Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 1-12.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0928
SANG Tian1,2(), WANG Peng-cheng2()
Received:
2022-07-26
Online:
2023-03-26
Published:
2023-04-10
SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation[J]. Biotechnology Bulletin, 2023, 39(3): 1-12.
[1] |
Seo J, Lee KJ. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches[J]. J Biochem Mol Biol, 2004, 37(1): 35-44.
pmid: 14761301 |
[2] |
Kurepa J, Walker JM, Smalle J, et al. The small ubiquitin-like modifier(SUMO)protein modification system in Arabidopsis. Accumulation of SUMO1 and-2 conjugates is increased by stress[J]. J Biol Chem, 2003, 278(9): 6862-6872.
doi: 10.1074/jbc.M209694200 URL |
[3] |
Park HC, Choi W, Park HJ, et al. Identification and molecular properties of SUMO-binding proteins in Arabidopsis[J]. Mol Cells, 2011, 32(2): 143-151.
doi: 10.1007/s10059-011-2297-3 URL |
[4] |
Yau TY, Sander W, Eidson C, et al. SUMO interacting motifs: structure and function[J]. Cells, 2021, 10(11): 2825.
doi: 10.3390/cells10112825 URL |
[5] |
Hanania U, Furman-Matarasso N, Ron M, et al. Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death[J]. Plant J, 1999, 19(5): 533-541.
doi: 10.1046/j.1365-313x.1999.00547.x pmid: 10504575 |
[6] |
Huang WC, Ko TP, Li SSL, et al. Crystal structures of the human SUMO-2 protein at 1.6 A and 1.2 A resolution: implication on the functional differences of SUMO proteins[J]. Eur J Biochem, 2004, 271(20): 4114-4122.
doi: 10.1111/ejb.2004.271.issue-20 URL |
[7] |
Bayer P, Arndt A, Metzger S, et al. Structure determination of the small ubiquitin-related modifier SUMO-1[J]. J Mol Biol, 1998, 280(2): 275-286.
pmid: 9654451 |
[8] |
Budhiraja R, Hermkes R, Müller S, et al. Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation[J]. Plant Physiol, 2009, 149(3): 1529-1540.
doi: 10.1104/pp.108.135053 pmid: 19151129 |
[9] |
Saracco SA, Miller MJ, Kurepa J, et al. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential[J]. Plant Physiol, 2007, 145(1): 119-134.
pmid: 17644626 |
[10] |
van den Burg HA, Kini RK, Schuurink RC, et al. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense[J]. Plant Cell, 2010, 22(6): 1998-2016.
doi: 10.1105/tpc.109.070961 URL |
[11] |
Colby T, Matthäi A, Boeckelmann A, et al. SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis[J]. Plant Physiol, 2006, 142(1): 318-332.
doi: 10.1104/pp.106.085415 URL |
[12] |
Elrouby N. Analysis of small ubiquitin-like modifier(SUMO)targets reflects the essential nature of protein SUMOylation and provides insight to elucidate the role of SUMO in plant development[J]. Plant Physiol, 2015, 169(2): 1006-1017.
doi: 10.1104/pp.15.01014 pmid: 26320229 |
[13] |
Desterro JM, Rodriguez MS, Kemp GD, et al. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1[J]. J Biol Chem, 1999, 274(15): 10618-10624.
doi: 10.1074/jbc.274.15.10618 pmid: 10187858 |
[14] |
Ghimire S, Tang X, Zhang N, et al. SUMO and SUMOylation in plant abiotic stress[J]. Plant Growth Regul, 2020, 91(3): 317-325.
doi: 10.1007/s10725-020-00624-1 |
[15] |
Augustine RC, Vierstra RD. SUMOylation: re-wiring the plant nucleus during stress and development[J]. Curr Opin Plant Biol, 2018, 45(Pt A): 143-154.
doi: S1369-5266(17)30239-X pmid: 30014889 |
[16] |
Sampson DA, Wang M, Matunis MJ. The small ubiquitin-like modifier-1(SUMO-1)consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification[J]. J Biol Chem, 2001, 276(24): 21664-21669.
