Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (8): 4-10.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0776
Previous Articles Next Articles
LENG Yan1(), MA Xiao-wei1, CHEN Guang2, REN He2, LI Xiang2()
Received:
2023-08-11
Online:
2023-08-26
Published:
2023-09-05
Contact:
LI Xiang
E-mail:yanny.leng@syngentagroup.cn;312456125@qq.com
LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry[J]. Biotechnology Bulletin, 2023, 39(8): 4-10.
年份 Year | 参赛人数 Number of participants | 参赛州数量 Participating states |
---|---|---|
2018 | 7 258 | 46 |
2019 | 7 470 | 45 |
2020 | 7 844 | 48 |
2021 | 7 213 | 47 |
2022 | 6 337 | 46 |
Table 1 Participants and number of participating states in NCYC from 2018 to 2022
年份 Year | 参赛人数 Number of participants | 参赛州数量 Participating states |
---|---|---|
2018 | 7 258 | 46 |
2019 | 7 470 | 45 |
2020 | 7 844 | 48 |
2021 | 7 213 | 47 |
2022 | 6 337 | 46 |
年份 Year | 参赛品种数量(个)Number of participating varieties | 三大公司品种使用数量(个) Number of used varieties from top three companies | 三大公司品种使用占比率 Used ratio of varieties from top three companies/% | 试验田块(块) Number of plots | 三大公司品种试验田块占总试验田块频次 Frequency of plots from top three companies in total plots/% | ||
---|---|---|---|---|---|---|---|
PIONEER | DEKALB | AGRIGOLD | |||||
2019 | 218 | 84 | 63 | 24 | 78.44 | 651 | 89.09 |
2020 | 230 | 82 | 56 | 21 | 77.80 | 596 | 87.90 |
2021 | 244 | 93 | 61 | 71 | 70.81 | 529 | 82.61 |
Table 2 Overview of participating varieties in NCYC for 2019 to 2021
年份 Year | 参赛品种数量(个)Number of participating varieties | 三大公司品种使用数量(个) Number of used varieties from top three companies | 三大公司品种使用占比率 Used ratio of varieties from top three companies/% | 试验田块(块) Number of plots | 三大公司品种试验田块占总试验田块频次 Frequency of plots from top three companies in total plots/% | ||
---|---|---|---|---|---|---|---|
PIONEER | DEKALB | AGRIGOLD | |||||
2019 | 218 | 84 | 63 | 24 | 78.44 | 651 | 89.09 |
2020 | 230 | 82 | 56 | 21 | 77.80 | 596 | 87.90 |
2021 | 244 | 93 | 61 | 71 | 70.81 | 529 | 82.61 |
年份 Year | 参赛企业 Participating companies | 参赛品种 Number of participating varieties | 最高单产 Highest yield/ (kg·hm-2) |
---|---|---|---|
2018 | 14 | 20 | 19 665.3 |
2019 | 11 | 22 | 19 072.8 |
2020 | 11 | 17 | 20 769 |
2021 | 8 | 8 | 22 192.8 |
2022 | 10 | 18 | 17 761.05 |
Table 3 Participating varieties and highest yields statistics in searching for high-yield maize varieties contests
年份 Year | 参赛企业 Participating companies | 参赛品种 Number of participating varieties | 最高单产 Highest yield/ (kg·hm-2) |
---|---|---|---|
2018 | 14 | 20 | 19 665.3 |
2019 | 11 | 22 | 19 072.8 |
2020 | 11 | 17 | 20 769 |
