bacteria strain. C: Effect of temperature and pH on the biomass of bacteria strain
Fig. 3 Effect of fermentation optimization on biomass, function of dissolving potassium, inorganic phosphorus and organic phosphorus as well as producing auxinof mixed strains of C8 and B4
[1] | Selvakumar G, Kim K, Hu SJ, et al. Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress[M]// Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. New York: Springer New York, 2013: 115-144. |
[2] | 罗达, 吴正保, 史彦江, 等. 盐胁迫对3种平欧杂种榛幼苗叶片解剖结构及离子吸收、运输与分配的影响[J]. 生态学报, 2022, 42(5): 1876-1888. |
Luo D, Wu ZB, Shi YJ, et al. Effects of salt stress on leaf anatomical structure and ion absorption, transportation and distribution of three Ping'ou hybrid hazelnut seedlings[J]. Acta Ecol Sin, 2022, 42(5): 1876-1888. | |
[3] |
马宜林, 吴广海, 申洪涛, 等. 羊粪有机肥与化肥配施对烤烟生长及土壤肥力特性的影响[J]. 核农学报, 2021, 35(10): 2423-2430.
doi: 10.11869/j.issn.100-8551.2021.10.2423 |
Ma YL, Wu GH, Shen HT, et al. Effects of combined application of sheep manure-derived organic fertilizer and chemical fertilizer on tobacco growth and soil fertility[J]. J Nucl Agric Sci, 2021, 35(10): 2423-2430.
doi: 10.11869/j.issn.100-8551.2021.10.2423 |
|
[4] |
Wang JJ, Li RC, Zhang H, et al. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application[J]. BMC Microbiol, 2020, 20(1): 38.
doi: 10.1186/s12866-020-1708-z pmid: 32085752 |
[5] |
Dellagi A, Quillere I, Hirel B. Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition[J]. J Exp Bot, 2020, 71(15): 4469-4479.
doi: 10.1093/jxb/eraa112 pmid: 32157312 |
[6] |
杨亚东, 王志敏, 曾昭海. 长期施肥和灌溉对土壤细菌数量、多样性和群落结构的影响[J]. 中国农业科学, 2018, 51(2): 290-301.
doi: 10.3864/j.issn.0578-1752.2018.02.009 |
Yang YD, Wang ZM, Zeng ZH. Effects of long-term different fertilization and irrigation managements on soil bacterial abundance, diversity and composition[J]. Sci Agric Sin, 2018, 51(2): 290-301.
doi: 10.3864/j.issn.0578-1752.2018.02.009 |
|
[7] | 韩苗, 朱晓艳, 陈国炜, 等. 解钾菌及其释钾微观机制的研究进展[J]. 土壤学报, 2022, 59(2): 334-348. |
Han M, Zhu XY, Chen GW, et al. Advances on potassium-solubilizing bacteria and their microscopic potassium solubilizing mechanisms[J]. Acta Pedol Sin, 2022, 59(2): 334-348. | |
[8] | Kumar S, Diksha, Sindhu SS, et al. Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability[J]. Curr Res Microb Sci, 2021, 3: 100094. |
[9] |
Jiang HH, Qi PS, Wang T, et al. Role of halotolerant phosphate-solubilising bacteria on growth promotion of peanut(Arachis hypogaea)under saline soil[J]. Ann Appl Biol, 2019, 174(1): 20-30.
doi: 10.1111/aab.2019.174.issue-1 URL |
[10] |
Rajawat MVS, Singh R, Singh D, et al. Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral[J]. Braz J Microbiol, 2020, 51(2): 751-764.
doi: 10.1007/s42770-019-00210-2 pmid: 31898251 |
[11] |
Nacoon S, Jogloy S, Riddech N, et al. Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L[J]. Sci Rep, 2020, 10(1): 4916.
doi: 10.1038/s41598-020-61846-x |
[12] |
Rezakhani L, Motesharezadeh B, Tehrani MM, et al. Effect of silicon and phosphate-solubilizing bacteria on improved phosphorus(P)uptake is not specific to insoluble P-fertilized sorghum(Sorg-hum bicolor L.) plants[J]. J Plant Growth Regul, 2020, 39(1): 239-253.