doi: 10.1074/jbc.M100006200 pmid: 11259410 |
[17] |
Ishida T, Fujiwara S, Miura K, et al. SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis[J]. Plant Cell, 2009, 21(8): 2284-2297.
doi: 10.1105/tpc.109.068072 URL |
[18] |
Ishida T, Yoshimura M, Miura K, et al. MMS21/HPY2 and SIZ1, two Arabidopsis SUMO E3 ligases, have distinct functions in development[J]. PLoS One, 2012, 7(10): e46897.
doi: 10.1371/journal.pone.0046897 URL |
[19] |
Cheong MS, Park HC, Hong MJ, et al. Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes[J]. Plant Physiol, 2009, 151(4): 1930-1942.
doi: 10.1104/pp.109.143719 pmid: 19837819 |
[20] |
Garcia-Dominguez M, March-Diaz R, Reyes JC. The PHD domain of plant PIAS proteins mediates sumoylation of bromodomain GTE proteins[J]. J Biol Chem, 2008, 283(31): 21469-21477.
doi: 10.1074/jbc.M708176200 pmid: 18502747 |
[21] |
Suzuki R, Shindo H, Tase A, et al. Solution structures and DNA binding properties of the N-terminal SAP domains of SUMO E3 ligases from Saccharomyces cerevisiae and Oryza sativa[J]. Proteins Struct Funct Bioinform, 2009, 75(2): 336-347.
doi: 10.1002/prot.v75:2 URL |
[22] |
Son GH, Park BS, Song JT, et al. FLC-mediated flowering repression is positively regulated by sumoylation[J]. J Exp Bot, 2014, 65(1): 339-351.
doi: 10.1093/jxb/ert383 pmid: 24218331 |
[23] |
Hermkes R, Fu YF, Nürrenberg K, et al. Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1[J]. Planta, 2011, 233(1): 63-73.
doi: 10.1007/s00425-010-1281-z URL |
[24] |
Miura K, Hasegawa PM. Sumoylation and other ubiquitin-like post-translational modifications in plants[J]. Trends Cell Biol, 2010, 20(4): 223-232.
doi: 10.1016/j.tcb.2010.01.007 pmid: 20189809 |
[25] |
Hendriks IA, Lyon D, Young C, et al. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation[J]. Nat Struct Mol Biol, 2017, 24(3): 325-336.
doi: 10.1038/nsmb.3366 pmid: 28112733 |
[26] |
Rytz TC, Miller MJ, McLoughlin F, et al. SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress[J]. Plant Cell, 2018, 30(5): 1077-1099.
doi: 10.1105/tpc.17.00993 URL |
[27] |
van den Burg HA, Takken FLW. SUMO-, MAPK-, and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity[J]. Plant Signal Behav, 2010, 5(12): 1597-1601.
doi: 10.4161/psb.5.12.13913 pmid: 21150289 |
[28] |
Kachroo P, Liu HZ, Kachroo A. Salicylic acid: transport and long-distance immune signaling[J]. Curr Opin Virol, 2020, 42: 53-57.
doi: S1879-6257(20)30029-8 pmid: 32544865 |
[29] |
Lee J, Nam J, Park HC, et al. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase[J]. Plant J, 2007, 49(1): 79-90.
doi: 10.1111/tpj.2007.49.issue-1 URL |
[30] |
Niu D, Lin XL, Kong XX, et al. SIZ1-mediated SUMOylation of TPR1 suppresses plant immunity in Arabidopsis[J]. Mol Plant, 2019, 12(2): 215-228.
doi: S1674-2052(18)30368-X pmid: 30543996 |
[31] |
Verma V, Srivastava AK, Gough C, et al. SUMO enables substrate selectivity by mitogen-activated protein kinases to regulate immunity in plants[J]. Proc Natl Acad Sci USA, 2021, 118(10): e2021351118.
doi: 10.1073/pnas.2021351118 URL |
[32] |
Catala R, Ouyang J, Abreu IA, et al. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses[J]. Plant Cell, 2007, 19(9): 2952-2966.
