Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (11): 226-237.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0417
Previous Articles Next Articles
SUN Yan-qiu1(), XIE Cai-yun1,2(), TANG Yue-qin1,2
Received:
2023-04-29
Online:
2023-11-26
Published:
2023-12-20
Contact:
XIE Cai-yun
E-mail:sonyeonchu@qq.com;xiecy@scu.edu.cn
SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2023, 39(11): 226-237.
质粒Plasmid | 描述Description | 来源Source |
---|---|---|
Cas9-NAT | Ampr; Cas9; NAT1 | [ |
pMEL13-CRZ1 | Ampr; 2 μm orign, KanMX, gRNA-CRZ1 | [ |
pMEL13-ASP3 | Ampr; 2 μm orign, KanMX, gRNA-ASP3 | [ |
Table 1 Plasmids used in this study
质粒Plasmid | 描述Description | 来源Source |
---|---|---|
Cas9-NAT | Ampr; Cas9; NAT1 | [ |
pMEL13-CRZ1 | Ampr; 2 μm orign, KanMX, gRNA-CRZ1 | [ |
pMEL13-ASP3 | Ampr; 2 μm orign, KanMX, gRNA-ASP3 | [ |
引物用途 Usage of primer | 引物名称Name | 引物序列 Primer sequence(5'-3') |
---|---|---|
扩增带CRZ1同源臂的修复片段 | CRZ1 RF F | GGGCTGAAAAGTACATCCGCGCATTTAACAATTGCTAAGCCACACACCATAGCTTCAAAATG |
CRZ1 RF R | TAGTCATGTAGGAAGCCATATTTCCGTTGCTGAATGACATTTTGTAATTAAAACT | |
高表达CRZ1验证引物 | CRZ1 VP F | GCTTTGACTGCACTTTAGCTTAG |
CRZ1 VP R | ATTATTACGTCTGTAAGCGC | |
敲除ASP3修复片段 | ASP3 RF F | AGAGCAAATGTTGGCTCGCTATTCTTTTGTAAGCAATCTGGTACTCACCAACCTCCAACTAGCCTGATCAGTGACTTTTCATCACACTGTGTTTTTATATAGTTCTTAGTAGTAAATATA |
ASP3 RF R | TATATTTACTACTAAGAACTATATAAAAACACAGTGTGATGAAAAGTCACTGATCAGGCTAGTTGGAGGTTGGTGAGTACCAGATTGCTTACAAAAGAATAGCGAGCCAACATTTGCTCT | |
敲除ASP3验证引物 | ASP3 VP F | TATCAGACCCTTCAGCACGT |
ASP3 VP R | TGACACTGCTCAAGGGATAA |
Table 2 Primers used in this study
引物用途 Usage of primer | 引物名称Name | 引物序列 Primer sequence(5'-3') |
---|---|---|
扩增带CRZ1同源臂的修复片段 | CRZ1 RF F | GGGCTGAAAAGTACATCCGCGCATTTAACAATTGCTAAGCCACACACCATAGCTTCAAAATG |
CRZ1 RF R | TAGTCATGTAGGAAGCCATATTTCCGTTGCTGAATGACATTTTGTAATTAAAACT | |
高表达CRZ1验证引物 | CRZ1 VP F | GCTTTGACTGCACTTTAGCTTAG |
CRZ1 VP R | ATTATTACGTCTGTAAGCGC | |
敲除ASP3修复片段 | ASP3 RF F | AGAGCAAATGTTGGCTCGCTATTCTTTTGTAAGCAATCTGGTACTCACCAACCTCCAACTAGCCTGATCAGTGACTTTTCATCACACTGTGTTTTTATATAGTTCTTAGTAGTAAATATA |
ASP3 RF R | TATATTTACTACTAAGAACTATATAAAAACACAGTGTGATGAAAAGTCACTGATCAGGCTAGTTGGAGGTTGGTGAGTACCAGATTGCTTACAAAAGAATAGCGAGCCAACATTTGCTCT | |
敲除ASP3验证引物 | ASP3 VP F | TATCAGACCCTTCAGCACGT |
ASP3 VP R | TGACACTGCTCAAGGGATAA |
培养基Culture medium | 组分Components | pH |
---|---|---|
LB+Kana | 5 g/L酵母浸出粉,10 g/L蛋白胨,10 g/L NaCl,0.1 g/L Kana | 7.0 |
LB+NAT | 5 g/L酵母浸出粉,10 g/L蛋白胨,10 g/L NaCl,0.05 g/L NAT | 7.0 |
2% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖 | 自然 |
2% YPD+NAT | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖,0.05 g/L NAT | 自然 |
2% YPD+G418 | 10 g/L酵母浸出粉,20 g/L 蛋白胨,20 g/L葡萄糖,0.1 g/L G418 | 自然 |
