Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (7): 228-240.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1349
Previous Articles Next Articles
MA Jun-xiu(), WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei()
Received:
2022-11-03
Online:
2023-07-26
Published:
2023-08-17
Contact:
ZHANG Shu-mei
E-mail:2634643414@qq.com;1401135157@qq.com
MA Jun-xiu, WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei. Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects[J]. Biotechnology Bulletin, 2023, 39(7): 228-240.
菌株 Bacterium | 抑菌圈直径 Inhibition zone/mm | |||
---|---|---|---|---|
YC1 | BC2 | WWC2 | ||
DJ1 | 10.60 ± 0.20 a | 6.92 ± 0.56 a | 3.92 ± 0.16 a | |
MC1 | 8.32 ± 0.32 b | 6.18 ± 0.24 ab | 0.00 ± 0.00 b | |
SD2 | 4.72 ± 0.31 c | 5.30 ± 0.26 b | 0.00 ± 0.00 b | |
TD1 | 8.32 ± 0.82 b | 5.26 ± 0.36 b | 0.00 ±0.00 b | |
XHS1 | 9.16 ± 0.17 b | 6.96 ± 0.22 ab | 0.00 ± 0.00 b | |
SD1 | 10.66 ± 0.45 a | 5.4 ± 0.21 b | 0.00 ± 0.00 b |
Table 1 Inhibitions of the antagonistic strains against soft rot pathogens YC1, BC2, and WWC2
菌株 Bacterium | 抑菌圈直径 Inhibition zone/mm | |||
---|---|---|---|---|
YC1 | BC2 | WWC2 | ||
DJ1 | 10.60 ± 0.20 a | 6.92 ± 0.56 a | 3.92 ± 0.16 a | |
MC1 | 8.32 ± 0.32 b | 6.18 ± 0.24 ab | 0.00 ± 0.00 b | |
SD2 | 4.72 ± 0.31 c | 5.30 ± 0.26 b | 0.00 ± 0.00 b | |
TD1 | 8.32 ± 0.82 b | 5.26 ± 0.36 b | 0.00 ±0.00 b | |
XHS1 | 9.16 ± 0.17 b | 6.96 ± 0.22 ab | 0.00 ± 0.00 b | |
SD1 | 10.66 ± 0.45 a | 5.4 ± 0.21 b | 0.00 ± 0.00 b |
项目 Item | DJ1 | 文献 Referrence |
---|---|---|
海藻糖 Trehalose | - | +[ |
山梨醇 Sorbitol | + | +[ |
甘露醇 Mannitol | + | +[ |
纤维素分解 Cellulose decomposition | - | -[ |
吲哚反应 Indole reaction | - | -[ |
丙二酸盐利用 Malonate utilization | + | +[ |
柠檬酸盐利用 Citrate utilization | - | -[ |
明胶液化 Gelatin liquefaction | + | +[ |
果糖 Fructose | + | +[ |
蔗糖 Sucrose | + | +[ |
葡萄糖氧化发酵 Oxidative fermentation of glucose | + | +[ |
石蕊牛奶 Litmus milk | + | +[ |
接触酶 Contact enzyme | + | +[ |
硝酸盐还原 Nitrate reduction | + | -[ |
V-P试验 V-P test | + | +[ |
淀粉水解 Starch hydrolysis | + | +[ |
硫化氢 Hydrogen sulfide | - | -[ |
甲基红试验 Methyl red test | - | -[ |
1%-5% NaCl | + | * |
7% NaCl | - | * |
10% NaCl | - | * |
4℃ | - | * |
22-42℃ | + | * |
30℃ | 最适生长 | * |
Table 2 Physiological and biochemical characteristics of strain DJ1
项目 Item | DJ1 | 文献 Referrence |
---|---|---|
海藻糖 Trehalose | - | +[ |
山梨醇 Sorbitol | + | +[ |
甘露醇 Mannitol | + | +[ |
纤维素分解 Cellulose decomposition | - | -[ |
吲哚反应 Indole reaction | - | -[ |
丙二酸盐利用 Malonate utilization | + | +[ |
柠檬酸盐利用 Citrate utilization | - | -[ |
明胶液化 Gelatin liquefaction | + | +[ |
果糖 Fructose | + | +[ |
蔗糖 Sucrose | + | +[ |
葡萄糖氧化发酵 Oxidative fermentation of glucose | + | +[ |
石蕊牛奶 Litmus milk | + | +[ |
接触酶 Contact enzyme | + | +[ |
硝酸盐还原 Nitrate reduction | + | -[ |
V-P试验 V-P test | + | +[ |
