Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (8): 11-30.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0660
Previous Articles Next Articles
WANG Bao-bao1,2,3(), WANG Hai-yang4,5()
Received:
2023-07-11
Online:
2023-08-26
Published:
2023-09-05
Contact:
WANG Bao-bao, WANG Hai-yang
E-mail:wangbaobao@caas.cn;whyang@scau.edu.cn
WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant[J]. Biotechnology Bulletin, 2023, 39(8): 11-30.
[1] |
Cardwell VB. Fifty years of Minnesota corn production: sources of yield Increase[J]. Agron J, 1982, 74(6): 984-990.
doi: 10.2134/agronj1982.00021962007400060013x URL |
[2] |
Mansfield BD, Mumm RH. Survey of plant density tolerance in U.S. maize germplasm[J]. Crop Sci, 2014, 54(1): 157-173.
doi: 10.2135/cropsci2013.04.0252 URL |
[3] |
Troyer AF, Wellin EJ. Heterosis decreasing in hybrids: yield test inbreds[J]. Crop Sci, 2009, 49(6): 1969-1976.
doi: 10.2135/cropsci2009.04.0170 URL |
[4] | Russell WA. Genetic improvement of maize yields[J]. Adv Agron, 1991, 46: 245-298. |
[5] |
Duvick DN, Cassman KG. Post-green revolution trends in yield potential of temperate maize in the north-central United States[J]. Crop Sci, 1999, 39(6): 1622-1630.
doi: 10.2135/cropsci1999.3961622x URL |
[6] | Duvick D. Genetic progress in yield of United States maize(Zea mays L.)[J]. Maydica, 2005, 50: 193-202. |
[7] |
Hammer GL, Dong ZS, McLean G, et al. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt?[J]. Crop Sci, 2009, 49(1): 299-312.
doi: 10.2135/cropsci2008.03.0152 URL |
[8] | 刘鑫, 谢瑞芝, 牛兴奎, 等. 种植密度对东北地区不同年代玉米生产主推品种抗倒伏性能的影响[J]. 作物杂志, 2012(5): 126-130. |
Liu X, Xie RZ, Niu XK, et al. Effects of planting density on lodging resistance performance of maize varieties of different eras in north-east China[J]. Crops, 2012(5): 126-130. | |
[9] | 钱春荣, 于洋, 宫秀杰, 等. 黑龙江省不同年代玉米杂交种产量对种植密度和施氮水平的响应[J]. 作物学报, 2012, 38(10): 1864-1874. |
Qian CR, Yu Y, Gong XJ, et al. Response of grain yield to plant density and nitrogen application rate for maize hybrids released from different eras in Heilongjiang Province[J]. Acta Agron Sin, 2012, 38(10): 1864-1874.
doi: 10.3724/SP.J.1006.2012.01864 |
|
[10] |
李从锋, 赵明, 刘鹏, 等. 中国不同年代玉米单交种及其亲本主要性状演变对密度的响应[J]. 中国农业科学, 2013, 46(12): 2421-2429.
doi: 10.3864/j.issn.0578-1752.2013.12.003 |
Li CF, Zhao M, Liu P, et al. Responses of main traits of maize hybrids and their parents to density in different eras of China[J]. Sci Agric Sin, 2013, 46(12): 2421-2429. | |
[11] | 汤彬, 李宏志, 曹钟洋, 等. 不同种植密度对13个玉米品种产量及主要农艺性状的影响[J]. 湖南农业科学, 2013(1): 17-21. |
Tang B, Li HZ, Cao ZY, et al. Effects of different planting densities on yield and main agronomic characters of 13 maize varieties[J]. Hunan Agric Sci, 2013(1): 17-21. | |
[12] | 白向历, 姚永祥, 于兵, 等. 不同年代旅大红骨类群玉米自交系改良趋势研究[J]. 天津农业科学, 2015, 21(3): 113-117, 127. |
Bai XL, Yao YX, Yu B, et al. Study on modified trend of lyuda red cob group germplasm during different periods in China[J]. Tianjin Agric Sci, 2015, 21(3): 113-117, 127. | |
[13] |
Tetio-Kagho F, Gardner FP. Responses of maize to plant population density. I. canopy development, light relationships, and vegetative growth[J]. Agron J, 1988, 80(6): 930-935.
doi: 10.2134/agronj1988.00021962008000060018x URL |
[14] |
Lauer S, Hall BD, Mulaosmanovic E, et al. Morphological changes in parental lines of pioneer brand maize hybrids in the U.S. central corn belt[J]. Crop Sci, 2012, 52(3): 1033-1043.
doi: 10.1002/csc2.v52.3 URL |
[15] | 苏方宏. 玉米耐密性及耐密性育种[J]. 河北农业科学, 1997, 1(2): 14-16. |
Su FH. Maize density tolerance and density tolerance breeding[J]. J Hebei Agric Sci, 1997, 1(2): 14-16. | |
[16] |
Mock JJ, Pearce RB. An ideotype of maize[J]. Euphytica, 1975, 24(3): 613-623.
doi: 10.1007/BF00132898 URL |
[17] |
Wang BB, Lin ZC, Li X, et al. Genome-wide selection and genetic improvement during modern maize breeding[J]. Nat Genet, 2020, 52(6): 565-571.
doi: 10.1038/s41588-020-0616-3 pmid: 32341525 |
[18] |
Li CH, Guan HH, Jing X, et al. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding[J]. Nat Plants, 2022, 8(7): 750-763.
doi: 10.1038/s41477-022-01190-2 pmid: 35851624 |
[19] |
Ma DL, Xie RZ, Yu XF, et al. Historical trends in maize morphology from the 1950s to the 2010s in China[J]. J Integr Agric, 2022, 21(8): 2159-2167.
doi: 10.1016/S2095-3119(21)63697-3 URL |
[20] |
Lambert RJ, Johnson RR. Leaf angle, tassel morphology, and the performance of maize Hybrids[J]. Crop Sci, 1978, 18(3): 499-502.
doi: 10.2135/cropsci1978.0011183X001800030037x URL |
[21] |
Ku LX, Zhao WM, Zhang J, et al. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize(Zea mays L.)[J]. Theor Appl Genet, 2010, 121(5): 951-959.