2021 | 8 | 8 | 22 192.8 |
2022 | 10 | 18 | 17 761.05 |
高产竞赛名称 Name of high-yield contest | 主办单位 Organizer | 起始时间 Starting time | 作物类型 Crop | 主要特点 Characteristic |
---|---|---|---|---|
丰收奖 | 农业农村部 | 1987年起 | 农作物 | 技术和品种创新增效,适用于科研和技术推广人群 |
高产竞赛 | 政府机构 | 20世纪90年代起 | 玉米、水稻、小麦、大豆、杂粮等 | 地方政府或农业农村部主导,文件导向,断续开展 |
寻找玉米高产品种 | 中国种子协会 | 2018年至今 | 玉米 | 协会组织开展,持续开展,试点较少、结果对社会公布 |
玉米高产攻关 | 企业自行发起 | 1972年起 | 玉米 | 自行开展,以自育品种为主,试验面积较小,结果不对社会公布 |
玉米高产研究 | 中国农业科学院作物科学研究所栽培与生理创新团队 | 2004年起 | 玉米 | 单位自行开展,探索玉米品种适用栽培技术,结果不对社会公布 |
Table 4 Development history of crop high-yield contest in China
高产竞赛名称 Name of high-yield contest | 主办单位 Organizer | 起始时间 Starting time | 作物类型 Crop | 主要特点 Characteristic |
---|---|---|---|---|
丰收奖 | 农业农村部 | 1987年起 | 农作物 | 技术和品种创新增效,适用于科研和技术推广人群 |
高产竞赛 | 政府机构 | 20世纪90年代起 | 玉米、水稻、小麦、大豆、杂粮等 | 地方政府或农业农村部主导,文件导向,断续开展 |
寻找玉米高产品种 | 中国种子协会 | 2018年至今 | 玉米 | 协会组织开展,持续开展,试点较少、结果对社会公布 |
玉米高产攻关 | 企业自行发起 | 1972年起 | 玉米 | 自行开展,以自育品种为主,试验面积较小,结果不对社会公布 |
玉米高产研究 | 中国农业科学院作物科学研究所栽培与生理创新团队 | 2004年起 | 玉米 | 单位自行开展,探索玉米品种适用栽培技术,结果不对社会公布 |
年份 Year | 美国玉米全国平均单产National average yield in US/ (kg·hm-2) | 美国玉米高产竞赛最高单产Highest yield in NCYC/(kg·hm-2) | 中国玉米全国平均单产National average yield in China/(kg·hm-2) | 中国玉米高产竞赛最高单产Highest yield in China’s corn high-yield content /(kg·hm-2) | 中国平均单产占美国平均单产比例China vs US average yield ratio/% | 中国玉米高产竞赛最高单产占美国玉米高产竞赛最高单产比例China vs US highest yield ratio/% |
---|---|---|---|---|---|---|
2012 | 7 726.70 | 23 700.00 | 5 869.72 | 75.97 | ||
2013 | 9 923.57 | 28 095.00 | 6 015.96 | 60.62 | ||
2014 | 10 733.27 | 29 400.00 | 5 808.88 | 54.12 | ||
2015 | 10 570.08 | 32 805.00 | 5 892.91 | 55.75 | ||
2016 | 10 959.24 | 32 699.40 | 5 967.07 | 54.45 | ||
2017 | 11 084.77 | 34 143.75 | 6 110.30 | 55.12 | ||
2018 | 11 072.22 | 29 958.15 | 6 108.47 | 19 665.30 | 55.17 | 65.64 |
2019 | 11 519.54 | 38 647.20 | 6 316.01 | 19 072.80 | 54.83 | 49.35 |
2020 | 10 800.00 | 29 911.05 | 6 316.64 | 20 769.00 | 58.49 | 69.44 |
2021 | 11 101.20 | 37 767.45 | 6 290.97 | 22 192.80 | 56.67 | 58.76 |
2022 | 10 801.50 | 24 713.93 | 6 436.50 | 17 761.05 | 59.59 | 71.87 |
Table 5 Comparison of the average yields and yields in high-yield contests between China and the United States in the past decade
年份 Year | 美国玉米全国平均单产National average yield in US/ (kg·hm-2) | 美国玉米高产竞赛最高单产Highest yield in NCYC/(kg·hm-2) | 中国玉米全国平均单产National average yield in China/(kg·hm-2) | 中国玉米高产竞赛最高单产Highest yield in China’s corn high-yield content /(kg·hm-2) | 中国平均单产占美国平均单产比例China vs US average yield ratio/% | 中国玉米高产竞赛最高单产占美国玉米高产竞赛最高单产比例China vs US highest yield ratio/% |