doi: 10.1105/tpc.106.049981 URL |
[33] |
Miura K, Nozawa R. Overexpression of SIZ1 enhances tolerance to cold and salt stresses and attenuates response to abscisic acid in Arabidopsis thaliana[J]. Plant Biotechnol, 2014, 31(2): 167-172.
doi: 10.5511/plantbiotechnology.14.0109a URL |
[34] |
Kim JY, Song JT, Seo HS. Post-translational modifications of Arabidopsis E3 SUMO ligase AtSIZ1 are controlled by environmental conditions[J]. FEBS Open Bio, 2017, 7(10): 1622-1634.
doi: 10.1002/2211-5463.12309 URL |
[35] |
Miura K, Okamoto H, Okuma E, et al. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis[J]. Plant J, 2013, 73(1): 91-104.
doi: 10.1111/tpj.12014 URL |
[36] |
Zhang SC, Qi YL, Liu M, et al. SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana(F)[J]. J Integr Plant Biol, 2013, 55(1): 83-95.
doi: 10.1111/jipb.12024 URL |
[37] |
Castro PH, Couto D, Freitas S, et al. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana[J]. Plant Mol Biol, 2016, 92(1/2): 143-159.
doi: 10.1007/s11103-016-0500-9 URL |
[38] | Guerra D, Crosatti C, Khoshro HH, et al. Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms[J]. Front Plant Sci, 2015, 6: 57. |
[39] |
Cohen-Peer R, Schuster S, Meiri D, et al. Sumoylation of Arabidopsis heat shock factor A2(HsfA2)modifies its activity during acquired thermotholerance[J]. Plant Mol Biol, 2010, 74(1/2): 33-45.
doi: 10.1007/s11103-010-9652-1 URL |
[40] |
Hong Y, Rogers R, Matunis MJ, et al. Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification[J]. J Biol Chem, 2001, 276(43): 40263-40267.
doi: 10.1074/jbc.M104714200 pmid: 11514557 |
[41] |
Wang FG, Liu YY, Shi YQ, et al. SUMOylation stabilizes the transcription factor DREB2A to improve plant thermotolerance[J]. Plant Physiol, 2020, 183(1): 41-50.
doi: 10.1104/pp.20.00080 pmid: 32205452 |
[42] |
Miller MJ, Vierstra RD. Mass spectrometric identification of SUMO substrates provides insights into heat stress-induced SUMOylation in plants[J]. Plant Signal Behav, 2011, 6(1): 130-133.
doi: 10.4161/psb.6.1.14256 pmid: 21270536 |
[43] |
Zhu JK. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324.
doi: 10.1016/j.cell.2016.08.029 URL |
[44] |
Miura K, Jin JB, Lee J, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. Plant Cell, 2007, 19(4): 1403-1414.
doi: 10.1105/tpc.106.048397 URL |
[45] |
Raghothama KG. Phosphate acquisition[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 665-693.
doi: 10.1146/arplant.1999.50.issue-1 URL |
[46] |
Miura K, Rus A, Sharkhuu A, et al. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses[J]. Proc Natl Acad Sci USA, 2005, 102(21): 7760-7765.
doi: 10.1073/pnas.0500778102 URL |
[47] |
Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes Dev, 2001, 15(16): 2122-2133.
doi: 10.1101/gad.204401 URL |
[48] |
Foyer CH, Parry M, Noctor G. Markers and signals associated with nitrogen assimilation in higher plants[J]. J Exp Bot, 2003, 54(382): 585-593.
pmid: 12508069 |
[49] |
Park BS, Song JT, Seo HS. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1[J]. Nat Commun, 2011, 2: 400.
doi: 10.1038/ncomms1408 |
[50] |
Park BS, Kim SI, Seo HS. AtSIZ1 regulates expression of nitrite reductase but not its activity[J]. J Korean Soc Appl Biol Chem, 2013, 56(2): 243-245.
doi: 10.1007/s13765-012-3223-x URL |
[51] |
Fang Q, Zhang J, Zhang Y, et al. Regulation of aluminum resistance in Arabidopsis involves the SUMOylation of the zinc finger transcription factor STOP1[J]. Plant Cell, 2020, 32(12): 3921-3938.