doi: 10.1007/s00122-010-1364-z pmid: 20526576 |
[22] |
Li CH, Li YX, Shi YS, et al. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations[J]. PLoS One, 2015, 10(3): e0121624.
doi: 10.1371/journal.pone.0121624 URL |
[23] |
Duncan WG. Leaf angles, leaf area, and canopy Photosynthesis[J]. Crop Sci, 1971, 11(4): 482-485.
doi: 10.2135/cropsci1971.0011183X001100040006x URL |
[24] | 李登海, 张永慧, 翟延举, 等. 玉米株型在高产育种中的作用 Ⅰ.株型的增产作用[J]. 山东农业科学, 1992, 24(3): 4-8. |
Li DH, Zhang YH, Zhai YJ, et al. Effect of plant-type on maize breeding for higher yields 1. the role of plant-type in increasing yields[J]. Shandong Agric Sci, 1992, 24(3): 4-8. | |
[25] |
Sangoi L. Understanding plant density effects on maize growth and development: an important issue to maximize grain yield[J]. Cienc Rural, 2001, 31(1): 159-168.
doi: 10.1590/S0103-84782001000100027 URL |
[26] |
Tokatlidis IS, Koutroubas SD. A review of maize hybrids'dependence on high plant populations and its implications for crop yield stability[J]. Field Crops Res, 2004, 88(2/3): 103-114.
doi: 10.1016/j.fcr.2003.11.013 URL |
[27] | Nik MM, Babaeian M, Tavassoli A, et al. Effect of plant density on yield and yield components of corn hybrids(Zea mays)[J]. Sci Res Essays, 2011, 6: 4821-4825. |
[28] |
Franklin KA. Shade avoidance[J]. N Phytol, 2008, 179(4): 930-944.
doi: 10.1111/nph.2008.179.issue-4 URL |
[29] |
Maddonni GA, Otegui ME, Andrieu B, et al. Maize leaves turn away from neighbors[J]. Plant Physiol, 2002, 130(3): 1181-1189.
doi: 10.1104/pp.009738 pmid: 12427985 |
[30] |
Moreno MA, Harper LC, Krueger RW, et al. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis[J]. Genes Dev, 1997, 11(5): 616-628.
doi: 10.1101/gad.11.5.616 URL |
[31] |
Moon J, Candela H, Hake S. The Liguleless narrow mutation affects proximal-distal signaling and leaf growth[J]. Development, 2013, 140(2): 405-412.
doi: 10.1242/dev.085787 pmid: 23250214 |
[32] |
Walsh J, Waters CA, Freeling M. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary[J]. Genes Dev, 1998, 12(2): 208-218.
doi: 10.1101/gad.12.2.208 URL |
[33] |
Muehlbauer GJ, Fowler JE, Freeling M. Sectors expressing the homeobox gene liguleless3 implicate a time-dependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf[J]. Development, 1997, 124(24): 5097-5106.
doi: 10.1242/dev.124.24.5097 pmid: 9362467 |
[34] |
Bauer P, Lubkowitz M, Tyers R, et al. Regulation and a conserved intron sequence of liguleless3/4 Knox class-I homeobox genes in grasses[J]. Planta, 2004, 219(2): 359-368.
doi: 10.1007/s00425-004-1233-6 pmid: 15034715 |
[35] |
Kong FY, Zhang TT, Liu JS, et al. Regulation of leaf angle by auricle development in maize[J]. Mol Plant, 2017, 10(3): 516-519.
doi: S1674-2052(17)30037-0 pmid: 28216423 |
[36] |
Tian JG, Wang CL, Xia JL, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields[J]. Science, 2019, 365(6454): 658-664.
doi: 10.1126/science.aax5482 pmid: 31416957 |
[37] |
Juarez MT, Twigg RW, Timmermans MCP. Specification of adaxial cell fate during maize leaf development[J]. Development, 2004, 131(18): 4533-4544.
doi: 10.1242/dev.01328 pmid: 15342478 |
[38] |
Cao YY, Zhong ZJ, Wang HY, et al. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting[J]. Plant Biotechnol J, 2022, 20(3): 426-436.
doi: 10.1111/pbi.13780 pmid: 35075761 |
[39] |
Strable J, Wallace JG, Unger-Wallace E, et al. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture[J]. Plant Cell, 2017, 29(7): 1622-1641.
doi: 10.1105/tpc.16.00477 URL |
[40] |
Mantilla-Perez MB, Salas Fernandez MG. Differential manipulation of leaf angle throughout the canopy: current status and prospects[J]. J Exp Bot, 2017, 68(21/22): 5699-5717.
doi: 10.1093/jxb/erx378 URL |
[41] |
Johnston R, Wang MH, Sun Q, et al. Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation[J]. Plant Cell, 2014, 26(12): 4718-4732.
doi: 10.1105/tpc.114.132688 URL |
[42] |
Wang BB, Zhu L, Zhao BB, et al. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding[J]. Mol Plant, 2019, 12(4): 597-602.
doi: S1674-2052(19)30097-8 pmid: 30902686 |
[43] |
Hartwig T, Chuck GS, Fujioka S, et al. Brassinosteroid control of sex determination in maize[J]. Proc Natl Acad Sci USA, 2011, 108(49): 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275 |
[44] |
Tao YZ, Zheng J, Xu ZM, et al. Functional analysis of ZmDWF1, a maize homolog of the Arabidopsis brassinosteroids biosynthetic DWF1/DIM gene[J]. Plant Sci, 2004, 167(4): 743-751.
doi: 10.1016/j.plantsci.2004.05.012 URL |
[45] |
Liu TS, Zhang JP, Wang MY, et al. Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize(Zea mays L.)[J]. Plant Cell Rep, 2007, 26(12): 2091-2099.
doi: 10.1007/s00299-007-0418-4 URL |
[46] |
Makarevitch I, Thompson A, Muehlbauer GJ, et al. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase[J]. PLoS One, 2012, 7(1): e30798.
doi: 10.1371/journal.pone.0030798 URL |
[47] |
Kir G, Ye HX, Nelissen H, et al. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture[J]. Plant Physiol, 2015, 169(1): 826-839.
doi: 10.1104/pp.15.00367 pmid: 26162429 |
[48] |
Ren ZZ, Wu LC, Ku LX, et al. ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize[J]. Plant Biotechnol J, 2020, 18(4): 881-883.