淀粉水解 Starch hydrolysis | + | +[ |
硫化氢 Hydrogen sulfide | - | -[ |
甲基红试验 Methyl red test | - | -[ |
1%-5% NaCl | + | * |
7% NaCl | - | * |
10% NaCl | - | * |
4℃ | - | * |
22-42℃ | + | * |
30℃ | 最适生长 | * |
Fig. 4 Antibacterial activities of strain DJ1 against soft rot pathogen of Chinese cabbage(Brassica rapa var. glabra), onion(Allium cepa), and baby cabbage(Brassica pekinensis)in vitro 1: Control group. 2: BC2, YC1 and WWC2 treatment group. 3: DJ1 treatment group.(A is Chinese cabbage, B is onion, and C is baby cabbage)
Fig. 5 Control efficacy of strain DJ1 against soft rot pathogen of Chinese cabbage, onion, and baby cabbage in vitro Different lower letters indicate significant differences at P < 0.05 level. The same below
Fig. 6 Degradation activity of antagonistic bacteria on the quorum sensing signal factors of soft rot pathogen of Chinese cabbage A: Only 5 μmol/L signal factors control group. B: Treatment group added with strain DJ1. 1 and 2 is N-caproyl-L-homoserine lactone and N-3-ox-hexamyl-homoserine lactone respectively
Fig. 7 Inhibitory effects of strain DJ1 against different pathogenic fungi z1: R. solani. z2: A. oryzae. z3: F. oxysporium. z4: P. oryzae. z5: C. gloeosporioides. z6: F. graminearum. z7: F. moniliforme. z8: B. cinerea
病原细菌 Pathogenic bacterium | 抑菌圈直径 Inhibitive zone/mm |
---|---|
大肠杆菌 E. coli | 3.27 ± 0.12 a |
金黄色葡萄球菌 S. aureus | 1.63 ± 0.26 b |
绿脓杆菌 P. aeniginasa | 0.00 ± 0.00 c |
Table 3 Inhibitory effects of strain DJ1 against different pathogenic bacteria
病原细菌 Pathogenic bacterium | 抑菌圈直径 Inhibitive zone/mm |
---|---|
大肠杆菌 E. coli | 3.27 ± 0.12 a |
金黄色葡萄球菌 S. aureus | 1.63 ± 0.26 b |
绿脓杆菌 P. aeniginasa | 0.00 ± 0.00 c |
Fig. 8 Control effects of strain DJ1 against the soft rot pathogen BC2 of Chinese cabbage in field plots A: BC2 treatment group. B: DJ1 treatment group
处理 Treatment | 病情指数 Disease index | 防效 Control efficacy/% |
---|---|---|
对照CK | 66.89 ± 2.38 | — |
DJ1 | 13.48 ± 1.68 | 79.91 ± 2.08 |
Table 4 Control effects of strain DJ1 against the soft rot pathogen BC2 of Chinese cabbage in field plots
处理 Treatment | 病情指数 Disease index | 防效 Control efficacy/% |
---|---|---|
对照CK | 66.89 ± 2.38 | — |
DJ1 | 13.48 ± 1.68 | 79.91 ± 2.08 |
[1] | 景新. 蔬菜药物可改善人体健康[J]. 国外药讯, 2005(6): 32. |
Jing X. Vegetable medicine can improve human health[J]. World Pharm Newsl, 2005(6): 32. | |
[2] | 柳莲. 浅析蔬菜种植品种现状与发展趋势[J]. 河南农业, 2022(5): 26-27. |
Liu L. Analysis on the present situation and development trend of vegetable varieties[J]. Agric Henan, 2022(5): 26-27. | |
[3] | 昭东. 多吃蔬果可降低患痴呆风险[J]. 保健与生活, 2022(4): 37. |
Shao D. Eating more fruits and vegetables can reduce the risk of dementia[J]. Health Life, 2022(4): 37. | |
[4] |
Charkowski AO. The changing face of bacterial soft-rot diseases[J]. Annu Rev Phytopathol, 2018, 56: 269-288.
