Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (12): 71-80.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0759
Previous Articles Next Articles
GAO Kai-yue1,2,3(), GUO Yu-ting1,2,3, DU Yi-mou1,2,3, ZHENG Xiao-mei2,3,4(), MA Xin-rong1(), ZHAO Wei5, ZHENG Ping2,3,4, SUN Ji-bin2,3,4
Received:
2023-08-09
Online:
2023-12-26
Published:
2024-01-11
Contact:
ZHENG Xiao-mei, MA Xin-rong
E-mail:gaoky@tib.cas.cn;zheng_xm@tib.cas.cn;xinrong.ma@tust.edu.cn
GAO Kai-yue, GUO Yu-ting, DU Yi-mou, ZHENG Xiao-mei, MA Xin-rong, ZHAO Wei, ZHENG Ping, SUN Ji-bin. A Quantitative Detection Approach for Glucose Uptake in Aspergillus niger: A Case Study of Glucose Transporter MstC[J]. Biotechnology Bulletin, 2023, 39(12): 71-80.
Strains/Plasmids | Description | Source |
---|---|---|
Escherichia coli Trans1-T1 | F- φ80(lacZ), ΔM15, ΔlacX74, hsdR(rkmk+), ΔrecA 1398, endA, tonA | TransGen. |
Saccharomyces cerevisiae EBY.VW4000 | CEN.PK2-1C, hxt1-17, stl1, agt1, ydl247w, yjr160c, gal2 | [12] |
S. cerevisiae EBY.MstC | EBY.VW4000 with pRS-MstC | This study |
S. cerevisiae EBY.MstCR188K | EBY.VW4000 with pRS-MstCR188K | This study |
A. niger D353.8 | pyrG::hph, kusA::hph, HygR | [13] |
A. niger OE. MstC | D353.8 with the PgpdA:mstC expression cassette | This study |
A. niger OE. MstCR188K | D353.8 with the PgpdA:mstCR188K expression cassette | This study |
pRS426 | Ppgk:gfp:Tpgk, Ura, AmpR | [12] |
pRS-MstC | pRS426 carring the mstC gene | This study |
pRS-MstCR188K | pRS426 carring the mstCR188K gene | This study |
pXMD7 | PgpdA:TtrpC, pyrG, AmpR | [14] |
pOE-MstC | pOE carring PgpdA-mstC expression cassette | This study |
pOE-MstCR188K | pOE carring PgpdA-mstCR188K expression cassette | This study |
Table 1 Strains and plasmids used in this study
Strains/Plasmids | Description | Source |
---|---|---|
Escherichia coli Trans1-T1 | F- φ80(lacZ), ΔM15, ΔlacX74, hsdR(rkmk+), ΔrecA 1398, endA, tonA | TransGen. |
Saccharomyces cerevisiae EBY.VW4000 | CEN.PK2-1C, hxt1-17, stl1, agt1, ydl247w, yjr160c, gal2 | [12] |
S. cerevisiae EBY.MstC | EBY.VW4000 with pRS-MstC | This study |
S. cerevisiae EBY.MstCR188K | EBY.VW4000 with pRS-MstCR188K | This study |
A. niger D353.8 | pyrG::hph, kusA::hph, HygR | [13] |
A. niger OE. MstC | D353.8 with the PgpdA:mstC expression cassette | This study |
A. niger OE. MstCR188K | D353.8 with the PgpdA:mstCR188K expression cassette | This study |
pRS426 | Ppgk:gfp:Tpgk, Ura, AmpR | [12] |
pRS-MstC | pRS426 carring the mstC gene | This study |
pRS-MstCR188K | pRS426 carring the mstCR188K gene | This study |
pXMD7 | PgpdA:TtrpC, pyrG, AmpR | [14] |
pOE-MstC | pOE carring PgpdA-mstC expression cassette | This study |
pOE-MstCR188K | pOE carring PgpdA-mstCR188K expression cassette | This study |
Primer name | Primer sequence(5'-3') | Source |
---|---|---|
MstC-F1 | gcatactagtATGGGTGTCTCTAATATGATGTC | This study |
MstC-R1 | gcctaagcttCTCGCGGAGCTCAGTGGG | This study |
MstCR188K-F MstCR188K-R | CTGCTCCCCGTCAGGTCAAGGGTGCCATGGTCAGTGCCTTC CACTGACCATGGCACCCTTGACCTGACGGGGAGCAGATTC | This study |
MstC-F2 | tcaccggatcccatatgttaattaaATGGGTGTCTCTAATATGATGTC | This study |