doi: 10.1111/pbi.13255 pmid: 31529573 |
[49] |
Wei L, Zhang X, Zhang ZH, et al. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture[J]. Heredity, 2018, 121(1): 75-86.
doi: 10.1038/s41437-018-0056-3 |
[50] |
Li HC, Wang LJ, Liu MS, et al. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7[J]. Plant Physiol, 2020, 183(3): 1184-1199.
doi: 10.1104/pp.19.01421 URL |
[51] |
Zhang J, Ku LX, Han ZP, et al. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize(Zea mays L.)[J]. J Exp Bot, 2014, 65(17): 5063-5076.
doi: 10.1093/jxb/eru271 pmid: 24987012 |
[52] |
Ku LX, Wei XM, Zhang SF, et al. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize(Zea mays L.)[J]. PLoS One, 2011, 6(6): e20621.
doi: 10.1371/journal.pone.0020621 URL |
[53] |
Tian F, Bradbury PJ, Brown PJ, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population[J]. Nat Genet, 2011, 43(2): 159-162.
doi: 10.1038/ng.746 pmid: 21217756 |
[54] |
Duncan WG, Williams WA, Loomis RS. Tassels and the productivity of maize[J]. Crop Sci, 1967, 7(1): 37-39.
doi: 10.2135/cropsci1967.0011183X000700010013x URL |
[55] | 岳玉兰, 朱敏, 于雷, 等. 玉米雄穗对产量影响研究进展[J]. 玉米科学, 2010, 18(4): 150-152. |
Yue YL, Zhu M, Yu L, et al. Research progress on the impact of maize tassel on yield[J]. J Maize Sci, 2010, 18(4): 150-152. | |
[56] | 冀华, 李宏, 张树伟. 玉米雌雄穗发育及其与产量的关系[J]. 山西农业科学, 2011, 39(7): 754-755, 774. |
Ji H, Li H, Zhang SW. Differentiation and growth of the male and female ears and the relationship with yield in maize[J]. J Shanxi Agric Sci, 2011, 39(7): 754-755, 774. | |
[57] | 董炳友, 张树光, 宋义军, 等. 玉米雄穗性状的产量效应及遗传表达[J]. 黑龙江八一农垦大学学报, 2000, 12(1): 1-6. |
Dong BY, Zhang SG, Song YJ, et al. Genetic expression and yield's effecting of the male spike characters on maize[J]. J Heilongjinag August First Land Reclam Univ, 2000, 12(1): 1-6. | |
[58] | 梁海书, 周洪林, 飞兴文. 玉米散粉末期实行全田去雄增产效果好[J]. 云南农业科技, 1992(3): 40. |
Liang HS, Zhou HL, Fei XW. The effect of emasculating the whole field at the end of maize loose powder is good[J]. Yunnan Agric Sci Technol, 1992(3): 40. | |
[59] | 张士龙. 玉米雄穗的产量效应及其栽培学应用研究[D]. 大庆: 黑龙江八一农垦大学, 2006. |
Zhang SL. Effect of maize tassel on yield and its application in cultivation[D]. Daqing: Heilongjiang Bayi Agricultural University, 2006. | |
[60] |
Upadyayula N, da Silva HS, Bohn MO, et al. Genetic and QTL analysis of maize tassel and ear inflorescence architecture[J]. Theor Appl Genet, 2006, 112(4): 592-606.
doi: 10.1007/s00122-005-0133-x pmid: 16395569 |
[61] |
Zhang DB, Yuan Z. Molecular control of grass inflorescence development[J]. Annu Rev Plant Biol, 2014, 65: 553-578.
doi: 10.1146/annurev-arplant-050213-040104 pmid: 24471834 |
[62] |
Taguchi-Shiobara F, Yuan Z, Hake S, et al. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize[J]. Genes Dev, 2001, 15(20): 2755-2766.
doi: 10.1101/gad.208501 URL |
[63] |
Bommert P, Lunde CN, Nardmann J, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase[J]. Development, 2005, 132(6): 1235-1245.
doi: 10.1242/dev.01671 pmid: 15716347 |
[64] |
Zhang D, Sun W, Singh R, et al. GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize[J]. Plant Cell, 2018, 30(2): 360-374.
doi: 10.1105/tpc.17.00791 URL |
[65] |
Bomblies K, Wang RL, Ambrose BA, et al. Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize[J]. Development, 2003, 130(11): 2385-2395.
doi: 10.1242/dev.00457 pmid: 12702653 |
[66] |
Bomblies K, Doebley JF. Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication[J]. Genetics, 2006, 172(1): 519-531.
doi: 10.1534/genetics.105.048595 pmid: 16204211 |
[67] |
Chuck G, Muszynski M, Kellogg E, et al. The control of spikelet meristem identity by the branched silkless1 gene in maize[J]. Science, 2002, 298(5596): 1238-1241.
doi: 10.1126/science.1076920 pmid: 12424380 |
[68] |
Thompson BE, Basham C, Hammond R, et al. The dicer-like1 homolog fuzzy tassel is required for the regulation of meristem determinacy in the inflorescence and vegetative growth in maize[J]. Plant Cell, 2014, 26(12): 4702-4717.
doi: 10.1105/tpc.114.132670 URL |
[69] |
Chuck G, Meeley RB, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1[J]. Genes Dev, 1998, 12(8): 1145-1154.
doi: 10.1101/gad.12.8.1145 URL |
[70] |
Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1[J]. Development, 2008, 135(18): 3013-3019.
doi: 10.1242/dev.024273 URL |
[71] |
Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, et al. Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance[J]. Development, 1997, 124(16): 3045-3054.
doi: 10.1242/dev.124.16.3045 pmid: 9272946 |
[72] |
Bolduc N, Hake S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1[J]. Plant Cell, 2009, 21(6): 1647-1658.
doi: 10.1105/tpc.109.068221 pmid: 19567707 |
[73] |
Tsuda K, Abraham-Juarez MJ, Maeno A, et al. KNOTTED 1 cofactors, BLH12 and BLH14, regulate internode patterning and vein anastomosis in maize[J]. Plant Cell, 2017, 29(5): 1105-1118.