doi: 10.1146/annurev-phyto-080417-045906 pmid: 29958075 |
[5] | 杜迅, 胡宜亮, 何蔚荭, 等. 软腐白菜细菌群落结构多样性与生长环境的相关性[J]. 微生物学报, 2011, 51(12): 1639-1645. |
Du X, Hu YL, He I, et al. Correlation of bacterial diversity in rot Chinese cabbage with the habitat[J]. Acta Microbiol Sin, 2011, 51(12): 1639-1645. | |
[6] | 王勇, 高璐瑶, 张郑, 等. 黑龙江省洋葱主产区鳞茎致腐病原分离鉴定[J]. 东北农业大学学报, 2018, 49(2): 48-54. |
Wang Y, Gao LY, Zhang Z, et al. Isolation and identification of pathogenic bacteria from onion bulbs rot in main producing area of Heilongjiang Province[J]. J Northeast Agric Univ, 2018, 49(2): 48-54. | |
[7] |
Wegener CB. Induction of defence responses against Erwinia soft rot by an endogenous pectate lyase in potatoes[J]. Physiol Mol Plant Pathol, 2002, 60(2): 91-100.
doi: 10.1006/pmpp.2002.0377 URL |
[8] |
Moleleki LN, Onkendi EM, Mongae A, et al. Characterisation of pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa[J]. Eur J Plant Pathol, 2013, 135(2): 279-288.
doi: 10.1007/s10658-012-0084-4 URL |
[9] | 黄宇飞. 胡萝卜软腐果胶杆菌巴西亚种全基因组解析及致病相关基因功能研究[D]. 沈阳: 沈阳农业大学, 2019. |
Huang YF. Analysis of whole genome and pathogenic related gene function of Pectobacterium carotovorum subsp. brasiliense[D]. Shenyang: Shenyang Agricultural University, 2019. | |
[10] |
Xu XF, Lin T, Yuan SK, et al. Characterization of baseline sensitivity and resistance risk of Colletotrichum gloeosporioides complex isolates from strawberry and grape to two demethylation-inhibitor fungicides, prochloraz and tebuconazole[J]. Australasian Plant Pathol, 2014, 43(6): 605-613.
doi: 10.1007/s13313-014-0321-8 URL |
[11] |
李磊, 赵昱榕, 郑斐, 等. 芹菜软腐病拮抗芽胞杆菌筛选及防治效果[J]. 中国生物防治学报, 2020, 36(3): 388-395.
doi: 10.16409/j.cnki.2095-039x.2020.03.015 |
Li L, Zhao YR, Zheng F, et al. Screening and biocontrol of antagonistic Bacillus against celery soft rot[J]. Chin J Biol Control, 2020, 36(3): 388-395. | |
[12] |
Yi LH, Liu XQ, Qi T, et al. A new way to reduce postharvest loss of vegetables: Antibacterial products of vegetable fermentation and its controlling soft rot caused by Pectobacterium carotovorum[J]. Biol Control, 2021, 161: 104708.
doi: 10.1016/j.biocontrol.2021.104708 URL |
[13] | 王鹏鸣. 白菜软腐病的生物防治技术[J]. 现代园艺, 2016(5): 116-117. |
Wang PM. Biological control techniques of soft rot of Chinese cabbage[J]. Xiandai Hortic, 2016(5): 116-117. | |
[14] |
Li HY, Luo Y, Zhang XS, et al. Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against Gram-negative Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage[J]. FEMS Microbiol Lett, 2014, 354(1): 75-82.