2% YPD+NAT+G418 | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖,0.05 g/L NAT,0.1 g/L G418 | 自然 |
5% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,50 g/L葡萄糖 | 自然 |
15% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,150 g/L葡萄糖 | 自然 |
Table 3 Media used in this study
培养基Culture medium | 组分Components | pH |
---|---|---|
LB+Kana | 5 g/L酵母浸出粉,10 g/L蛋白胨,10 g/L NaCl,0.1 g/L Kana | 7.0 |
LB+NAT | 5 g/L酵母浸出粉,10 g/L蛋白胨,10 g/L NaCl,0.05 g/L NAT | 7.0 |
2% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖 | 自然 |
2% YPD+NAT | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖,0.05 g/L NAT | 自然 |
2% YPD+G418 | 10 g/L酵母浸出粉,20 g/L 蛋白胨,20 g/L葡萄糖,0.1 g/L G418 | 自然 |
2% YPD+NAT+G418 | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖,0.05 g/L NAT,0.1 g/L G418 | 自然 |
5% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,50 g/L葡萄糖 | 自然 |
15% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,150 g/L葡萄糖 | 自然 |
菌株 Strain | 乙醇产量 Ethanol production/(g·L-1) | 葡萄糖消耗量 Glucose consumption/(g·L-1) | 乙醇收率Ethanol yield/(g·L-1) | 乙醇产量提升百分比Increased percentage of ethanol production/% |
---|---|---|---|---|
KF-7 | 41.69±0.88 | 94.14±2.60 | 0.45±0.02 | / |
KAS11 | 43.68±0.48* | 98.36±3.28 | 0.44±0.01 | 4.77 |
KASCR7 | 48.02±1.03** | 105.37±0.89* | 0.46±0.01 | 15.18 |
Table 4 Glucose utilization and ethanol production of each strain after 72 h fermentation at 44℃
菌株 Strain | 乙醇产量 Ethanol production/(g·L-1) | 葡萄糖消耗量 Glucose consumption/(g·L-1) | 乙醇收率Ethanol yield/(g·L-1) | 乙醇产量提升百分比Increased percentage of ethanol production/% |
---|---|---|---|---|
KF-7 | 41.69±0.88 | 94.14±2.60 | 0.45±0.02 | / |
KAS11 | 43.68±0.48* | 98.36±3.28 | 0.44±0.01 | 4.77 |
KASCR7 | 48.02±1.03** | 105.37±0.89* | 0.46±0.01 | 15.18 |
Pathway | Gene | Description | log2 Fold Change | ||
---|---|---|---|---|---|
KAS11 vs KF-7 | KASCR7 vs KF-7 | ||||
Ribosome (P=0.007 65) | RPS22A | Ribosomal 40S subunit protein S22A | -2.12 | -2.43 | |
RPL11A | Ribosomal 60S subunit protein L11A | -1.82 | -2.39 | ||
RPS8B | Ribosomal 40S subunit protein S8B | -2.01 | -2.36 | ||
RPS5 | Ribosomal 40S subunit protein S5 | -1.92 | -2.33 | ||
RPL12B | Ribosomal 60S subunit protein L12B | -1.96 | -2.31 | ||
RPL2B | Ribosomal 60S subunit protein L2B | -1.85 | -2.30 | ||
One carbon pool by folate (P=0.033 83) | ADE17 | Bifunctional Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase | 1.35 | 1.95 | |
SHM2 | Glycine hydroxymethyltransferase | 1.16 | 2.05 | ||
GCV1 | Glycine decarboxylase subunit T | 1.59 | 2.15 | ||
MTD1 | Methylenetetrahydrofolate dehydrogenase(NAD+) | 1.00 | 1.70 |
Table 5 Enriched pathways of common DEGs
Pathway | Gene | Description | log2 Fold Change | ||
---|---|---|---|---|---|
KAS11 vs KF-7 | KASCR7 vs KF-7 | ||||