doi: 10.1105/tpc.16.00967 URL |
[74] |
Woodward JB, Abeydeera ND, Paul D, et al. A maize thiamine auxotroph is defective in shoot meristem maintenance[J]. Plant Cell, 2010, 22(10): 3305-3317.
doi: 10.1105/tpc.110.077776 URL |
[75] |
Chatterjee M, Tabi Z, Galli M, et al. The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility[J]. Plant Cell, 2014, 26(7): 2962-2977.
doi: 10.1105/tpc.114.125963 URL |
[76] |
Phillips KA, Skirpan AL, Liu X, et al. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize[J]. Plant Cell, 2011, 23(2): 550-566.
doi: 10.1105/tpc.110.075267 URL |
[77] |
Gallavotti A, Barazesh S, Malcomber S, et al. sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize[J]. Proc Natl Acad Sci USA, 2008, 105(39): 15196-15201.
doi: 10.1073/pnas.0805596105 pmid: 18799737 |
[78] |
McSteen P, Malcomber S, Skirpan A, et al. barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize[J]. Plant Physiol, 2007, 144(2): 1000-1011.
doi: 10.1104/pp.107.098558 pmid: 17449648 |
[79] |
Gallavotti A, Zhao Q, Kyozuka J, et al. The role of barren stalk1 in the architecture of maize[J]. Nature, 2004, 432(7017): 630-635.
doi: 10.1038/nature03148 |
[80] |
Gallavotti A, Malcomber S, Gaines C, et al. BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears[J]. Plant Cell, 2011, 23(5): 1756-1771.
doi: 10.1105/tpc.111.084590 URL |
[81] |
Bai F, Reinheimer R, Durantini D, et al. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1(BAD1), is required for normal tassel branch angle formation in maize[J]. Proc Natl Acad Sci USA, 2012, 109(30): 12225-12230.
doi: 10.1073/pnas.1202439109 URL |
[82] |
Vollbrecht E, Springer PS, Goh L, et al. Architecture of floral branch systems in maize and related grasses[J]. Nature, 2005, 436(7054): 1119-1126.
doi: 10.1038/nature03892 |
[83] |
Bortiri E, Chuck G, Vollbrecht E, et al. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize[J]. Plant Cell, 2006, 18(3): 574-585.
doi: 10.1105/tpc.105.039032 URL |
[84] |
Satoh-Nagasawa N, Nagasawa N, Malcomber S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize[J]. Nature, 2006, 441(7090): 227-230.
doi: 10.1038/nature04725 URL |
[85] |
Gallavotti A, Long JA, Stanfield S, et al. The control of axillary meristem fate in the maize ramosa pathway[J]. Development, 2010, 137(17): 2849-2856.
doi: 10.1242/dev.051748 pmid: 20699296 |
[86] |
Chuck G, Whipple C, Jackson D, et al. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries[J]. Development, 2010, 137(8): 1243-1250.
doi: 10.1242/dev.048348 pmid: 20223762 |
[87] |
Chuck GS, Brown PJ, Meeley R, et al. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation[J]. Proc Natl Acad Sci USA, 2014, 111(52): 18775-18780.
doi: 10.1073/pnas.1407401112 pmid: 25512525 |
[88] |
Walsh J, Freeling M. The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex[J]. Plant J, 1999, 19(4): 489-495.
doi: 10.1046/j.1365-313x.1999.00541.x pmid: 10504571 |
[89] |
Liu YT, Wu GX, Zhao YP, et al. DWARF53 interacts with transcription factors UB2/UB3/TSH4 to regulate maize tillering and tassel branching[J]. Plant Physiol, 2021, 187(2): 947-962.
doi: 10.1093/plphys/kiab259 pmid: 34608948 |
[90] |
Colasanti J, Yuan Z, Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize[J]. Cell, 1998, 93(4): 593-603.
pmid: 9604934 |
[91] |
Muszynski MG, Dam T, Li BL, et al. delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize[J]. Plant Physiol, 2006, 142(4): 1523-1536.
pmid: 17071646 |
[92] |
Danilevskaya ON, Meng X, Ananiev EV. Concerted modification of flowering time and inflorescence architecture by ectopic expression of TFL1-like genes in maize[J]. Plant Physiol, 2010, 153(1): 238-251.
doi: 10.1104/pp.110.154211 pmid: 20200067 |
[93] |
Stephenson E, Estrada S, Meng X, et al. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize[J]. PLoS One, 2019, 14(2): e0203728.
doi: 10.1371/journal.pone.0203728 URL |
[94] |
Wang BB, Hou M, Shi JP, et al. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis[J]. Nat Genet, 2023, 55(2): 312-323.
doi: 10.1038/s41588-022-01283-w |
[95] |
Liu L, Du YF, Shen XM, et al. KRN4 controls quantitative variation in maize kernel row number[J]. PLoS Genet, 2015, 11(11): e1005670.
doi: 10.1371/journal.pgen.1005670 URL |
[96] |
Peng J, Richards DE, Hartley NM, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400(6741): 256-261.
doi: 10.1038/22307 |
[97] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. Green revolution: a mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882): 701-702.
doi: 10.1038/416701a |
[98] | 陈德龙. 不同抗倒能力玉米品种茎秆及根系等相关特征研究[D]. 长春: 吉林农业大学, 2015. |
Chen DL. Research on features of stalks and roots of maize varieties with different lodging resistance[D]. Changchun: Jilin Agricultural University, 2015. | |
[99] | 王宇翔. 玉米后期倒伏的易损性分析[C]// 河南省气象学会2010年年会. 河南: 河南省气象学会, 2010. |
Wang YX. Vulnerability analysis of maize lodging during late stage[C]// 2010 Annual Meeting of Henan Meteorological Society. Henan: Henan Meteorological Society, 2010. | |
[100] | 席吉龙, 张建诚, 姚景珍, 等. 夏玉米灌浆期倒伏对产量的影响模拟研究[J]. 山西农业科学, 2015, 43(6): 705-708. |
Xi JL, Zhang JC, Yao JZ, et al. Simulation study on the influence of filling summer corn lodging on yield[J]. J Shanxi Agric Sci, 2015, 43(6): 705-708. | |
[101] |
Kebrom TH, Brutnell TP. The molecular analysis of the shade avoidance syndrome in the grasses has begun[J]. J Exp Bot, 2007, 58(12): 3079-3089.
