Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (3): 89-99.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0684
Previous Articles Next Articles
SHEN Tian-hong(), QI Xiao-bo, ZHAO Rui-feng, MA Xin-rong()
Received:
2023-07-17
Online:
2024-03-26
Published:
2024-04-08
Contact:
MA Xin-rong
E-mail:shentianhong_2022@163.com;xinrong.ma@tust.edu.cn
SHEN Tian-hong, QI Xiao-bo, ZHAO Rui-feng, MA Xin-rong. Research Progress in the Molecular Mechanisms of Microalgae Responding to Salt Stress[J]. Biotechnology Bulletin, 2024, 40(3): 89-99.
[1] |
Siddiki SYA, Mofijur M, Kumar PS, et al. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: an integrated biorefinery concept[J]. Fuel, 2022, 307: 121782.
doi: 10.1016/j.fuel.2021.121782 URL |
[2] |
Arora N, Jaiswal KK, Kumar V, et al. Small-scale phyco-mitigation of raw urban wastewater integrated with biodiesel production and its utilization for aquaculture[J]. Bioresour Technol, 2020, 297: 122489.
doi: 10.1016/j.biortech.2019.122489 URL |
[3] |
Brar A, Kumar M, Soni T, et al. Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: a review[J]. Bioresour Technol, 2021, 339: 125597.
doi: 10.1016/j.biortech.2021.125597 URL |
[4] |
Correa DF, Beyer HL, Possingham HP, et al. Microalgal biofuel production at national scales: reducing conflicts with agricultural lands and biodiversity within countries[J]. Energy, 2021, 215: 119033.
doi: 10.1016/j.energy.2020.119033 URL |
[5] |
Ndimba BK, Ndimba RJ, Johnson TS, et al. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae[J]. J Proteomics, 2013, 93: 234-244.
doi: 10.1016/j.jprot.2013.05.041 pmid: 23792822 |
[6] |
Mallick N, Bagchi SK, Koley S, et al. Progress and challenges in microalgal biodiesel production[J]. Front Microbiol, 2016, 7: 1019.
doi: 10.3389/fmicb.2016.01019 pmid: 27446055 |
[7] | 聂煜东, 耿媛媛, 张贤明, 等. 产油微藻胁迫培养策略研究综述[J]. 中国环境科学, 2021, 41(8): 3853-3866. |
Nie YD, Geng YY, Zhang XM, et al. A review on stress cultivation strategies of oleginous microalgae[J]. China Environ Sci, 2021, 41(8): 3853-3866. | |
[8] | 牛旭东, 李梅, 王宁, 等. 利用微藻处理废水研究进展[J]. 山东农业科学, 2022, 54(2): 146-152. |
Niu XD, Li M, Wang N, et al. Research progress of treating wastewater with microalgae[J]. Shandong Agric Sci, 2022, 54(2): 146-152. | |
[9] |
Wang Y, Guo WQ, Yen HW, et al. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production[J]. Bioresour Technol, 2015, 198: 619-625.
doi: 10.1016/j.biortech.2015.09.067 URL |
[10] |
García D, Posadas E, Blanco S, et al. Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors[J]. Bioresour Technol, 2018, 248(Pt B): 120-126.
doi: 10.1016/j.biortech.2017.06.079 URL |
[11] |
Dahmani S, Zerrouki D, Ramanna L, et al. Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region[J]. Bioresour Technol, 2016, 219: 749-752.
doi: 10.1016/j.biortech.2016.08.019 URL |
[12] |
Fal S, Aasfar A, Rabie R, et al. Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamydomonas reinhardtii[J]. Heliyon, 2022, 8(1): e08811.
doi: 10.1016/j.heliyon.2022.e08811 URL |
[13] |
Salama ES, Govindwar SP, Khandare RV, et al. Can omics approaches improve microalgal biofuels under abiotic stress?[J]. Trends Plant Sci, 2019, 24(7): 611-624.
doi: S1360-1385(19)30097-4 pmid: 31085124 |
[14] |
Cui JY, Sun T, Chen L, et al. Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization[J]. Biotechnol Adv, 2020, 43: 107578.