doi: 10.1111/fml.2014.354.issue-1 URL |
[15] | 赵烁. 喷施超敏蛋白对葡萄生长结实及诱导抗性的作用研究[D]. 泰安: 山东农业大学, 2020. |
Zhao S. Study on the effect of spraying harpin protein on grape growth and induction resistance[D]. Tai'an: Shandong Agricultural University, 2020. | |
[16] |
Yuan XC, Zeng Q, Khokhani D, et al. A feed-forward signalling circuit controls bacterial virulence through linking cyclic di-GMP and two mechanistically distinct sRNAs, ArcZ and RsmB[J]. Environ Microbiol, 2019, 21(8): 2755-2771.
doi: 10.1111/1462-2920.14603 pmid: 30895662 |
[17] |
Arguelles-Arias A, Ongena M, Halimi B, et al. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens[J]. Microb Cell Fact, 2009, 8: 63.
doi: 10.1186/1475-2859-8-63 pmid: 19941639 |
[18] | 张莹, 李章胜, 毛碧增. 生防芽孢杆菌分泌的拮抗物质的研究进展[J]. 浙江农业科学, 2016, 57(12): 1960-1967. |
Zhang Y, Li ZS, Mao BZ. Research progress of antagonistic substances secreted by biocontrol Bacillus[J]. J Zhejiang Agric Sci, 2016, 57(12): 1960-1967. | |
[19] |
He PJ, Cui WY, He PB, et al. Bacillus amyloliquefaciens subsp. plantarum KC-1 inhibits Zantedeschia hybrida soft rot and promote plant growth[J]. Biol Control, 2021, 154: 104500.
doi: 10.1016/j.biocontrol.2020.104500 URL |
[20] | 李广, 李晓芬, 易兰花. 拮抗菌枯草芽孢杆菌1151及其所产抗菌肽对辣椒采后软腐病的控制作用[J]. 食品与发酵工业, 2023, 49(10):78-84. |
Li G, Li XF, Yi LH. Control effect of antagonistic Bacillus subtilis 1151 and its antimicrobial peptides on soft rot of postharvest pepper[J]. Food Ferment Ind, 2023, 49(10):78-84. | |
[21] |
Tsuda K, Tsuji G, Higashiyama M, et al. Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions[J]. Biol Control, 2016, 100: 63-69.
doi: 10.1016/j.biocontrol.2016.05.010 URL |
[22] | 冯迪南, 王梦瑶, 余成鹏, 等. 马铃薯软腐病菌室内药剂及拮抗细菌筛选[J]. 广东农业科学, 2018, 45(12): 69-75. |
Feng DN, Wang MY, Yu CP, et al. Screening of the agents and antagonistic bacteria to Pectobacterium carotovorum subsp. brasiliense[J]. Guangdong Agric Sci, 2018, 45(12): 69-75. | |
[23] |
耿妍, 张世昌, 郭荣君, 等. 贝莱斯芽胞杆菌B006对不同水肥条件下娃娃菜生长及软腐病防效的影响[J]. 中国生物防治学报, 2021, 37(3): 531-537.
doi: 10.16409/j.cnki.2095-039x.2021.04.004 |
Geng Y, Zhang SC, Guo RJ, et al. Plant growth promotion and soft rot disease control of Chinese cabbage affected by application of Bacillus velezensis B006 under different fertigation conditions[J]. Chin J Biol Control, 2021, 37(3): 531-537. | |
[24] |
Dong YH, Xu JL, Li XZ, et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora[J]. Proc Natl Acad Sci USA, 2000, 97(7): 3526-3531.
doi: 10.1073/pnas.97.7.3526 pmid: 10716724 |
[25] |
Kang JE, Han JW, Jeon BJ, et al. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica[J]. Microbiol Res, 2016, 184: 32-41.