doi: 10.1007/s00344-019-09978-x |
[13] |
Khan H, Akbar WA, Shah Z, et al. Coupling phosphate-solubilizing bacteria(PSB)with inorganic phosphorus fertilizer improves mungbean(Vigna radiata)phosphorus acquisition, nitrogen fixation, and yield in alkaline-calcareous soil[J]. Heliyon, 2022, 8(3): e09081.
doi: 10.1016/j.heliyon.2022.e09081 URL |
[14] |
Sukweenadhi J, Balusamy SR, Kim YJ, et al. A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng[J]. Front Plant Sci, 2018, 9: 813.
doi: 10.3389/fpls.2018.00813 pmid: 30083171 |
[15] | 刘晓倩, 杜杏蓉, 谭玉娇, 等. 增施不同配比解磷菌、解钾菌生物菌肥对烤烟生长发育和根际土壤酶活性的影响[J]. 云南农业大学学报: 自然科学, 2019, 34(5): 845-851. |
Liu XQ, Du XR, Tan YJ, et al. The effects of different ratios between phosphate-solubilizing bacteria and potassium-solubilizing bacteria fertilizers on the flue-cured tobacco growth and the enzyme activities in the rhizospheric soil[J]. J Yunnan Agric Univ Nat Sci Ed, 2019, 34(5): 845-851. | |
[16] | 胡倡, 李慧明, 伍惠, 等. 解磷菌和根瘤菌复合接种对大豆和紫云英共生固氮的影响[J]. 华中农业大学学报, 2020, 39(4): 38-45. |
Hu C, Li HM, Wu H, et al. Effects of co-inoculation of phosphate-solubilizing bacteria and rhizobium on symbiotic nitrogen fixation of soybean and Astragalus sinensis[J]. J Huazhong Agric Univ, 2020, 39(4): 38-45. | |
[17] |
Wu GF, Zhou XP. Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, Eastern China[J]. Water Res, 2005, 39(19): 4623-4632.
doi: 10.1016/j.watres.2005.08.036 URL |
[18] | 李忠, 蒋次清, 刘巍, 等. 烟草中钾含量测定的研究[J]. 分析科学学报, 2001, 17(1): 60-61. |
Li Z, Jiang CQ, Liu W, et al. A study on determination of potassium in tobacco[J]. J Anal Sci, 2001, 17(1): 60-61. | |
[19] | 姚拓. 高寒地区燕麦根际联合固氮菌研究II固氮菌的溶磷性和分泌植物生长素特性测定[J]. 草业学报, 2004, 13(3): 85-90. |
Yao T. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region II phosphate-solubilizing power and auxin production[J]. Acta Pratacultural Sci, 2004, 13(3): 85-90. | |
[20] |
朱娟娟, 马海军, 张琇, 等. 盐胁迫下解钾菌对枸杞幼苗的促生效应[J]. 应用生态学报, 2021, 32(4): 1289-1297.
doi: 10.13287/j.1001-9332.202104.021 |
Zhu JJ, Ma HJ, Zhang X, et al. Effects of potassium-solubilizing bacteria promoting the growth of Lycium barbarum seedlings under salt stress[J]. Chin J Appl Ecol, 2021, 32(4): 1289-1297. | |
[21] | 孙晓莹, 陈意超, 曹沁, 等. 耐盐菌Pseudomonas brassicacear-um YZX4的筛选、鉴定及其植物促生特性[J]. 应用与环境生物学报, 2019, 25(5): 1133-1138. |
Sun XY, Chen YC, Cao Q, et al. Isolation and identification of halotolerant Pseudomonas brassicacearum YZX4 and its plant growth-promoting traits[J]. Chin J Appl Environ Biol, 2019, 25(5): 1133-1138. | |
[22] |
Yahya M, Islam EU, Rasul M, et al. Differential root exudation and architecture for improved growth of wheat mediated by phosphate solubilizing bacteria[J]. Front Microbiol, 2021, 12: 744094.