Ribosome (P=0.007 65) | RPS22A | Ribosomal 40S subunit protein S22A | -2.12 | -2.43 | |
RPL11A | Ribosomal 60S subunit protein L11A | -1.82 | -2.39 | ||
RPS8B | Ribosomal 40S subunit protein S8B | -2.01 | -2.36 | ||
RPS5 | Ribosomal 40S subunit protein S5 | -1.92 | -2.33 | ||
RPL12B | Ribosomal 60S subunit protein L12B | -1.96 | -2.31 | ||
RPL2B | Ribosomal 60S subunit protein L2B | -1.85 | -2.30 | ||
One carbon pool by folate (P=0.033 83) | ADE17 | Bifunctional Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase | 1.35 | 1.95 | |
SHM2 | Glycine hydroxymethyltransferase | 1.16 | 2.05 | ||
GCV1 | Glycine decarboxylase subunit T | 1.59 | 2.15 | ||
MTD1 | Methylenetetrahydrofolate dehydrogenase(NAD+) | 1.00 | 1.70 |
MCODE | GO/KEGG | Description | P value |
---|---|---|---|
MCODE_1 | R-SCE-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 1.00×10-100 |
R-SCE-72689 | Formation of a pool of free 40S subunits | 1.00×10-100 | |
WP210 | Cytoplasmic ribosomal proteins | 1.00×10-100 | |
MCODE_2 | WP32 | Translation factors | 6.31×10-8 |
R-SCE-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S | 3.98×10-7 | |
R-SCE-72649 | Translation initiation complex formation | 3.98×10-7 |
Table 6 Protein interaction network information of common DEGs
MCODE | GO/KEGG | Description | P value |
---|---|---|---|
MCODE_1 | R-SCE-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 1.00×10-100 |
R-SCE-72689 | Formation of a pool of free 40S subunits | 1.00×10-100 | |
WP210 | Cytoplasmic ribosomal proteins | 1.00×10-100 | |
MCODE_2 | WP32 | Translation factors | 6.31×10-8 |
R-SCE-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S | 3.98×10-7 | |
R-SCE-72649 | Translation initiation complex formation | 3.98×10-7 |
Pathway | Gene | Description | log2 Fold Change |
---|---|---|---|
Longevity regulating pathway - multiple species(P=0.008 48) | PNC1 | Nicotinamidase | 1.29 |
SSA2 | Hsp70 family chaperone | 1.32 | |
SSA1 | Hsp70 family ATPase | 1.33 | |
RAS2 | Ras family GTPase | -1.23 | |
CTT1 | Catalase T | 1.33 | |
Nicotinate and nicotinamide metabolism(P=0.013 55) | NPT1 | Nicotinate phosphoribosyltransferase | -1.34 |
PNC1 | Nicotinamidase | 1.29 | |
NRK1 | Ribosylnicotinamide kinase | 1.44 | |
SDT1 | Nucleotidase | 1.10 | |
Biosynthesis of secondary metabolites(P=0.041 39) | PUT1 | Proline dehydrogenase | -1.60 |
HIS1 | ATP phosphoribosyltransferase | 1.36 | |
GPD1 | Glycerol-3-phosphate dehydrogenase(NAD+) | 1.60 | |
TSC13 | Trans-2-enoyl-CoA reductase(NADPH) | -1.52 | |
TKL2 | Transketolase | 1.29 | |
CTT1 | Catalase T | 1.33 |
Table 7 Enriched pathways of unique DEGs for KASCR7 vs KF-7
Pathway | Gene | Description | log2 Fold Change |
---|---|---|---|