doi: 10.1016/j.micres.2015.12.005 pmid: 26856451 |
[26] |
See-Too WS, Convey P, Pearce DA, et al. Characterization of a novel N-acylhomoserine lactonase, AidP, from Antarctic Planococcus sp[J]. Microb Cell Fact, 2018, 17(1): 179.
doi: 10.1186/s12934-018-1024-6 pmid: 30445965 |
[27] |
Zhang WP, Luo QQ, Zhang YY, et al. Quorum quenching in a novel Acinetobacter sp. XN-10 bacterial strain against Pectobacterium carotovorum subsp. carotovorum[J]. Microorganisms, 2020, 8(8): 1100.
doi: 10.3390/microorganisms8081100 URL |
[28] |
Fan XH, Ye T, Li QT, et al. Potential of a quorum quenching bacteria isolate Ochrobactrum intermedium D-2 against soft rot pathogen Pectobacterium carotovorum subsp. carotovorum[J]. Front Microbiol, 2020, 11: 898.
doi: 10.3389/fmicb.2020.00898 URL |
[29] |
Rodríguez M, Torres M, Blanco L, et al. Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6[J]. Sci Rep, 2020, 10(1): 4121.
doi: 10.1038/s41598-020-61084-1 pmid: 32139754 |
[30] | 崔双, 陈昌龙, 冯佳豪, 等. 魔芋软腐病致病菌Pectobacterium aroidearum的特征及贝莱斯芽孢杆菌的生防效果[J]. 中国蔬菜, 2021(3): 83-93. |
Cui S, Chen CL, Feng JH, et al. Characterization of Pectobacterium aroidearum causing konjac soft rot and biocontrol effect of Bacillus velezensis[J]. China Veg, 2021(3): 83-93. | |
[31] |
Zhao YC, Li PX, Huang KH, et al. Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action[J]. World J Microbiol Biotechnol, 2013, 29(3): 411-420.
doi: 10.1007/s11274-012-1193-0 URL |
[32] | 余婷, 林天兴, 龚明福. 魔芋内生细菌抗软腐病菌株筛选[J]. 井冈山大学学报: 自然科学版, 2015, 36(6): 52-55. |
Yu T, Lin TX, Gong MF. Screening of endophytic bacteria isolated from Amorphaphallus konjac against soft rot disease[J]. J Jinggangshan Univ Nat Sci, 2015, 36(6): 52-55. | |
[33] | 布坎南, 等. 伯杰细菌鉴定手册[M]. 8版. 北京: 科学出版社, 1984. |
Buchanan RE, et al. Bergey's manual of determinative bacteriology[M]. 8th ed. Beijing: Science Press, 1984. | |
[34] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 9-42. |
Dong XZ, Cai MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001: 9-42. | |
[35] | 李生樟, 陈颖, 杨瑞环, 等. 一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定[J]. 微生物学报, 2019, 59(10): 1969-1983. |
Li SZ, Chen Y, Yang RH, et al. Isolation and identification of a Bacillus velezensis strain against plant pathogenic Xanthomonas spp[J]. Acta Microbiol Sin, 2019, 59(10): 1969-1983. | |
[36] | 杨胜清. 贝莱斯芽孢杆菌S6的鉴定、发酵条件优化及其生防作用研究[D]. 长春: 吉林农业大学, 2017. |
Yang SQ. Identification, optimization of fermentation conditions of Bacillus velezensis strain S6 and its biocontrol effect[D]. Changchun: Jilin Agricultural University, 2017. | |
[37] |
章乐乐, 王冠, 柳凤, 等. 芒果炭疽病拮抗菌分离、鉴定及生防机制初步研究[J]. 生物技术通报, 2023, 39(4):277-287.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0908 |
Zhang LL, Wang G, Liu F, et al. Isolation, identification and biocontrol mechanism of antagonistic bacterium against anthracnose on mango caused by Colletotrichum gloeosporioides[J]. Biotechnol Bull, 2023, 39(4):277-287. | |
[38] |
Weisburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. J Bacteriol, 1991, 173(2): 697-703.