doi: 10.1105/tpc.20.00687 URL |
[52] |
Fang Q, Zhang J, Yang DL, et al. The SUMO E3 ligase SIZ1 partially regulates STOP1 SUMOylation and stability in Arabidopsis thaliana[J]. Plant Signal Behav, 2021, 16(5): 1899487.
doi: 10.1080/15592324.2021.1899487 URL |
[53] |
Sadanandom A, Ádám É, Orosa B, et al. SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2015, 112(35): 11108-11113.
doi: 10.1073/pnas.1415260112 pmid: 26283376 |
[54] |
Bernula P, Pettkó-Szandtner A, Hajdu A, et al. Sumoylation of phytochrome interacting factor 3 promotes photomorphogenesis in Arabidopsis thaliana[J]. New Phytol, 2021, 229(4): 2050-2061.
doi: 10.1111/nph.17013 pmid: 33078389 |
[55] |
Qu GP, Li H, Lin XL, et al. Reversible SUMOylation of FHY1 regulates phytochrome A signaling in Arabidopsis[J]. Mol Plant, 2020, 13(6): 879-893.
doi: 10.1016/j.molp.2020.04.002 URL |
[56] |
Han X, Huang X, Deng XW. The photomorphogenic central repressor COP1: conservation and functional diversification during evolution[J]. Plant Commun, 2020, 1(3): 100044.
doi: 10.1016/j.xplc.2020.100044 URL |
[57] |
Lin XL, Niu D, Hu ZL, et al. An Arabidopsis SUMO E3 ligase, SIZ1, negatively regulates photomorphogenesis by promoting COP1 activity[J]. PLoS Genet, 2016, 12(4): e1006016.
doi: 10.1371/journal.pgen.1006016 URL |
[58] |
Kim JY, Jang IC, Seo HS. COP1 controls abiotic stress responses by modulating AtSIZ1 function through its E3 ubiquitin ligase activity[J]. Front Plant Sci, 2016, 7: 1182.
doi: 10.3389/fpls.2016.01182 pmid: 27536318 |
[59] |
Miura K, Lee J, Jin JB, et al. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling[J]. Proc Natl Acad Sci USA, 2009, 106(13): 5418-5423.
doi: 10.1073/pnas.0811088106 URL |
[60] |
Zheng Y, Schumaker KS, Guo Y. Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2012, 109(31): 12822-12827.
doi: 10.1073/pnas.1202630109 pmid: 22814374 |
[61] |
Guo RK, Sun WN. Sumoylation stabilizes RACK1B and enhance its interaction with RAP2.6 in the abscisic acid response[J]. Sci Rep, 2017, 7: 44090.
doi: 10.1038/srep44090 pmid: 28272518 |
[62] |
Zhang LE, Han Q, Xiong JW, et al. Sumoylation of BRI1-EMS-SUPPRESSOR 1(BES1)by the SUMO E3 ligase SIZ1 negatively regulates brassinosteroids signaling in Arabidopsis thaliana[J]. Plant Cell Physiol, 2019, 60(10): 2282-2292.
doi: 10.1093/pcp/pcz125 pmid: 31290980 |
[63] |
Crozet P, Margalha L, Butowt R, et al. SUMOylation represses SnRK1 signaling in Arabidopsis[J]. Plant J, 2016, 85(1): 120-133.
doi: 10.1111/tpj.13096 URL |
[64] |
Castro PH, Verde N, Lourenço T, et al. SIZ1-dependent post-translational modification by SUMO modulates sugar signaling and metabolism in Arabidopsis thaliana[J]. Plant Cell Physiol, 2015, 56(12): 2297-2311.
doi: 10.1093/pcp/pcv149 URL |
[65] |
Liu YY, Lai JB, Yu MY, et al. The Arabidopsis SUMO E3 ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation[J]. Plant Cell, 2016, 28(9): 2225-2237.
doi: 10.1105/tpc.16.00439 URL |
[66] |
Zhang JJ, Lai JB, Wang FG, et al. A SUMO ligase AtMMS21 regulates the stability of the chromatin remodeler BRAHMA in root development[J]. Plant Physiol, 2017, 173(3): 1574-1582.