Longevity regulating pathway - multiple species(P=0.008 48) | PNC1 | Nicotinamidase | 1.29 |
SSA2 | Hsp70 family chaperone | 1.32 | |
SSA1 | Hsp70 family ATPase | 1.33 | |
RAS2 | Ras family GTPase | -1.23 | |
CTT1 | Catalase T | 1.33 | |
Nicotinate and nicotinamide metabolism(P=0.013 55) | NPT1 | Nicotinate phosphoribosyltransferase | -1.34 |
PNC1 | Nicotinamidase | 1.29 | |
NRK1 | Ribosylnicotinamide kinase | 1.44 | |
SDT1 | Nucleotidase | 1.10 | |
Biosynthesis of secondary metabolites(P=0.041 39) | PUT1 | Proline dehydrogenase | -1.60 |
HIS1 | ATP phosphoribosyltransferase | 1.36 | |
GPD1 | Glycerol-3-phosphate dehydrogenase(NAD+) | 1.60 | |
TSC13 | Trans-2-enoyl-CoA reductase(NADPH) | -1.52 | |
TKL2 | Transketolase | 1.29 | |
CTT1 | Catalase T | 1.33 |
MCODE | GO/KEGG | Description | P value |
---|---|---|---|
MCODE_1 | GO:0006913 | Nucleocytoplasmic transport | 7.94×10-5 |
GO:0051169 | Nuclear transport | 7.94×10-5 | |
GO:0000055 | Ribosomal large subunit export from nucleus | 7.94×10-5 | |
MCODE_2 | GO:0019646 | Aerobic electron transport chain | 2.00×10-7 |
GO:0042773 | ATP synthesis coupled electron transport | 2.00×10-7 | |
GO:0042775 | Mitochondrial ATP synthesis coupled electron transport | 2.00×10-7 | |
MCODE_3 | GO:0006364 | rRNA processing | 2.51×10-4 |
GO:0016072 | rRNA metabolic process | 7.94×10-5 | |
GO:0042254 | Ribosome biogenesis | 7.94×10-5 | |
MCODE_4 | GO:0006189 | ‘de novo’ IMP biosynthetic process | 7.94×10-5 |
GO:0006188 | IMP biosynthetic process | 6.31×10-9 | |
GO:0046040 | IMP metabolic process | 7.94×10-9 |
Table 8 Protein interaction network information for unique DEGs of KASCR7 vs KF-7
MCODE | GO/KEGG | Description | P value |
---|---|---|---|
MCODE_1 | GO:0006913 | Nucleocytoplasmic transport | 7.94×10-5 |
GO:0051169 | Nuclear transport | 7.94×10-5 | |
GO:0000055 | Ribosomal large subunit export from nucleus | 7.94×10-5 | |
MCODE_2 | GO:0019646 | Aerobic electron transport chain | 2.00×10-7 |
GO:0042773 | ATP synthesis coupled electron transport | 2.00×10-7 | |
GO:0042775 | Mitochondrial ATP synthesis coupled electron transport | 2.00×10-7 | |
MCODE_3 | GO:0006364 | rRNA processing | 2.51×10-4 |
GO:0016072 | rRNA metabolic process | 7.94×10-5 | |
GO:0042254 | Ribosome biogenesis | 7.94×10-5 | |
MCODE_4 | GO:0006189 | ‘de novo’ IMP biosynthetic process | 7.94×10-5 |
GO:0006188 | IMP biosynthetic process | 6.31×10-9 | |
GO:0046040 | IMP metabolic process | 7.94×10-9 |
[1] | 刘振, 王金鹏, 张立峰, 等. 木薯干原料同步糖化发酵生产乙醇[J]. 过程工程学报, 2005, 5(3): 353-356. |
Liu Z, Wang JP, Zhang LF, et al. Production of ethanol by simultaneous saccharifiction and fermentation from cassava[J]. Chin J Process Eng, 2005, 5(3): 353-356. | |
[2] | 王璀璨, 王义强, 陈介南, 等. 木质纤维生产燃料乙醇工艺的研究进展[J]. 生物技术通报, 2010(2): 51-57, 62. |
