Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (2): 300-312.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0719
Previous Articles Next Articles
LI Ya-nan1(), ZHANG Hao-jie1, LIANG Meng-jing1, LUO Tao1, LI Wang-ning1, ZHANG Chun-hui1, JI Chun-li1, LI Run-zhi1, XUE Jin-ai1(), CUI Hong-li1,2()
Received:
2023-07-23
Online:
2024-02-26
Published:
2024-03-13
Contact:
XUE Jin-ai, CUI Hong-li
E-mail:Li_yanan_li@163.com;306214803@qq.com;cuihongli@sxau.edu.cn
LI Ya-nan, ZHANG Hao-jie, LIANG Meng-jing, LUO Tao, LI Wang-ning, ZHANG Chun-hui, JI Chun-li, LI Run-zhi, XUE Jin-ai, CUI Hong-li. Identification and Expression Analysis of Calcium-dependent Protein Kinase(CDPK)Family in Haematococcus pluvialis[J]. Biotechnology Bulletin, 2024, 40(2): 300-312.
基因名称 Gene name | 基因编号 Gene No. | 蛋白长度 Protein length/aa | 分子量 MW/Da | 等电点 pI | EF手型数量 EF-hand number | N-肉豆蔻酰化 N- myristoylator | N-棕榈酰化 N-palmitoylation | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|
HpCDPK1 | comp60148_c2 | 605 | 67 397.89 | 5.92 | 4 | No | Yes | Cytoplasmic |
HpCDPK2 | comp60654_c0 | 545 | 59 849.50 | 6.08 | 4 | No | Yes | Chloroplast |
HpCDPK3 | comp57813_c0 | 478 | 53 280.35 | 5.71 | 4 | No | No | Cytoplasmic |
HpCDPK4 | comp60035_c0 | 676 | 73 764.11 | 6.03 | 2 | No | Yes | Cytoplasmic |
HpCDPK5 | comp58900_c0 | 716 | 76 076.86 | 6.39 | 4 | No | Yes | Nuclear |
HpCDPK6 | comp61638_c1 | 1 479 | 153 784.74 | 7.29 | 4 | No | Yes | Nuclear |
HpCDPK7 | comp60433_c0 | 633 | 70 805.48 | 5.79 | 4 | Yes | Yes | Mitochondrial |
Table 1 Members of CDPK gene family in H. pluvialis
基因名称 Gene name | 基因编号 Gene No. | 蛋白长度 Protein length/aa | 分子量 MW/Da | 等电点 pI | EF手型数量 EF-hand number | N-肉豆蔻酰化 N- myristoylator | N-棕榈酰化 N-palmitoylation | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|
HpCDPK1 | comp60148_c2 | 605 | 67 397.89 | 5.92 | 4 | No | Yes | Cytoplasmic |
HpCDPK2 | comp60654_c0 | 545 | 59 849.50 | 6.08 | 4 | No | Yes | Chloroplast |
HpCDPK3 | comp57813_c0 | 478 | 53 280.35 | 5.71 | 4 | No | No | Cytoplasmic |
HpCDPK4 | comp60035_c0 | 676 | 73 764.11 | 6.03 | 2 | No | Yes | Cytoplasmic |
HpCDPK5 | comp58900_c0 | 716 | 76 076.86 | 6.39 | 4 | No | Yes | Nuclear |
HpCDPK6 | comp61638_c1 | 1 479 | 153 784.74 | 7.29 | 4 | No | Yes | Nuclear |
HpCDPK7 | comp60433_c0 | 633 | 70 805.48 | 5.79 | 4 | Yes | Yes | Mitochondrial |
Fig. 3 Conserved motif and functional domain of HpCDPK family members of H. pluvialis Different motif is represent by specific color. Purple hollow box indictes the Serine/ Threonine protein kinases domain(SM000220), and green hollow box indicted the EF-hand(SM000054)
Fig. 4 Conserved motifs of HpCDPKs in H. pluvialis predicted by MEME The abscissa indicates amino acid position and the ordinate indicates the proportion of amino acid at a site
Fig. 8 Expression patterns of HpCDPK genes in H. pluvialis in response to abiotic stresses A: Normal light(N), blue light(B), and high white light(W). B: Normal light(L), normal light and UV-B 200 W(LU200), normal light and UV-B 400 W(LU400), dark(D), dark and UV-B 200 W(DU200), dark and UV-B 400 W(DU400). C: High light(CK), high light and α-ketoglutaric acid(OG), high light and nitrogen deficiency(ND), high light, nitrogen deficiency and α-ketoglutaric acid(ND-OG)
[1] |
Ranty B, Aldon D, Cotelle V, et al. Calcium sensors as key hubs in plant responses to biotic and abiotic stresses[J]. Front Plant Sci, 2016, 7: 327.