pmid: 17921475 |
[102] |
Dubois PG, Brutnell TP. Topology of a maize field: distinguishing the influence of end-of-day far-red light and shade avoidance syndrome on plant height[J]. Plant Signal Behav, 2011, 6(4): 467-470.
doi: 10.4161/psb.6.4.14305 pmid: 21364314 |
[103] |
Wu QY, Xu F, Jackson D. All together now, a magical mystery tour of the maize shoot meristem[J]. Curr Opin Plant Biol, 2018, 45(Pt A): 26-35.
doi: S1369-5266(18)30024-4 pmid: 29778985 |
[104] |
Zhang QS, Cheetamun R, Dhugga KS, et al. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes[J]. BMC Plant Biol, 2014, 14: 27.
doi: 10.1186/1471-2229-14-27 pmid: 24423166 |
[105] |
Peiffer JA, Romay MC, Gore MA, et al. The genetic architecture of maize height[J]. Genetics, 2014, 196(4): 1337-1356.
doi: 10.1534/genetics.113.159152 pmid: 24514905 |
[106] |
Spielmeyer W, Ellis MH, Chandler PM. Semidwarf(sd-1), green revolution rice, contains a defective gibberellin 20-oxidase gene[J]. Proc Natl Acad Sci USA, 2002, 99(13): 9043-9048.
doi: 10.1073/pnas.132266399 pmid: 12077303 |
[107] |
Pearce S, Saville R, Vaughan SP, et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat[J]. Plant Physiol, 2011, 157(4): 1820-1831.
doi: 10.1104/pp.111.183657 pmid: 22013218 |
[108] |
Bensen RJ, Johal GS, Crane VC, et al. Cloning and characterization of the maize An1 gene[J]. Plant Cell, 1995, 7(1): 75-84.
doi: 10.1105/tpc.7.1.75 pmid: 7696880 |
[109] |
Hedden P, Phinney BO. Comparison of ent-kaurene and ent-isokaurene synthesis in cell-free systems from etiolated shoots of normal and dwarf-5 maize seedlings[J]. Phytochemistry, 1979, 18(9): 1475-1479.
doi: 10.1016/S0031-9422(00)98478-4 URL |
[110] |
Harris LJ, Saparno A, Johnston A, et al. The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase[J]. Plant Mol Biol, 2005, 59(6): 881-894.
doi: 10.1007/s11103-005-1674-8 pmid: 16307364 |
[111] | Winkler RG and Helentjaris T. Transposon-tagging of the dwarf3 gene, which controls a cytochrome P450-mediated step early in the biosynthesis of gibberellins[J]. Maize Genetics Cooperation Newsletter, 1995,(69):125-126. |
[112] |
Chen Y, Hou MM, Liu LJ, et al. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol[J]. Plant Physiol, 2014, 166(4): 2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533 |
[113] |
Zhang JJ, Zhang XF, Chen RR, et al. Generation of transgene-free semidwarf maize plants by gene editing of Gibberellin-Oxidase20-3 using CRISPR/Cas9[J]. Front Plant Sci, 2020, 11: 1048.
doi: 10.3389/fpls.2020.01048 URL |
[114] |
Paciorek T, Chiapelli BJ, Wang JY, et al. Targeted suppression of gibberellin biosynthetic genes ZmGA20ox3 and ZmGA20ox5 produces a short stature maize ideotype[J]. Plant Biotechnol J, 2022, 20(6): 1140-1153.
doi: 10.1111/pbi.13797 pmid: 35244326 |
[115] |
Cassani E, Bertolini E, Badone FC, et al. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene[J]. Mol Breeding, 2009, 24(4): 375-385.
doi: 10.1007/s11032-009-9298-3 URL |
[116] |
Lawit SJ, Wych HM, Xu DP, et al. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development[J]. Plant Cell Physiol, 2010, 51(11): 1854-1868.
doi: 10.1093/pcp/pcq153 pmid: 20937610 |
[117] |
Zhao BB, Xu MY, Zhao YP, et al. Overexpression of ZmSPL12 confers enhanced lodging resistance through transcriptional regulation of D1 in maize[J]. Plant Biotechnol J, 2022, 20(4): 622-624.
doi: 10.1111/pbi.v20.4 URL |
[118] |
Multani DS, Briggs SP, Chamberlin MA, et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642): 81-84.
doi: 10.1126/science.1086072 pmid: 14526073 |
[119] |
Avila LM, Cerrudo D, Swanton C, et al. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize[J]. J Exp Bot, 2016, 67(5): 1577-1588.
doi: 10.1093/jxb/erv554 pmid: 26767748 |
[120] |
Li ZX, Zhang XR, Zhao YJ, et al. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height[J]. Plant Biotechnol J, 2018, 16(1): 86-99.
doi: 10.1111/pbi.12751 pmid: 28499064 |
[121] |
Guan JC, Koch KE, Suzuki M, et al. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork[J]. Plant Physiol, 2012, 160(3): 1303-1317.
doi: 10.1104/pp.112.204503 pmid: 22961131 |
[122] |
Bommert P, Whipple C. Grass inflorescence architecture and meristem determinacy[J]. Semin Cell Dev Biol, 2018, 79: 37-47.
doi: S1084-9521(16)30498-0 pmid: 29020602 |
[123] |
Bommert P, Je BI, Goldshmidt A, et al. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size[J]. Nature, 2013, 502(7472): 555-558.
doi: 10.1038/nature12583 |
[124] |
Jiang FK, Guo M, Yang F, et al. Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize[J]. PLoS One, 2012, 7(5): e37040.
doi: 10.1371/journal.pone.0037040 URL |
[125] |
Sawers RJH, Linley PJ, Farmer PR, et al. elongated mesocotyl1, a phytochrome-deficient mutant of maize[J]. Plant Physiol, 2002, 130(1): 155-163.
pmid: 12226496 |
[126] |
Sheehan MJ, Kennedy LM, Costich DE, et al. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize[J]. Plant J, 2007, 49(2): 338-353.
pmid: 17181778 |
[127] |
Zhao YP, Zhao BB, Wu GX, et al. Creation of two hyperactive variants of phytochrome B1 for attenuating shade avoidance syndrome in maize[J]. J Integr Agric, 2022, 21(5): 1253-1265.