MstC-R2 | atctactcccgggtacgtaactagtCTACTCGCGGAGCTCAGTGGG | This study |
pRS-F | TACGACTCACTATAGGGCGAA | This study |
pRS-R | AAACAGAATTGTCCGAATCGT | This study |
Table 2 Primers and their sequences used in this study
Primer name | Primer sequence(5'-3') | Source |
---|---|---|
MstC-F1 | gcatactagtATGGGTGTCTCTAATATGATGTC | This study |
MstC-R1 | gcctaagcttCTCGCGGAGCTCAGTGGG | This study |
MstCR188K-F MstCR188K-R | CTGCTCCCCGTCAGGTCAAGGGTGCCATGGTCAGTGCCTTC CACTGACCATGGCACCCTTGACCTGACGGGGAGCAGATTC | This study |
MstC-F2 | tcaccggatcccatatgttaattaaATGGGTGTCTCTAATATGATGTC | This study |
MstC-R2 | atctactcccgggtacgtaactagtCTACTCGCGGAGCTCAGTGGG | This study |
pRS-F | TACGACTCACTATAGGGCGAA | This study |
pRS-R | AAACAGAATTGTCCGAATCGT | This study |
Fig. 1 Effect of 2-NBDG concentration on the glucose uptake in A. niger A-C: The fluorescence imaging of A. niger spores incubated with different concentrations of 2-NBDG. D-F: Flow cytometric detection of A. niger spores incubated with different concentrations of 2-NBDG. A and D: 100 μmol/L 2-NBDG; B and E: 150 μmol/L 2-NBDG; C and F: 200 μmol/L 2-NBDG. FI refers to the average fluorescence intensity of 105 spores. Q2 refers to the proportion of spores with fluorescence intensity FITC-H(>103)to the total spore count, the same below
Fig. 2 Effect of 2-NBDG incubation time on the glucose uptake fluorescence detection in A. niger A-C: The fluorescence imaging of spores incubated 2-NBDG for different incubation time. D-F: Flow cytometric detection of spores incubated 2-NBDG for different incubation time. A and D: 0 h; B and E: 2 h; C and F: 4 h
Fig. 4 Glucose uptake capacity detection based on MstC-overexpressed strain A. niger A-B: The fluorescence imaging of spores incubated 150 μmol/L 2-NBDG for 4 h. C-D: Flow cytometric detection of spores incubated 150 μmol/L 2-NBDG for 4 h.A and C: The parent strain D353.8; B and D: MstC overexpression strain OE.MstC
Fig. 5 Structure analysis and glucose transport capacity detection of MstC A is the sequence structure analysis of glucose transporter protein MstC, and B is the growth of yeast recombinant strains EBY.MstC and EBY.MstCR188K at different glucose concentrations. In multiple sequence alignment, AnMstC and AnMstA represent endogenous glucose transporters MstC and MstA from A. niger, AndMstE represents glucose transporter MstE from A. niger, and NcGlt1, NcHgt1, and NcHgt2 represent glucose transporters Glt1, Hgt1, and Hgt2 from A. niger, respectively
Fig. 6 Glucose uptake capacity detection of A. niger MstC point mutant over-expressed strain OE.MstCR188K A-B: The fluorescence imaging of spores incubated 150 μmol/L 2-NBDG for 4 h. C-D: Flow cytometric detection of spores incubated 150 μmol/L 2-NBDG for 4 h. A, C: The parent strain D353.8; B, D: MstC point mutant overexpression strain MstCR188K
[1] |
Tong ZY, Zheng XM, Tong Y, et al. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era[J]. Microb Cell Fact, 2019, 18(1): 28.
doi: 10.1186/s12934-019-1064-6 |
[2] |
Meyer V, Andersen MR, Brakhage AA, et al. Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper[J]. Fungal Biol Biotechnol, 2016, 3: 6.