---|---|---|---|---|---|---|
2012 | 7 726.70 | 23 700.00 | 5 869.72 | 75.97 | ||
2013 | 9 923.57 | 28 095.00 | 6 015.96 | 60.62 | ||
2014 | 10 733.27 | 29 400.00 | 5 808.88 | 54.12 | ||
2015 | 10 570.08 | 32 805.00 | 5 892.91 | 55.75 | ||
2016 | 10 959.24 | 32 699.40 | 5 967.07 | 54.45 | ||
2017 | 11 084.77 | 34 143.75 | 6 110.30 | 55.12 | ||
2018 | 11 072.22 | 29 958.15 | 6 108.47 | 19 665.30 | 55.17 | 65.64 |
2019 | 11 519.54 | 38 647.20 | 6 316.01 | 19 072.80 | 54.83 | 49.35 |
2020 | 10 800.00 | 29 911.05 | 6 316.64 | 20 769.00 | 58.49 | 69.44 |
2021 | 11 101.20 | 37 767.45 | 6 290.97 | 22 192.80 | 56.67 | 58.76 |
2022 | 10 801.50 | 24 713.93 | 6 436.50 | 17 761.05 | 59.59 | 71.87 |
[1] |
Battisti R, Sentelhas PC, Pascoalino JAL, et al. Soybean yield gap in the areas of yield contest in Brazil[J]. Int J Plant Prod, 2018, 12(3): 159-168.
doi: 10.1007/s42106-018-0016-0 |
[2] | 代玉仙, 郭琦, 杨琇涵, 等. 2016年美国玉米高产竞赛简报[J]. 玉米科学, 2017, 25(2): 45-48. |
Dai YX, Guo Q, Yang XH, et al. Introduction of America national corn yield contest in 2016[J]. J Maize Sci, 2017, 25(2): 45-48. | |
[3] | 杨瑞明. 开展高产竞赛推动科学种田[J]. 山西农业科学, 1981, 9(6): 26. |
Yang RM. Developing high-yield competition and promoting scientific farming[J]. Journl Shanxi Agric Sci, 1981, 9(6): 26. | |
[4] | 孙寰. 美国农民大豆高产竞赛之一二[J]. 大豆科技, 2012(1): 3-6. |
Sun H. American farmers'soybean high-yield competition(part two)[J]. Soybean Sci Technol, 2012(1): 3-6. | |
[5] | 佟屏亚. 美国的玉米产量为什么这样高?[J]. 世界农业, 1980(1): 15-17, 51. |
Tong PY. Why is the corn yield in the United States so high?[J]. World Agric, 1980(1): 15-17, 51. | |
[6] | 刘志全, 路立平, 沈海波, 等. 美国玉米高产竞赛简介[J]. 玉米科学, 2004, 12(4): 110-113. |
Liu ZQ, Lu LP, Shen HB, et al. Introduction on America corn yield contest[J]. J Maize Sci, 2004, 12(4): 110-113. | |
[7] | 魏常敏, 张则林, 许卫猛, 等. 2020年美国玉米高产竞赛简报[J]. 玉米科学, 2021, 29(3): 48-54. |
Wei CM, Zhang ZL, Xu WM, et al. Introduction of American national corn yield contest in 2020[J]. J Maize Sci, 2021, 29(3): 48-54. | |
[8] | 张洪艳, 吕超, 代玉仙, 等. 2014年美国玉米高产竞赛简报[J]. 玉米科学, 2015, 23(3): 154-158. |
Zhang HY, Lü C, Dai YX, et al. Introduction of America national maize yield contest in 2014[J]. J Maize Sci, 2015, 23(3): 154-158. | |
[9] | 刘小丹, 杜妍, 任军, 等. 2019年美国玉米高产竞赛简报[J]. 玉米科学, 2020, 28(4): 56-60. |
Liu XD, Du Y, Ren J, et al. Introduction of America national corn yield contest in 2019[J]. J Maize Sci, 2020, 28(4): 56-60. | |
[10] | 廖宁, 李广群, 刘伟, 等. 2019年美国玉米高产竞赛的启示[J]. 农业科技通讯, 2020(4): 226-228. |
Liao N, Li GQ, Liu W, et al. Enlightenment of 2019 American corn high-yield competition[J]. Bull Agric Sci Technol, 2020(4): 226-228. | |