doi: 10.1016/S2095-3119(20)63466-9 URL |
[128] |
Li QQ, Wu GX, Zhao YP, et al. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height[J]. Plant Biotechnol J, 2020, 18(12): 2520-2532.
doi: 10.1111/pbi.v18.12 URL |
[129] |
Leivar P, Monte E. PIFs: systems integrators in plant development[J]. Plant Cell, 2014, 26(1): 56-78.
doi: 10.1105/tpc.113.120857 URL |
[130] |
Wu GX, Zhao YP, Shen RX, et al. Characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis[J]. Plant Physiol, 2019, 181(2): 789-803.
doi: 10.1104/pp.19.00239 pmid: 31350363 |
[131] |
Smith LG, Gerttula SM, Han S, et al. Tangled1: a microtubule binding protein required for the spatial control of cytokinesis in maize[J]. J Cell Biol, 2001, 152(1): 231-236.
doi: 10.1083/jcb.152.1.231 pmid: 11149933 |
[132] |
Li W, Ge FH, Qiang ZQ, et al. Maize ZmRPH1 encodes a microtubule-associated protein that controls plant and ear height[J]. Plant Biotechnol J, 2020, 18(6): 1345-1347.
doi: 10.1111/pbi.13292 pmid: 31696605 |
[133] |
Zhang HW, Wang X, Pan QC, et al. QTG-seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples[J]. Mol Plant, 2019, 12(3): 426-437.
doi: S1674-2052(18)30385-X pmid: 30597214 |
[134] |
Li CY, Li YY, Song GS, et al. Gene expression and expression quantitative trait loci analyses uncover natural variations underlying the improvement of important agronomic traits during modern maize breeding[J]. Plant J, 2023, 115(3): 772-787.
doi: 10.1111/tpj.v115.3 URL |
[135] |
Provencher LM, Miao L, Sinha N, et al. Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling[J]. Plant Cell, 2001, 13(5): 1127-1141.
pmid: 11340186 |
[136] |
Wen TJ, Hochholdinger F, Sauer M, et al. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis[J]. Plant Physiol, 2005, 138(3): 1637-1643.
doi: 10.1104/pp.105.062174 URL |
[137] |
Becraft PW, Kang SH, Suh SG. The maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response[J]. Plant Physiol, 2001, 127(2): 486-496.
pmid: 11598223 |
[138] |
Suzuki M, Latshaw S, Sato Y, et al. The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development[J]. Plant Physiol, 2008, 146(3): 1193-1206.
doi: 10.1104/pp.107.114108 URL |
[139] |
Tsiantis M, Schneeberger R, Golz JF, et al. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants[J]. Science, 1999, 284(5411): 154-156.
doi: 10.1126/science.284.5411.154 pmid: 10102817 |
[140] |
王克如, 李少昆. 玉米籽粒脱水速率影响因素分析[J]. 中国农业科学, 2017, 50(11): 2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008 |
Wang KR, Li SK. Analysis of influencing factors on kernel dehydration rate of maize hybrids[J]. Sci Agric Sin, 2017, 50(11): 2027-2035. | |
[141] |
Zhang ZH, Zhang X, Lin ZL, et al. The genetic architecture of nodal root number in maize[J]. Plant J, 2018, 93(6): 1032-1044.
doi: 10.1111/tpj.2018.93.issue-6 URL |
[142] |
Poethig RS. The past, present, and future of vegetative phase change[J]. Plant Physiol, 2010, 154(2): 541-544.
doi: 10.1104/pp.110.161620 pmid: 20921181 |
[143] |
Meng X, Muszynski MG, Danilevskaya ON. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize[J]. Plant Cell, 2011, 23(3): 942-960.
doi: 10.1105/tpc.110.081406 URL |
[144] |
Buckler ES, Holland JB, Bradbury PJ, et al. The genetic architecture of maize flowering time[J]. Science, 2009, 325(5941): 714-718.
doi: 10.1126/science.1174276 pmid: 19661422 |
[145] |
Li YX, Li CH, Bradbury PJ, et al. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population[J]. Plant J, 2016, 86(5): 391-402.
doi: 10.1111/tpj.2016.86.issue-5 URL |
[146] |
Dong ZS, Danilevskaya O, Abadie T, et al. A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling[J]. PLoS One, 2012, 7(8): e43450.
doi: 10.1371/journal.pone.0043450 URL |
[147] |
Sawers RJH, Sheehan MJ, Brutnell TP. Cereal phytochromes: targets of selection, targets for manipulation?[J]. Trends Plant Sci, 2005, 10(3): 138-143.
pmid: 15749472 |
[148] |
Zhao XY, Liu HJ, Wei XM, et al. Promoter region characterization of ZmPhyB2 associated with the photoperiod-dependent floral transition in maize(Zea mays L.)[J]. Mol Breeding, 2014, 34(3): 1413-1422.
doi: 10.1007/s11032-014-0125-0 URL |
[149] |
Miller TA, Muslin EH, Dorweiler JE. A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods[J]. Planta, 2008, 227(6): 1377-1388.
doi: 10.1007/s00425-008-0709-1 pmid: 18301915 |
[150] |
Khan S, Rowe SC, Harmon FG. Coordination of the maize transcriptome by a conserved circadian clock[J]. BMC Plant Biol, 2010, 10: 126.
doi: 10.1186/1471-2229-10-126 pmid: 20576144 |
[151] |
Wang XT, Wu LJ, Zhang SF, et al. Robust expression and association of ZmCCA1 with circadian rhythms in maize[J]. Plant Cell Rep, 2011, 30(7): 1261-1272.
doi: 10.1007/s00299-011-1036-8 pmid: 21327386 |
[152] |
Hung HY, Shannon LM, Tian F, et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize[J]. Proc Natl Acad Sci USA, 2012, 109(28): E1913-E1921.
doi: 10.1073/pnas.1117158109 URL |
[153] |
Bendix C, Mendoza JM, Stanley DN, et al. The circadian clock-associated gene gigantea1 affects maize developmental transitions[J]. Plant Cell Environ, 2013, 36(7): 1379-1390.
doi: 10.1111/pce.2013.36.issue-7 URL |
[154] |
Yang Q, Li Z, Li WQ, et al. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize[J]. Proc Natl Acad Sci USA, 2013, 110(42): 16969-16974.