doi: 10.1128/jb.173.2.697-703.1991 pmid: 1987160 |
[39] |
Cui WY, He PJ, Munir S, et al. Biocontrol of soft rot of Chinese cabbage using an endophytic bacterial strain[J]. Front Microbiol, 2019, 10: 1471.
doi: 10.3389/fmicb.2019.01471 pmid: 31333608 |
[40] |
孙旺旺, 闫丽, 陈昌龙, 等. 生菜软腐和菌核病拮抗菌贝莱斯芽胞杆菌BPC6鉴定与防效[J]. 中国生物防治学报, 2020, 36(2): 231-240.
doi: 10.16409/j.cnki.2095-039x.2020.02.008 |
Sun WW, Yan L, Chen CL, et al. Identification and biocontrol effect of antagonistic bacterium Bacillus velezensis BPC6 against soft rot and Sclerotinia rot diseases on lettuce[J]. Chin J Biol Control, 2020, 36(2): 231-240. | |
[41] | 卢美欢, 李利军, 马英辉, 等. 埃吉类芽孢杆菌SWL-W8的鉴定及其对白菜软腐病的生物防治效果[J]. 农药学学报, 2020, 22(5): 791-800. |
Lu MH, Li LJ, Ma YH, et al. Identification of a strain Paenibacillus elgii SWL-W8 and its biocontrol effect against soft rot of Chinese cabbage[J]. Chin J Pestic Sci, 2020, 22(5): 791-800. | |
[42] |
Htwe Maung CE, Choub V, Cho JY, et al. Control of the bacterial soft rot pathogen, Pectobacterium carotovorum by Bacillus velezensis CE 100 in cucumber[J]. Microb Pathog, 2022, 173: 105807.
doi: 10.1016/j.micpath.2022.105807 URL |
[43] | 李永丽, 周洲, 曲良建, 等. 贝莱斯芽孢杆菌Pm9生物防治潜力及全基因组分析[J]. 河南农业大学学报, 2021, 55(6): 1081-1088. |
Li YL, Zhou Z, Qu LJ, et al. Biological control potential and complete genome analysis of Bacillus velezensis Pm9[J]. J Henan Agric Univ, 2021, 55(6): 1081-1088. | |
[44] | 任建雯, 罗云艳, 冯印印, 等. 贝莱斯芽孢杆菌RJW-5-5的分离鉴定及细菌素、抗菌肽基因簇挖掘[J]. 微生物学通报, 2021, 48(3): 742-754. |
Ren JW, Luo YY, Feng YY, et al. Isolation and identification of Bacillus velezensis RJW-5-5 and gene cluster mining of bacteriocin and RiPPs[J]. Microbiol China, 2021, 48(3): 742-754. | |
[45] |
闫助冰, 王玫, 明常军, 等. 贝莱斯芽孢杆菌XC1的筛选、鉴定及其对苹果连作障碍的影响[J]. 园艺学报, 2021, 48(3): 409-420.
doi: 10.16420/j.issn.0513-353x.2020-0476 |
Yan ZB, Wang M, Ming CJ, et al. Screening and identification of Bacillus velezensis XC1 and its influence on apple replant disease[J]. Acta Hortic Sin, 2021, 48(3): 409-420. | |
[46] | 张德锋, 高艳侠, 王亚军, 等. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11): 3634-3649. |
Zhang DF, Gao YX, Wang YJ, et al. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiol China, 2020, 47(11): 3634-3649. | |
[47] |
Sun PP, Cui JC, Jia XH, et al. Isolation and characterization of Bacillus amyloliquefaciens L-1 for biocontrol of pear ring rot[J]. Hortic Plant J, 2017, 3(5): 183-189.
doi: 10.1016/j.hpj.2017.10.004 URL |
[48] |
Cui LX, Yang CD, Wei LJ, et al. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab[J]. Biol Control, 2020, 141: 104156.