doi: 10.1186/s40694-016-0024-8 pmid: 28955465 |
[3] | Torres NV, Riol-Cimas JM, Wolschek M, et al. Glucose transport by Aspergillus niger: the low-affinity carrier is only formed during growth on high glucose concentrations[J]. Appl Microbiol Biotechnol, 1996, 44(6): 790-794. |
[4] |
de Vries RP, Riley R, Wiebenga A, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus[J]. Genome Biol, 2017, 18(1): 28.
doi: 10.1186/s13059-017-1151-0 |
[5] |
Vankuyk PA, Diderich JA, MacCabe AP, et al. Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH[J]. Biochem J, 2004, 379(Pt 2): 375-383.
doi: 10.1042/bj20030624 URL |
[6] |
Jørgensen TR, VanKuyk PA, Poulsen BR, et al. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter[J]. Microbiology, 2007, 153(Pt 6): 1963-1973.
doi: 10.1099/mic.0.2006/005090-0 pmid: 17526853 |
[7] |
Xu YX, Zhou YT, Cao W, et al. Improved production of malic acid in Aspergillus niger by abolishing citric acid accumulation and enhancing glycolytic flux[J]. ACS Synth Biol, 2020, 9(6): 1418-1425.
doi: 10.1021/acssynbio.0c00096 URL |
[8] |
Bleichrodt RJ, Vinck A, Read ND, et al. Selective transport between heterogeneous hyphal compartments via the plasma membrane lining septal walls of Aspergillus niger[J]. Fungal Genet Biol, 2015, 82: 193-200.
doi: 10.1016/j.fgb.2015.06.010 URL |
[9] |
Roy A, Dement AD, Cho KH, et al. Assessing glucose uptake through the yeast hexose transporter 1(Hxt1)[J]. PLoS One, 2015, 10(3): e0121985.
doi: 10.1371/journal.pone.0121985 URL |
[10] |
Yoshioka K, Takahashi H, Homma T, et al. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli[J]. Biochim Biophys Acta, 1996, 1289(1): 5-9.
pmid: 8605231 |
[11] |
O'Neil RG, Wu L, Mullani N. Uptake of a fluorescent deoxyglucose analog(2-NBDG)in tumor cells[J]. Mol Imaging Biol, 2005, 7(6): 388-392.
pmid: 16284704 |
[12] |
Wieczorke R, Krampe S, Weierstall T, et al. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae[J]. FEBS Lett, 1999, 464(3): 123-128.
doi: 10.1016/s0014-5793(99)01698-1 pmid: 10618490 |
[13] |
Zhang LH, Zheng XM, Cairns TC, et al. Disruption or reduced expression of the orotidine-5'-decarboxylase gene pyrG increases citric acid production: a new discovery during recyclable genome editing in Aspergillus niger[J]. Microb Cell Fact, 2020, 19(1): 76.
doi: 10.1186/s12934-020-01334-z |
[14] |
Lu YD, Zheng XM, Wang Y, et al. Evaluation of Aspergillus niger six constitutive strong promoters by fluorescent-auxotrophic selection coupled with flow cytometry: a case for citric acid production[J]. J Fungi, 2022, 8(6): 568.
doi: 10.3390/jof8060568 URL |
[15] |
Basenko EY, Pulman JA, Shanmugasundram A, et al. FungiDB: an integrated bioinformatic resource for fungi and oomycetes[J]. J Fungi, 2018, 4(1): 39.
doi: 10.3390/jof4010039 URL |
[16] |
Cairns TC, Zheng XM, Zheng P, et al. Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories[J]. Biotechnol Biofuels, 2019, 12: 77.
doi: 10.1186/s13068-019-1400-4 pmid: 30988699 |
[17] |
Yang YJ, Liu Y, Liu DD, et al. Development of a flow cytometry-based plating-free system for strain engineering in industrial fungi[J]. Appl Microbiol Biotechnol, 2022, 106(2): 713-727.
doi: 10.1007/s00253-021-11733-w |
[18] |
Wang B, Li JG, Gao JF, et al. Identification and characterization of the glucose dual-affinity transport system in Neurospora crassa: pleiotropic roles in nutrient transport, signaling, and carbon catabolite repression[J]. Biotechnol Biofuels, 2017, 10: 17.