[11] | 陈国平, 高聚林, 赵明, 等. 近年我国玉米超高产田的分布、产量构成及关键技术[J]. 作物学报, 2012, 38(1): 80-85. |
Chen GP, Gao JL, Zhao M, et al. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years[J]. Acta Agron Sin, 2012, 38(1): 80-85.
doi: 10.3724/SP.J.1006.2012.00080 URL |
[1] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[2] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[3] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[4] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[5] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[6] | CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco [J]. Biotechnology Bulletin, 2023, 39(4): 259-267. |
[7] | LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5 [J]. Biotechnology Bulletin, 2023, 39(1): 21-30. |
[8] | LI Dong-yang, XIAO Bing, WANG Chen-yao, YANG Xian-ming, LIANG Jin-gang, WU Kong-ming. Spatio-temporal Expression of Cry1Ab/Cry2Aj Insecticidal Protein in Genetically Modified Maize Ruifeng 125 with Stacked Insect and Herbicide Resistance Traits [J]. Biotechnology Bulletin, 2023, 39(1): 31-39. |
[9] | LI Peng-cheng, ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan, LANG Zhi-hong. Insect Resistance Identification and Agronomy Traits Analysis of Transgenic Maize HGK60 with Different Genetic Backgrounds [J]. Biotechnology Bulletin, 2023, 39(1): 40-47. |
[10] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[11] | ZHU Jing, YU Cun. Effects of Trichoderma longibrachiatum on Maize Growth,Soil Fertility and Rhizosphere Microorganism [J]. Biotechnology Bulletin, 2022, 38(4): 230-241. |
[12] | ZHANG Qian, XU Chun-yan, ZHANG Duo, WANG Ya-hui, LIANG Xin-ying, LI Hui. Isolation of Maize Straw-decomposing Bacteria in Yellow-cinnamon Soil and Its Ability of Promoting Decomposition [J]. Biotechnology Bulletin, 2022, 38(12): 233-243. |
[13] | ZHANG Tong-tong, ZHENG Deng-yu, WU Zhong-yi, ZHANG Zhong-bao, YU Rong. Functional Analysis of ZmNF-YB13 Responding to Drought and Salt Stress [J]. Biotechnology Bulletin, 2022, 38(10): 115-123. |
[14] | JIAO Yue, HAN Yu, YANG Qiao, HUANG Yao-hui, AN Ji-cui, YANG Ya-zhou, YE Ji-ming. Commercialization Development Trend of Genetically Modified Maize and the Enlightenment [J]. Biotechnology Bulletin, 2021, 37(4): 164-176. |
[15] | XU Lai-peng, WAN Xian-hua, SUN Xiang-li, CAO Yan-fang, LI Hui, TIAN Ya-dong, LIU Xiao-jun, KANG Xiang-tao, WANG Yan-bin. Effects of Livestock Manure and Straw Returning to Field on Microbial Community Structure Around Maize Rhizosphere [J]. Biotechnology Bulletin, 2020, 36(9): 137-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||