doi: 10.1016/j.biocontrol.2019.104156 URL |
[49] |
Calcagnile M, Tredici MS, Pennetta A, et al. Bacillus velezensis MT9 and Pseudomonas chlororaphis MT5 as biocontrol agents against citrus sooty mold and associated insect pests[J]. Biol Control, 2022, 176: 105091.
doi: 10.1016/j.biocontrol.2022.105091 URL |
[50] |
Zhou Z, Wu XZ, Li JY, et al. A novel quorum quencher, Rhodococcus pyridinivorans XN-36, is a powerful agent for the biocontrol of soft rot disease in various host plants[J]. Biol Control, 2022, 169: 104889.
doi: 10.1016/j.biocontrol.2022.104889 URL |
[51] |
Kachhadia R, Kapadia C, Singh S, et al. Quorum sensing inhibitory and quenching activity of Bacillus cereus RC1 extracts on soft rot-causing bacteria Lelliottia amnigena[J]. ACS Omega, 2022, 7(29): 25291-25308.
doi: 10.1021/acsomega.2c02202 pmid: 35910130 |
[52] | 欧婷, 金必堃, 高海英, 等. Bacillus velezensis SWUJ1拮抗物质分离纯化及抑菌机理研究[J]. 西南大学学报: 自然科学版, 2022, 44(1): 75-87. |
Ou T, Jin BK, Gao HY, et al. Purification and research of inhibitory mechanism of antagonist substances from Bacillus velezensis SWUJ1 strain[J]. J Southwest Univ Nat Sci Ed, 2022, 44(1): 75-87. | |
[53] | 滕毅. 类芽孢杆菌B69羊毛硫抗生素elgicins的分离鉴定及相关基因簇的分析[D]. 杭州: 浙江大学, 2012. |
Teng Y. Isolation and characterization of lantibiotic elgicins produced by Paenibacillus elgii B69 and analysis of the related gene cluster[D]. Hangzhou: Zhejiang University, 2012. | |
[54] |
Arguelles-Arias A, Ongena M, Halimi B, et al. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens[J]. Microb Cell Fact, 2009, 8: 63.
doi: 10.1186/1475-2859-8-63 pmid: 19941639 |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[3] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[4] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[5] | JIANG Hai-rong, CUI Ruo-qi, WANG Yue BAI, Miao ZHANG, Ming-lu , REN Lian-hai. Isolation, Identification and Degradation Characteristics of Functional Bacteria for NH3 and H2S Degradation [J]. Biotechnology Bulletin, 2023, 39(9): 246-254. |
[6] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[7] | ZHANG Yue-yi, LAN She-yi, PEI Hai-run, FENG Di. Process Optimization of Multi-strain Fermented Oat Bran and Hair Efficacy Evaluation [J]. Biotechnology Bulletin, 2023, 39(9): 58-70. |
[8] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
[9] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[10] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[11] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[12] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[13] | DONG Cong, GAO Qing-hua, WANG Yue, LUO Tong-yang, WANG Qing-qing. Increasing the Expression of FAD-dependent Glucose Dehydrogenase by Recombinant Pichia pastoris Using a Combined Strategy [J]. Biotechnology Bulletin, 2023, 39(6): 316-324. |
[14] | LI Xin-yi, JIANG Chun-xiu, XUE Li, JIANG Hong-tao, YAO Wei, DENG Zu-hu, ZHANG Mu-qing, YU Fan. Enhancing Hybridization Signal of Sugarcane Chromosome Oligonucleotide Probe via Multiple Fluorescence Labeled Primers [J]. Biotechnology Bulletin, 2023, 39(5): 103-111. |
[15] | WANG Yi-fan, HOU Lin-hui, CHANG Yong-chun, YANG Ya-jie, CHEN Tian, ZHAO Zhu-yue, RONG Er-hua, WU Yu-xiang. Synthesis and Character Identification of Allohexaploid Between Gossypium hirsutum and G. gossypioides [J]. Biotechnology Bulletin, 2023, 39(5): 168-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||