Wang CC, Wang YQ, Chen JN, et al. Research progress of technological processes in fuel ethanol production from lignocellulosic biomass[J]. Biotechnol Bull, 2010(2): 51-57, 62. | |
[3] | 刘海臣, 冉淦侨, 张兴, 等. 酒糟中超高温耐高酒精度酵母菌株的选育[J]. 酿酒科技, 2007(5): 28-31. |
Liu HC, Ran GQ, Zhang X, et al. Breeding of alcohol yeast strains of high-temperature tolerance and high-alcoholicity endurance from distiller's grains[J]. Liquor Mak Sci Technol, 2007(5): 28-31. | |
[4] |
Hiraishi H, Mochizuki M, Takagi H. Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes[J]. Biosci Biotechnol Biochem, 2006, 70(11): 2762-2765.
doi: 10.1271/bbb.60250 URL |
[5] |
Nasution O, Lee J, Srinivasa K, et al. Loss of Dfg5 glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae[J]. Environ Microbiol, 2015, 17(8): 2721-2734.
doi: 10.1111/emi.2015.17.issue-8 URL |
[6] |
Xu K, Yu LP, Bai WX, et al. Construction of thermo-tolerant yeast based on an artificial protein quality control system(APQC)to improve the production of bio-ethanol[J]. Chem Eng Sci, 2018, 177: 410-416.
doi: 10.1016/j.ces.2017.12.009 URL |
[7] |
Caspeta L, Chen Y, Ghiaci P, et al. Biofuels. Altered sterol composition renders yeast thermotolerant[J]. Science, 2014, 346(6205): 75-78.
doi: 10.1126/science.1258137 pmid: 25278608 |
[8] |
Lu Y, Cheng YF, He XP, et al. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors[J]. J Ind Microbiol Biotechnol, 2012, 39(1): 73-80.
doi: 10.1007/s10295-011-1001-0 URL |
[9] | 王莉. 燃料乙醇生产用多重耐受性酿酒酵母菌株构建及耐受性分子机制解析[D]. 成都: 四川大学, 2021. |
Wang L. Breeding and molecular tolerance mechanism of multiple stress-tolerant Saccharomyces cerevisiae strains for fuel ethanol production[D]. Chengdu: Sichuan University, 2021. | |
[10] |
Kida K, Kume K, Morimura S, et al. Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion[J]. J Ferment Bioeng, 1992, 74(3): 169-173.
doi: 10.1016/0922-338X(92)90078-9 URL |
[11] | Mans R, van Rossum HM, Wijsman M, et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2015, 15(2): fov004. |
[12] |
Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method[J]. Methods Enzymol, 2002, 350: 87-96.
pmid: 12073338 |
[13] |
Auesukaree C, Koedrith P, Saenpayavai P, et al. Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits[J]. J Biosci Bioeng, 2012, 114(2): 144-149.
doi: 10.1016/j.jbiosc.2012.03.012 pmid: 22579450 |
[14] |
Oliveira EMM, Martins AS, Carvajal E, et al. The role of the GATA factors Gln3p, Nil1p, Dal80p and the Ure2p on ASP3 regulation in Saccharomyces cerevisiae[J]. Yeast, 2003, 20(1): 31-37.
pmid: 12489124 |
[15] |
Hall GC, Ibaraki AY, Huang ER, et al. A meta-analysis of cultural adaptations of psychological interventions[J]. Behav Ther, 2016, 47(6): 993-1014.