doi: 10.3389/fpls.2016.00327 pmid: 27014336 |
[2] |
Hepler PK. Calcium: a central regulator of plant growth and development[J]. Plant Cell, 2005, 17(8): 2142-2155.
doi: 10.1105/tpc.105.032508 pmid: 16061961 |
[3] |
Lecourieux D, Ranjeva R, Pugin A. Calcium in plant defence-signalling pathways[J]. New Phytol, 2006, 171(2): 249-269.
doi: 10.1111/j.1469-8137.2006.01777.x pmid: 16866934 |
[4] |
Sanders D, Brownlee C, Harper JF. Communicating with calcium[J]. Plant Cell, 1999, 11(4): 691-706.
doi: 10.1105/tpc.11.4.691 URL |
[5] |
Hamel LP, Sheen J, Séguin A. Ancient signals: comparative genomics of green plant CDPKs[J]. Trends Plant Sci, 2014, 19(2): 79-89.
doi: 10.1016/j.tplants.2013.10.009 URL |
[6] | Cheng SH, Willmann MR, Chen HC, et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family[J]. Plant Physiol, 2002, 129(2): 469-485. |
[7] |
Boudsocq M, Sheen J. CDPKs in immune and stress signaling[J]. Trends Plant Sci, 2013, 18(1): 30-40.
doi: 10.1016/j.tplants.2012.08.008 pmid: 22974587 |
[8] |
Ludwig AA, Romeis T, Jones JDG. CDPK-mediated signalling pathways: specificity and cross-talk[J]. J Exp Bot, 2004, 55(395): 181-188.
doi: 10.1093/jxb/erh008 pmid: 14623901 |
[9] |
Harmon AC, Gribskov M, Gubrium E, et al. The CDPK superfamily of protein kinases[J]. New Phytol, 2001, 151(1): 175-183.
doi: 10.1046/j.1469-8137.2001.00171.x pmid: 33873379 |
[10] |
Yip Delormel T, Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana[J]. New Phytol, 2019, 224(2): 585-604.
doi: 10.1111/nph.16088 pmid: 31369160 |
[11] |
Simeunovic A, Mair A, Wurzinger B, et al. Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases[J]. J Exp Bot, 2016, 67(13): 3855-3872.
doi: 10.1093/jxb/erw157 pmid: 27117335 |
[12] |
Hrabak EM, Chan CWM, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiol, 2003, 132(2): 666-680.
doi: 10.1104/pp.102.011999 URL |
[13] |
Li YJ, Fei XW, Dai HF, et al. Genome-wide identification of calcium-dependent protein kinases in Chlamydomonas reinhardtii and functional analyses in nitrogen deficiency-induced oil accumulation[J]. Front Plant Sci, 2019, 10: 1147.
doi: 10.3389/fpls.2019.01147 URL |
[14] |
Romeis T, Ludwig AA, Martin R, et al. Calcium-dependent protein kinases play an essential role in a plant defence response[J]. EMBO J, 2001, 20(20): 5556-5567.
doi: 10.1093/emboj/20.20.5556 pmid: 11597999 |
[15] |
Asano T, Tanaka N, Yang GX, et al. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice[J]. Plant Cell Physiol, 2005, 46(2): 356-366.
doi: 10.1093/pcp/pci035 URL |
[16] |
Rutschmann F, Stalder U, Piotrowski M, et al. LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization[J]. Plant Physiol, 2002, 129(1): 156-168.
doi: 10.1104/pp.000869 pmid: 12011347 |
[17] |
Kong XP, Lv W, Jiang SS, et al. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize[J]. BMC Genomics, 2013, 14: 433.
doi: 10.1186/1471-2164-14-433 pmid: 23815483 |
[18] |
Huang K, Peng L, Liu YY, et al. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response[J]. Biochem Biophys Res Commun, 2018, 498(1): 92-98.
doi: 10.1016/j.bbrc.2017.11.175 URL |
[19] |
Urao T, Katagiri T, Mizoguchi T, et al. Two genes that encode Ca(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana[J]. Mol Gen Genet, 1994, 244(4): 331-340.
doi: 10.1007/BF00286684 URL |
[20] |
Boudsocq M, Willmann MR, McCormack M, et al. Differential innate immune signalling via Ca2+ sensor protein kinases[J]. Nature, 2010, 464(7287): 418-422.