doi: 10.1104/pp.17.00014 pmid: 28115583 |
[67] |
Liu FQ, Quesada V, Crevillén P, et al. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC[J]. Mol Cell, 2007, 28(3): 398-407.
doi: 10.1016/j.molcel.2007.10.018 URL |
[68] |
Jin JB, Jin YH, Lee J, et al. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure[J]. Plant J, 2008, 53(3): 530-540.
doi: 10.1111/j.1365-313X.2007.03359.x pmid: 18069938 |
[69] |
Kwak JS, Son GH, Kim SI, et al. Arabidopsis HIGH PLOIDY2 sumoylates and stabilizes flowering locus C through its E3 ligase activity[J]. Front Plant Sci, 2016, 7: 530.
doi: 10.3389/fpls.2016.00530 pmid: 27148346 |
[70] |
Kong XF, Hong YC, Hsu YF, et al. SIZ1-mediated SUMOylation of ROS1 enhances its stability and positively regulates active DNA demethylation in Arabidopsis[J]. Mol Plant, 2020, 13(12): 1816-1824.
doi: 10.1016/j.molp.2020.09.010 URL |
[71] |
Elrouby N, Coupland G. Proteome-wide screens for small ubiquitin-like modifier(SUMO)substrates identify Arabidopsis proteins implicated in diverse biological processes[J]. Proc Natl Acad Sci USA, 2010, 107(40): 17415-17420.
doi: 10.1073/pnas.1005452107 pmid: 20855607 |
[72] |
Amoresano A, Carpentieri A, Giangrande C, et al. Technical advances in proteomics mass spectrometry: identification of post-translational modifications[J]. Clin Chem Lab Med, 2009, 47(6): 647-665.
doi: 10.1515/CCLM.2009.154 pmid: 19426139 |
[73] |
Wang YS, Yu JX. Dissecting multiple roles of SUMOylation in prostate cancer[J]. Cancer Lett, 2021, 521: 88-97.
doi: 10.1016/j.canlet.2021.08.034 URL |
[74] |
López-Torrejón G, Guerra D, Catalá R, et al. Identification of SUMO targets by a novel proteomic approach in plants(F)[J]. J Integr Plant Biol, 2013, 55(1): 96-107.
doi: 10.1111/jipb.12012 URL |
[75] |
Miller MJ, Barrett-Wilt GA, Hua ZH, et al. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis[J]. Proc Natl Acad Sci USA, 2010, 107(38): 16512-16517.
doi: 10.1073/pnas.1004181107 URL |
[76] |
Miller MJ, Scalf M, Rytz TC, et al. Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in Arabidopsis[J]. Mol Cell Proteomics, 2013, 12(2): 449-463.
doi: 10.1074/mcp.M112.025056 URL |
[77] |
Ingole KD, Dahale SK, Bhattacharjee S. Proteomic analysis of SUMO1-SUMOylome changes during defense elicitation in Arabidopsis[J]. J Proteomics, 2021, 232: 104054.
doi: 10.1016/j.jprot.2020.104054 URL |
[78] |
Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition[J]. Nat Rev Mol Cell Biol, 2010, 11(12): 861-871.
doi: 10.1038/nrm3011 |
[79] |
Han YF, Zhao QY, Dang LL, et al. The SUMO E3 ligase-like proteins PIAL1 and PIAL2 interact with MOM1 and form a novel complex required for transcriptional silencing[J]. Plant Cell, 2016, 28(5): 1215-1229.
doi: 10.1105/tpc.15.00997 URL |
[80] |
Elrouby N, Bonequi MV, Porri A, et al. Identification of Arabidopsis SUMO-interacting proteins that regulate chromatin activity and developmental transitions[J]. PNAS, 2013, 110(49): 19956-19961.
doi: 10.1073/pnas.1319985110 pmid: 24255109 |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[3] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[4] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[5] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[6] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[7] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[8] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[9] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[10] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[11] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[12] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[13] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[14] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[15] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||