doi: 10.1186/s13068-017-0705-4 URL |
[1] | LIU Jin-sheng, CHEN Zhen-ya, HUO Yi-xin, GUO Shu-yuan. Application of FACS Technology in the Directed Evolution of Enzyme [J]. Biotechnology Bulletin, 2023, 39(10): 93-106. |
[2] | XUE Xian-li, WANG Jing-ran, BI Hang-hang, WANG De-pei. Effect of Spt7 Overexpression of on the Growth and Stress Resistance of Aspergillus niger [J]. Biotechnology Bulletin, 2022, 38(5): 112-122. |
[3] | WANG Ya-li, WANG Na, CHENG Hong-mei. Comparison of Methods for Rapid Determination of Cotton Ploidy by Flow Cytometry [J]. Biotechnology Bulletin, 2022, 38(12): 144-148. |
[4] | GUO Yu-fei, YAN Rong-mei, ZHANG Xiao-ru, CAO Wei, LIU Hao. Metabolic Engineering Modification of Aspergillus niger for the Production of D-glucaric Acid [J]. Biotechnology Bulletin, 2022, 38(11): 227-237. |
[5] | ZHANG Yuan, ZHANG Xue-ping, ZHANG Yue-qian, LI Xiao-juan. Advances of Single-molecule Fluorescence Detection Techniques and Applications in Plant Biology [J]. Biotechnology Bulletin, 2022, 38(1): 33-43. |
[6] | MENG Xiao-jian, YU Jian-dong, ZHENG Xiao-mei, ZHENG Ping, LI Zhi-min, SUN Ji-bin, YE Qin. Regulations of Small-molecules Metabolites on Hexokinase and Pyruvate Kinase in Aspergillus niger [J]. Biotechnology Bulletin, 2021, 37(12): 180-190. |
[7] | ZHENG Ying-zhuan, LÜ Yan, YANG Dong-xu, LI Guo-wei, WANG Hong-yang, LI Can-hui. Study on the Identification of Potato Ploidy Using Flow Cytometry Based on Liquid Nitrogen Grinding Method [J]. Biotechnology Bulletin, 2021, 37(1): 282-288. |
[8] | MI Liang-bo, ZENG Wei-zhu, HUANG Ke-xue, WANG De-ming, DU Guo-cheng, ZHOU Jing-wen, CHEN Jian. High-throughput Screening High-yield Bacitracin Strain from Bacillus licheniformis DW2 [J]. Biotechnology Bulletin, 2020, 36(7): 90-96. |
[9] | CHEN Lin, PAN Zhen-zhi, DAI Yi, SONG Li. Screening and Application of the Nuclear Dissociation Solutions of Soybeans Suitable for Flow Cytometry Analysis [J]. Biotechnology Bulletin, 2020, 36(11): 230-237. |
[10] | WANG Ya-nan, WEN Hai-ruo, WANG Xue. Establishment and Preliminary Exploration of in vitro Pig-a Gene Mutation Assay Based on L5178Y Cells [J]. Biotechnology Bulletin, 2020, 36(1): 220-228. |
[11] | LI Yan-wei, SONG Xing-hui, WANG Jia-jia, LIU Li, HUANG Ying-ying, GUO Chun. Establishment of the Real-time and Label-free Screening System for Tumor Cell Apoptosis [J]. Biotechnology Bulletin, 2019, 35(10): 220-226. |
[12] | HE Shuo-kang, LUO Ze-wei. Development and Phenotypic Analysis of Tetraploid Arabidopsis thaliana with QUARTET Mutation [J]. Biotechnology Bulletin, 2018, 34(7): 119-125. |
[13] | LU Jia, DENG Qiu-ping, REN Wen-hua. Mechanism of Antimicrobial Peptide Scolopin 2-NH2 Isolated from Scolopendra subspinipes mutilans [J]. Biotechnology Bulletin, 2018, 34(11): 179-190. |
[14] | SUN Wen, ZHENG Feng. Molecular Cloning of Gene for Enolase in Highly Virulent Strains from Streptococcus suis serotype 2 and Its Protein Biological Function [J]. Biotechnology Bulletin, 2017, 33(4): 222-230. |
[15] | Han Yawei, Wang Xihua, Chen Liping, Shi Guiqin, Sun Liping, Zhou Wenshan. Toxic Effects of NNK on NCTC 1469 Cells [J]. Biotechnology Bulletin, 2015, 31(9): 218-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||