doi: S0005-7894(16)30080-6 pmid: 27993346 |
[16] |
Ferreira RT, Silva ARC, Pimentel C, et al. Arsenic stress elicits cytosolic Ca(2+)bursts and Crz1 activation in Saccharomyces cerevisiae[J]. Microbiology, 2012, 158(Pt 9): 2293-2302.
doi: 10.1099/mic.0.059170-0 URL |
[17] |
Chen YL, Konieczka JH, Springer DJ, et al. Convergent evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata[J]. G3, 2012, 2(6): 675-691.
doi: 10.1534/g3.112.002279 URL |
[18] |
Borkovich KA, Farrelly FW, Finkelstein DB, et al. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures[J]. Mol Cell Biol, 1989, 9(9): 3919-3930.
doi: 10.1128/mcb.9.9.3919-3930.1989 pmid: 2674684 |
[19] |
Du TA. Post-translational modification: sweetening protein quality control[J]. Nat Rev Mol Cell Biol, 2014, 15(5): 295.
doi: 10.1038/nrm3787 |
[20] |
Techaparin A, Thanonkeo P, Klanrit P. Gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8 during high-temperature ethanol fermentation using sweet sorghum juice[J]. Biotechnol Lett, 2017, 39(10): 1521-1527.
doi: 10.1007/s10529-017-2398-y pmid: 28721580 |
[21] |
Hottiger T, De Virgilio C, Bell W, et al. The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae[J]. Eur J Biochem, 1992, 210(1): 125-132.
pmid: 1446665 |
[22] |
Matsumoto R, Akama K, Rakwal R, et al. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae[J]. BMC Genomics, 2005, 6: 141.
pmid: 16209719 |
[23] |
Zid BM, O'Shea EK. Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast[J]. Nature, 2014, 514(7520): 117-121.
doi: 10.1038/nature13578 |
[24] |
Ishida Y, Nguyen TTM, Kitajima S, et al. Prioritized expression of BDH2 under bulk translational repression and its contribution to tolerance to severe vanillin stress in Saccharomyces cerevisiae[J]. Front Microbiol, 2016, 7: 1059.
doi: 10.3389/fmicb.2016.01059 pmid: 27458450 |
[25] |
Cherkasov V, Hofmann S, Druffel-Augustin S, et al. Coordination of translational control and protein homeostasis during severe heat stress[J]. Curr Biol, 2013, 23(24): 2452-2462.
doi: 10.1016/j.cub.2013.09.058 pmid: 24291094 |
[26] |
Panek AC, Vânia JJ, Paschoalin MF, et al. Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts[J]. Biochimie, 1990, 72(1): 77-79.
pmid: 2160289 |
[27] |
Salas-Navarrete PC, de Oca Miranda AIM, Martínez A, et al. Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature[J]. Appl Microbiol Biotechnol, 2022, 106(1): 383-399.
doi: 10.1007/s00253-021-11730-z pmid: 34913993 |
[28] |
Wang DM, Wu D, Yang XX, et al. Transcriptomic analysis of thermotolerant yeast Kluyveromyces marxianus in multiple inhibitors tolerance[J]. RSC Adv, 2018, 8(26): 14177-14192.
doi: 10.1039/C8RA00335A URL |
[29] |
Song L, Shi JY, Duan SF, et al. Improved redox homeostasis owing to the up-regulation of one-carbon metabolism and related pathways is crucial for yeast heterosis at high temperature[J]. Genome Res, 2021, 31(4): 622-634.
doi: 10.1101/gr.262055.120 pmid: 33722936 |
[30] |
Ha CW, Kim K, Chang YJ, et al. The β-1, 3-glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae[J]. Nucleic Acids Res, 2014, 42(13): 8486-8499.
doi: 10.1093/nar/gku570 URL |
[31] |
Zhang MM, Xiong L, Tang YJ, et al. Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes[J]. Biotechnol Biofuels, 2019, 12: 116.