doi: 10.3389/fmicb.2021.744094 URL |
[23] |
丛韫喆, 马群飞, 杨文慧, 等. 拟康氏木霉和黑根霉混合发酵对苹果链格孢的防治[J]. 中国农学通报, 2020, 36(19): 121-126.
doi: 10.11924/j.issn.1000-6850.casb20190600347 |
Cong YZ, Ma QF, Yang WH, et al. Control of Alternaria alternata by mixed fermentation of Trichoderma pseudokoningii and Rhizopus nigrican[J]. Chin Agric Sci Bull, 2020, 36(19): 121-126. | |
[24] |
Mohammadi A, Shojaosadati SA, Tehrani HJ, et al. Schizophyllan production by newly isolated fungus Schizophyllum commune IBRC-M 30213: optimization of culture medium using response surface methodology[J]. Ann Microbiol, 2018, 68(1): 47-62.
doi: 10.1007/s13213-017-1316-9 URL |
[25] | 郭渊, 李韵雅, 江威, 等. 一株高效解磷肠膜明串珠菌的分离鉴定及解磷能力研究[J]. 微生物学通报, 2018, 45(10): 2131-2141. |
Guo Y, Li YY, Jiang W, et al. Isolation and identification of a phosphate solubilizing bacterium Leuconostoc mesenteroides and its ability to dissolve phosphorus[J]. Microbiol China, 2018, 45(10): 2131-2141. | |
[26] |
Ham S, Yoon H, Park JM, et al. Optimization of fermentation medium for indole acetic acid production by Pseudarthrobacter sp. NIBRBAC000502770[J]. Appl Biochem Biotechnol, 2021, 193(8): 2567-2579.
doi: 10.1007/s12010-021-03558-0 |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[3] | LIU Zhen-yin, DUAN Zhi-zhen, PENG Ting, WANG Tong-xin, WANG Jian. Establishment and Optimization of Virus-induced Gene Silencing System in Bougainvillea peruviana ‘Thimma’ [J]. Biotechnology Bulletin, 2023, 39(7): 123-130. |
[4] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[5] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[6] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[7] | YU Shi-zhou, CAO Ling-gai, WANG Shi-ze, LIU Yong, BIAN Wen-jie, REN Xue-liang. Development Core SNP Markers for Tobacco Germplasm Genotyping [J]. Biotechnology Bulletin, 2023, 39(3): 89-100. |
[8] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[9] | WANG Ge-ge, QIU Shi-rui, ZHANG Lin-han, YANG Guo-wei, XU Xiao-yun, WANG Ai-ling, ZENG Shu-hua, LIU Ya-jie. Molecular Cytology at Meiosis in Allotriploid Nicotiana tabacum(SST) [J]. Biotechnology Bulletin, 2023, 39(2): 183-192. |
[10] | LI Ying, SONG Xin-ying, HE Kang, GUO Zhi-qing, YU Jing, ZHANG Xia. Isolation and Identification of Bacillus velezensis ZHX-7 and Its Antibacterial and Growth-promoting Effects [J]. Biotechnology Bulletin, 2023, 39(12): 229-236. |
[11] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[12] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[13] | LIU Guang-chao, YE Qing, CHE yong-mei, LI Ya-hua, AN Dong, LIU Xin. Screening and Identification of High-efficiency Phosphate Solubilizing Bacteria in Tobacco Rhizosphere and Its Growth-promoting Effects [J]. Biotechnology Bulletin, 2022, 38(8): 179-187. |
[14] | ZHANG Hao-xin, WANG Zhong-hua, NIU bing, GUO Kang, LIU Lu, JIANG Ying, ZHANG Shi-xiang. Screening,Identification and Broad-spectrum Application of Efficient IAA-producing Bacteria Dissolving Phosphorus and Potassium [J]. Biotechnology Bulletin, 2022, 38(5): 100-111. |
[15] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||