doi: 10.1073/pnas.1310949110 pmid: 24089449 |
[155] | Huang C, Sun HY, Xu DY, et al. ZmCCT9 enhances maize adaptation to higher latitudes[J]. Proc Natl Acad Sci USA, 2018, 115(2): E334-E341. |
[156] |
Jin ML, Liu XG, Jia W, et al. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT[J]. J Integr Plant Biol, 2018, 60(6): 465-480.
doi: 10.1111/jipb.12632 URL |
[157] |
Su HH, Cao YY, Ku LX, et al. Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize[J]. J Exp Bot, 2018, 69(21): 5177-5189.
doi: 10.1093/jxb/ery299 pmid: 30137393 |
[158] |
Zhao YP, Zhao BB, Xie YR, et al. The evening complex promotes maize flowering and adaptation to temperate regions[J]. Plant Cell, 2023, 35(1): 369-389.
doi: 10.1093/plcell/koac296 URL |
[159] |
Chen L, Luo JY, Jin ML, et al. Genome sequencing reveals evidence of adaptive variation in the genus Zea[J]. Nat Genet, 2022, 54(11): 1736-1745.
doi: 10.1038/s41588-022-01184-y pmid: 36266506 |
[160] |
Salvi S, Sponza G, Morgante M, et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize[J]. Proc Natl Acad Sci USA, 2007, 104(27): 11376-11381.
doi: 10.1073/pnas.0704145104 pmid: 17595297 |
[161] |
Liang YM, Liu Q, Wang XF, et al. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation[J]. New Phytol, 2019, 221(4): 2335-2347.
doi: 10.1111/nph.15512 pmid: 30288760 |
[162] |
Evans MM, Poethig RS. Gibberellins promote vegetative phase change and reproductive maturity in maize[J]. Plant Physiol, 1995, 108(2): 475-487.
pmid: 7610158 |
[163] |
Thornsberry JM, Goodman MM, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time[J]. Nat Genet, 2001, 28(3): 286-289.
doi: 10.1038/90135 pmid: 11431702 |
[164] |
Larsson SJ, Lipka AE, Buckler ES. Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping[J]. PLoS Genet, 2013, 9(2): e1003246.
doi: 10.1371/journal.pgen.1003246 URL |
[165] |
Poethig RS. Vegetative phase change and shoot maturation in plants[J]. Curr Top Dev Biol, 2013, 105: 125-152.
doi: 10.1016/B978-0-12-396968-2.00005-1 pmid: 23962841 |
[166] |
Wu G, Park MY, Conway SR, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4): 750-759.
doi: 10.1016/j.cell.2009.06.031 URL |
[167] |
Chuck G, Cigan AM, Saeteurn K, et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA[J]. Nat Genet, 2007, 39(4): 544-549.
doi: 10.1038/ng2001 |
[168] |
Lauter N, Kampani A, Carlson S, et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize[J]. Proc Natl Acad Sci USA, 2005, 102(26): 9412-9417.
doi: 10.1073/pnas.0503927102 pmid: 15958531 |
[169] |
Xu DY, Wang XF, Huang C, et al. Glossy15 plays an important role in the divergence of the vegetative transition between maize and its progenitor, teosinte[J]. Mol Plant, 2017, 10(12): 1579-1583.
doi: S1674-2052(17)30279-4 pmid: 28987887 |
[170] |
Yang J, Wei HB, Hou M, et al. ZmSPL13 and ZmSPL29 act together to promote vegetative and reproductive transition in maize[J]. New Phytol, 2023, 239(4): 1505-1520.
doi: 10.1111/nph.19005 pmid: 37306069 |
[171] |
Castelletti S, Coupel-Ledru A, Granato I, et al. Maize adaptation across temperate climates was obtained via expression of two florigen genes[J]. PLoS Genet, 2020, 16(7): e1008882.
doi: 10.1371/journal.pgen.1008882 URL |
[172] |
Danilevskaya ON, Meng X, Hou ZL, et al. A genomic and expression compendium of the expanded PEBP gene family from maize[J]. Plant Physiol, 2008, 146(1): 250-264.
doi: 10.1104/pp.107.109538 pmid: 17993543 |
[173] |
Lazakis CM, Coneva V, Colasanti J. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize[J]. J Exp Bot, 2011, 62(14): 4833-4842.
doi: 10.1093/jxb/err129 pmid: 21730358 |
[174] |
Guo L, Wang XH, Zhao M, et al. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation[J]. Curr Biol, 2018, 28(18): 3005-3015.e4.
doi: S0960-9822(18)30928-X pmid: 30220503 |
[175] |
Alter P, Bircheneder S, Zhou LZ, et al. Flowering time-regulated genes in maize include the transcription factor ZmMADS1[J]. Plant Physiol, 2016, 172(1): 389-404.
doi: 10.1104/pp.16.00285 pmid: 27457125 |
[176] |
Danilevskaya ON, Meng X, Selinger DA, et al. Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize[J]. Plant Physiol, 2008, 147(4): 2054-2069.
doi: 10.1104/pp.107.115261 pmid: 18539775 |
[177] |
Li WY, Jia HT, Li MF, et al. Divergent selection of KNR6 maximizes grain production by balancing the flowering-time adaptation and ear size in maize[J]. Plant Biotechnol J, 2023, 21(7): 1311-1313.
doi: 10.1111/pbi.14050 pmid: 37061865 |
[178] |
Bouché F, Lobet G, Tocquin P, et al. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana[J]. Nucleic Acids Res, 2016, 44(D1): D1167-D1171.
doi: 10.1093/nar/gkv1054 URL |
[179] | Fornara F, de Montaigu A, Coupland G. SnapShot: control of flowering in Arabidopsis[J]. Cell, 2010, 141(3): 550, 550. e1-550, 550.e2. |
[180] |
Tester M, Langridge P. Breeding technologies to increase crop production in a changing world[J]. Science, 2010, 327(5967): 818-822.
doi: 10.1126/science.1183700 pmid: 20150489 |
[181] |
Hickey LT, Hafeez AN, Robinson H, et al. Breeding crops to feed 10 billion[J]. Nat Biotechnol, 2019, 37(7): 744-754.