doi: 10.1186/s13068-019-1456-1 |
[32] |
Avrahami-Moyal L, Braun S, Engelberg D. Overexpression of PDE2 or SSD1-V in Saccharomyces cerevisiae W303-1A strain renders it ethanol-tolerant[J]. FEMS Yeast Res, 2012, 12(4): 447-455.
doi: 10.1111/j.1567-1364.2012.00795.x pmid: 22380741 |
[33] |
Albertyn J, Hohmann S, Thevelein JM, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Mol Cell Biol, 1994, 14(6): 4135-4144.
doi: 10.1128/mcb.14.6.4135-4144.1994 pmid: 8196651 |
[34] | Jun SM, Takagi H. Stress-tolerance of baker's-yeast(Saccharo-myces cerevisiae)cells: stress-protective molecules and genes involved in stress tolerance[J]. Biotechnol Appl Biochem, 2009, 53(Pt 3): 155-164. |
[1] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[2] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[3] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[4] | LI Xin-yue, ZHOU Ming-hai, FAN Ya-chao, LIAO Sha, ZHANG Feng-li, LIU Chen-guang, SUN Yue, ZHANG Lin, ZHAO Xin-qing. Research Progress in the Improvement of Microbial Strain Tolerance and Efficiency of Biological Manufacturing Based on Transporter Engineering [J]. Biotechnology Bulletin, 2023, 39(11): 123-136. |
[5] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[6] | TANG Rui-qi, ZHAO Xin-qing, ZHU Du, WANG Ya. Stress Tolerance of Escherichia coli to Inhibitors in Lignocellulosic Hydrolysates [J]. Biotechnology Bulletin, 2023, 39(11): 205-216. |
[7] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[8] | CHEN Hong-yan, LI Xiao-er, LI Zhong-guang. Sugar Signaling and Its Role in Plant Response to Environmental Stress [J]. Biotechnology Bulletin, 2022, 38(7): 80-89. |
[9] | CUI Xin-gang, SUN Ya-xin, CUI Xiao-jing, DENG Yan-wen, SUN En-hao, WANG Jun-fang, CUI Hong-jing. Roles of Gene TAP42 in the Cell Wall Stress Response of Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2021, 37(10): 57-62. |
[10] | GUO Zhen-qiang, ZHANG Yong, CAO Yun-qi, LIU Yun-yun, ZHAO Yu, WU Ai-min. Research Progress of Fuel Ethanol Fermentation Technology [J]. Biotechnology Bulletin, 2020, 36(1): 238-244. |
[11] | ZHANG Dan, WANG Nan, LI Chao, XIE Qi, TANG San-yuan. Sweet Sorghum—a High Efficient and Quality Forage Crop [J]. Biotechnology Bulletin, 2019, 35(5): 2-8. |
[12] | CAO Yun-qi, LIU Yun-yun, HU Nan-jiang, HU Xiao-wei, ZHANG Yao, ZHAO Yu, WU Ai-min. Current Status and Prospects of Fuel Ethanol Production [J]. Biotechnology Bulletin, 2019, 35(4): 163-169. |
[13] | HUANG Zhen-jie, CHEN You-qiang, XUE Ting. Improving the Tolerance of Saccharomyces cerevisiae to Ethanol by the Over-expression of Inositol-3-phosphate Synthase Gene INO1 [J]. Biotechnology Bulletin, 2019, 35(3): 87-92. |
[14] | ZHANG Yi-zhi,GOU Min,TANG Yue-qin. Improvement of Inhibitor Tolerance of a Xylose-Fermenting Industrial Saccharomyces cerevisiae Strain Through UV Mutation and Acclimation [J]. Biotechnology Bulletin, 2017, 33(9): 191-199. |
[15] | LI Yun-cheng, MENG Fan-bing, GOU Min, SUN Zhao-yong, TANG Yue-qin. Research Progresses on Strain Construction of Xylose Isomerase-based Recombinant Xylose-fermenting Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2017, 33(10): 88-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||