doi: 10.1038/nature08794 |
[21] |
Zhang CH, Zhang LT, Liu JG. Exogenous sodium acetate enhances astaxanthin accumulation and photoprotection in Haematococcus pluvialis at the non-motile stage[J]. J Appl Phycol, 2019, 31(2): 1001-1008.
doi: 10.1007/s10811-018-1622-z |
[22] |
Wang HM D, Li XC, Lee DJ, et al. Potential biomedical applications of marine algae[J]. Bioresour Technol, 2017, 244(Pt 2): 1407-1415.
doi: 10.1016/j.biortech.2017.05.198 URL |
[23] |
Ren YY, Deng JQ, Huang JC, et al. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: advances and outlook[J]. Bioresour Technol, 2021, 340: 125736.
doi: 10.1016/j.biortech.2021.125736 URL |
[24] | 滕长英, 张立, 缪静, 等. 雨生红球藻虾青素积累机制的研究进展[J]. 海洋科学, 2006, 30(12): 77-81. |
Teng CY, Zhang L, Miao J, et al. Review of astaxanthin accumulating mechanism in Haematococcus pluvialis[J]. Mar Sci, 2006, 30(12): 77-81. | |
[25] |
Lamers J, van der Meer T, Testerink C. How plants sense and respond to stressful environments[J]. Plant Physiol, 2020, 182(4): 1624-1635.
doi: 10.1104/pp.19.01464 pmid: 32132112 |
[26] | 崔红利, 许文鑫, 崔玉琳, 等. 光诱导雨生红球藻虾青素积累的信号通路转录组分析[J]. 生物工程学报, 2021, 37(4): 1260-1276. |
Cui HL, Xu WX, Cui YL, et al. Transcriptome analysis of signal transduction pathway involved in light inducing astaxanthin accumulation in Haematococcus pluvialis[J]. Chin J Biotechnol, 2021, 37(4): 1260-1276. | |
[27] | 许文鑫, 朱琴, 朱梅, 等. UV-B对雨生红球藻生长及虾青素积累的影响[J]. 水生生物学报, 2021, 45(6): 1281-1290. |
Xu WX, Zhu Q, Zhu M, et al. Ultraviolet-b radiation enhances the growth and astaxanthin production in Haematococcus pluvialis[J]. Acta Hydrobiol Sin, 2021, 45(6): 1281-1290. | |
[28] |
Johnson DR, Bhatnagar RS, Knoll LJ, et al. Genetic and biochemical studies of protein N-myristoylation[J]. Annu Rev Biochem, 1994, 63: 869-914.
pmid: 7979256 |
[29] |
Farazi TA, Waksman G, Gordon JI. The biology and enzymology of protein N-myristoylation[J]. J Biol Chem, 2001, 276(43): 39501-39504.
doi: 10.1074/jbc.R100042200 pmid: 11527981 |
[30] |
Yuan M, Song ZH, Ying MD, et al. N-myristoylation: from cell biology to translational medicine[J]. Acta Pharmacol Sin, 2020, 41(8): 1005-1015.
doi: 10.1038/s41401-020-0388-4 pmid: 32203082 |
[31] |
Zou JJ, Wei FJ, Wang C, et al. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress[J]. Plant Physiol, 2010, 154(3): 1232-1243.
doi: 10.1104/pp.110.157545 URL |
[32] |
Li AL, Zhu YF, Tan XM, et al. Evolutionary and functional study of the CDPK gene family in wheat(Triticum aestivum L.)[J]. Plant Mol Biol, 2008, 66(4): 429-443.
doi: 10.1007/s11103-007-9281-5 URL |
[33] |
Wang CT, Shao JM. Characterization of the ZmCK1 gene encoding a calcium-dependent protein kinase responsive to multiple abiotic stresses in maize[J]. Plant Mol Biol Rep, 2013, 31(1): 222-230.
doi: 10.1007/s11105-012-0496-5 URL |
[34] |
Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains[J]. Science, 1988, 241(4861): 42-52.
doi: 10.1126/science.3291115 pmid: 3291115 |
[35] |
Wen F, Ye F, Xiao ZL, et al. Genome-wide survey and expression analysis of calcium-dependent protein kinase(CDPK)in grass Brachypodium distachyon[J]. BMC Genomics, 2020, 21(1): 53.