doi: 10.1038/s41587-019-0152-9 pmid: 31209375 |
[182] |
Foley JA, Ramankutty N, Brauman KA, et al. Solutions for a cultivated planet[J]. Nature, 2011, 478(7369): 337-342.
doi: 10.1038/nature10452 |
[183] |
Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proc Natl Acad Sci USA, 2011, 108(50): 20260-20264.
doi: 10.1073/pnas.1116437108 pmid: 22106295 |
[184] |
明博, 谢瑞芝, 侯鹏, 等. 2005—2016年中国玉米种植密度变化分析[J]. 中国农业科学, 2017, 50(11): 1960-1972.
doi: 10.3864/j.issn.0578-1752.2017.11.002 |
Ming B, Xie RZ, Hou P, et al. Changes of maize planting density in China[J]. Sci Agric Sin, 2017, 50(11): 1960-1972.
doi: 10.3864/j.issn.0578-1752.2017.11.002 |
|
[185] |
van Heerwaarden J, Hufford MB, Ross-Ibarra J. Historical genomics of North American maize[J]. Proc Natl Acad Sci USA, 2012, 109(31): 12420-12425.
doi: 10.1073/pnas.1209275109 pmid: 22802642 |
[186] |
Morohashi K, Casas MI, Falcone Ferreyra ML, et al. A genome-wide regulatory framework identifies maize pericarp color1 controlled genes[J]. Plant Cell, 2012, 24(7): 2745-2764.
doi: 10.1105/tpc.112.098004 URL |
[187] |
Chen WK, Chen L, Zhang X, et al. Convergent selection of a WD40 protein that enhances grain yield in maize and rice[J]. Science, 2022, 375(6587): eabg7985.
doi: 10.1126/science.abg7985 URL |
[188] |
Wu JR, Lawit SJ, Weers B, et al. Overexpression of zmm28 increases maize grain yield in the field[J]. Proc Natl Acad Sci USA, 2019, 116(47): 23850-23858.
doi: 10.1073/pnas.1902593116 URL |
[189] |
Wang BB, Wang HY. IPA1: a new green revolution gene?[J]. Mol Plant, 2017, 10(6): 779-781.
doi: 10.1016/j.molp.2017.04.011 URL |
[190] |
Jiao YQ, Wang YH, Xue DW, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet, 2010, 42(6): 541-544.
doi: 10.1038/ng.591 pmid: 20495565 |
[191] |
Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nat Genet, 2010, 42(6): 545-549.
doi: 10.1038/ng.592 pmid: 20495564 |
[192] |
Zhang L, Yu H, Ma B, et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J]. Nat Commun, 2017, 8: 14789.
doi: 10.1038/ncomms14789 pmid: 28317902 |
[193] |
Wei SB, Li X, Lu ZF, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice[J]. Science, 2022, 377(6604): eabi8455.
doi: 10.1126/science.abi8455 URL |
[194] |
Wallace JG, Bradbury PJ, Zhang NY, et al. Association mapping across numerous traits reveals patterns of functional variation in maize[J]. PLoS Genet, 2014, 10(12): e1004845.
doi: 10.1371/journal.pgen.1004845 URL |
[195] |
Xing AQ, Gao YF, Ye LF, et al. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize[J]. J Exp Bot, 2015, 66(13): 3791-3802.
doi: 10.1093/jxb/erv182 pmid: 25922491 |
[196] |
Zhou JP, Liu GQ, Zhao YX, et al. An efficient CRISPR-Cas12a promoter editing system for crop improvement[J]. Nat Plants, 2023, 9(4): 588-604.
doi: 10.1038/s41477-023-01384-2 pmid: 37024659 |
[197] |
Rodríguez-Leal D, Lemmon ZH, Man J, et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell, 2017, 171(2): 470-480.e8.
doi: S0092-8674(17)30988-1 pmid: 28919077 |
[198] |
Liu L, Gallagher J, Arevalo ED, et al. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes[J]. Nat Plants, 2021, 7(3): 287-294.
doi: 10.1038/s41477-021-00858-5 pmid: 33619356 |
[199] |
Song XG, Meng XB, Guo HY, et al. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nat Biotechnol, 2022, 40(9): 1403-1411.
doi: 10.1038/s41587-022-01281-7 pmid: 35449414 |
[200] |
Li SN, Lin DX, Zhang YW, et al. Genome-edited powdery mildew resistance in wheat without growth penalties[J]. Nature, 2022, 602(7897): 455-460.
doi: 10.1038/s41586-022-04395-9 |
[201] |
Poland J, Rutkoski J. Advances and challenges in genomic selection for disease resistance[J]. Annu Rev Phytopathol, 2016, 54: 79-98.
doi: 10.1146/annurev-phyto-080615-100056 pmid: 27491433 |
[1] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[2] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[3] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[4] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[5] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[6] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[7] | CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco [J]. Biotechnology Bulletin, 2023, 39(4): 259-267. |
[8] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[9] | LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5 [J]. Biotechnology Bulletin, 2023, 39(1): 21-30. |
[10] | LI Dong-yang, XIAO Bing, WANG Chen-yao, YANG Xian-ming, LIANG Jin-gang, WU Kong-ming. Spatio-temporal Expression of Cry1Ab/Cry2Aj Insecticidal Protein in Genetically Modified Maize Ruifeng 125 with Stacked Insect and Herbicide Resistance Traits [J]. Biotechnology Bulletin, 2023, 39(1): 31-39. |
[11] | LI Peng-cheng, ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan, LANG Zhi-hong. Insect Resistance Identification and Agronomy Traits Analysis of Transgenic Maize HGK60 with Different Genetic Backgrounds [J]. Biotechnology Bulletin, 2023, 39(1): 40-47. |
[12] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[13] | ZHU Jing, YU Cun. Effects of Trichoderma longibrachiatum on Maize Growth,Soil Fertility and Rhizosphere Microorganism [J]. Biotechnology Bulletin, 2022, 38(4): 230-241. |
[14] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[15] | ZHANG Qian, XU Chun-yan, ZHANG Duo, WANG Ya-hui, LIANG Xin-ying, LI Hui. Isolation of Maize Straw-decomposing Bacteria in Yellow-cinnamon Soil and Its Ability of Promoting Decomposition [J]. Biotechnology Bulletin, 2022, 38(12): 233-243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||