doi: 10.1186/s12864-020-6475-6 |
[36] | 任慧, 黄烯. 紫外光B波段光信号调控植物生长发育的研究进展[J]. 厦门大学学报: 自然科学版, 2021, 60(2): 327-338. |
Ren H, Huang X. Research progress in the regulation of plant growth and development by ultraviolet-B light[J]. J Xiamen Univ Nat Sci, 2021, 60(2): 327-338. | |
[37] |
Wargent JJ, Gegas VC, Jenkins GI, et al. UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation[J]. New Phytol, 2009, 183(2): 315-326.
doi: 10.1111/j.1469-8137.2009.02855.x pmid: 19402876 |
[38] |
Fasano R, Gonzalez N, Tosco A, et al. Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B[J]. Mol Plant, 2014, 7(5): 773-791.
doi: 10.1093/mp/ssu002 URL |
[39] |
Liang T, Yang Y, Liu HT. Signal transduction mediated by the plant UV-B photoreceptor UVR8[J]. New Phytol, 2019, 221(3): 1247-1252.
doi: 10.1111/nph.15469 pmid: 30315741 |
[40] |
Ramani S, Chelliah J. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures[J]. BMC Plant Biol, 2007, 7: 61.
doi: 10.1186/1471-2229-7-61 URL |
[41] |
Frattini M, Morello L, Breviario D. Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development[J]. Plant Mol Biol, 1999, 41(6): 753-764.
pmid: 10737140 |
[42] |
Disch A, Schwender J, Müller C, et al. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714[J]. Biochem J, 1998, 333(Pt 2)(Pt 2):381-388.
doi: 10.1042/bj3330381 URL |
[43] | Gilroy S, Trewavas A. Signal processing and transduction in plant cells: the end of the beginning?[J]. Nat Rev Mol Cell Biol, 2001, 2(4): 307-314. |
[44] |
Pecker I, Gabbay R, Cunningham FX Jr, et al. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening[J]. Plant Mol Biol, 1996, 30(4): 807-819.
doi: 10.1007/BF00019013 pmid: 8624411 |
[45] |
Cunningham FX Jr, Gantt E. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases[J]. Proc Natl Acad Sci USA, 2001, 98(5): 2905-2910.
doi: 10.1073/pnas.051618398 pmid: 11226339 |
[46] | 刘贯山, 陈珈. 钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的作用[J]. 植物学通报, 2003, 38(2): 160-167. |
Liu GS, Chen J. Roles of calcium dependent protein kinases(CDPKs)in plant calcium signal transduction[J]. Chin Bull Bot, 2003, 38(2): 160-167. |
[1] | WU Cui-cui, XIAO Shui-ping. Genome-wide Identification of HD-Zip Gene Family in Gossypium hirsutum L. and Expression Analysis in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(2): 130-145. |
[2] | XIN Qi, LI Ya-fan, YIN Zheng, ZHANG Xiao-dan, CHEN Ting, LIU Xiao-hua. Identification and Expression Analysis of the CBL-CIPK Gene Family in Sugarcane [J]. Biotechnology Bulletin, 2024, 40(2): 197-211. |
[3] | ZOU Xiu-wei, YUE Jia-ni, LI Zhi-yu, DAI Liang-ying, LI Wei. Functional Analysis of Rice Heat Shock Transcription Factor HsfA2b Regulating the Resistance to Abiotic Stresses [J]. Biotechnology Bulletin, 2024, 40(2): 90-98. |
[4] | ZHANG Yi, ZHANG Xin-ru, ZHANG Jin-ke, HU Li-zong, SHANGGUAN Xin-xin, ZHENG Xiao-hong, HU Juan-juan, ZHANG Cong-cong, MU Gui-qing, LI Cheng-wei. Functional Analysis of TaMYB1 Gene in Wheat Under Cadmium Stress [J]. Biotechnology Bulletin, 2024, 40(1): 194-206. |
[5] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[6] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[7] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[8] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[9] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[10] | PAN Guo-qiang, WU Si-yuan, LIU Lu, GUO Hui-ming, CHENG Hong-mei, SU Xiao-feng. Construction and Preliminary Analysis of Verticillim dahliae Mutant Library [J]. Biotechnology Bulletin, 2023, 39(5): 112-119. |
[11] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[12] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[13] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[14] | YE Hong, WANG Yu-kun. Research Progress in Immune Receptor Functions of Pattern-Recognition Receptor in Plants [J]. Biotechnology Bulletin, 2023, 39(12): 1-15. |
[15] | REN Li, QIAO Shu-ting, GE Chen-hui, WEI Zi-tong, XU Chen-xi. Identification and Expression Analysis of Spinach PSY Gene Family [J]. Biotechnology Bulletin, 2023, 39(12): 169-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||