doi: 10.1016/j.biotechadv.2020.107578 URL |
[15] |
Zhang LY, Xing ZT, Chen LQ, et al. Comprehensive time-course transcriptome and co-expression network analyses identify salt stress responding mechanisms in Chlamydomonas reinhardtii strain GY-D55[J]. Front Plant Sci, 2022, 13: 828321.
doi: 10.3389/fpls.2022.828321 URL |
[16] |
Ves-Urai P, Krobthong S, Thongsuk K, et al. Comparative secretome analysis between salinity-tolerant and control Chlamydomonas re-inhardtii strains[J]. Planta, 2021, 253(3): 68.
doi: 10.1007/s00425-021-03583-7 |
[17] |
Hounslow E, Evans CA, Pandhal J, et al. Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources[J]. Biotechnol Biofuels, 2021, 14(1): 121.
doi: 10.1186/s13068-021-01970-6 pmid: 34022944 |
[18] |
Raven JA, Girard-Bascou J. Algal model systems and the elucidation of photosynthetic metabolism[J]. J Phycol, 2001, 37(6): 943-950.
doi: 10.1046/j.1529-8817.2001.01079.x URL |
[19] | 陈龙, 金阿南, 马香娟, 等. 微生物高盐渗透适应策略及其耐盐强化研究进展[J]. 微生物学报, 2022, 62(9): 3306-3317. |
Chen L, Jin AN, Ma XJ, et al. Research progress on osmotic pressure adaptation strategy and salt tolerance enhancement of microorganisms under high salinity environment[J]. Acta Microbiol Sin, 2022, 62(9): 3306-3317. | |
[20] |
Ullah MA, Abdullah-Zawawi MR, Zainal-Abidin RA, et al. A review of integrative omic approaches for understanding rice salt response mechanisms[J]. Plants, 2022, 11(11): 1430.
doi: 10.3390/plants11111430 URL |
[21] |
Shelake RM, Kadam US, Kumar R, et al. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: targets, tools, challenges, and perspectives[J]. Plant Commun, 2022, 3(6): 100417.
doi: 10.1016/j.xplc.2022.100417 URL |
[22] |
Chakraborty K, Bose J, Shabala L, et al. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species[J]. J Exp Bot, 2016, 67(15): 4611-4625.
doi: 10.1093/jxb/erw236 pmid: 27340231 |
[23] |
Foflonker F, Price DC, Qiu H, et al. Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions[J]. Environ Microbiol, 2015, 17(2): 412-426.
doi: 10.1111/1462-2920.12541 pmid: 24965277 |
[24] |
Taylor AR, Brownlee C, Wheeler GL. Proton channels in algae: reasons to be excited[J]. Trends Plant Sci, 2012, 17(11): 675-684.
doi: 10.1016/j.tplants.2012.06.009 pmid: 22819465 |
[25] |
Katz A, Pick U. Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella[J]. Biochim Biophys Acta, 2001, 1504(2-3): 423-431.
pmid: 11245805 |
[26] |
Shono M, Wada M, Hara Y, et al. Molecular cloning of Na(+)-ATPase cDNA from a marine alga, Heterosigma akashiwo[J]. Biochim Biophys Acta, 2001, 1511(1): 193-199.
pmid: 11248217 |
[27] |
Kishimoto M, Shimajiri Y, Oshima A, et al. Functional expression of an animal type-Na+-ATPase gene from a marine red seaweed Porphyra yezoensis increases salinity tolerance in rice plants[J]. Plant Biotechnol, 2013, 30(4): 417-422.
doi: 10.5511/plantbiotechnology.13.0517a URL |
[28] |
Pick U, Karni L, Avron M. Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina[J]. Plant Physiol, 1986, 81(1): 92-96.
doi: 10.1104/pp.81.1.92 pmid: 16664814 |
[29] |
Shetty P, Gitau MM, Maróti G. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae[J]. Cells, 2019, 8(12): 1657.
doi: 10.3390/cells8121657 URL |
[30] |
Brown AD, Simpson JR. Water relations of sugar-tolerant yeasts: the role of intracellular polyols[J]. J Gen Microbiol, 1972, 72(3): 589-591.
pmid: 4404634 |
[31] |
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations[J]. FEMS Microbiol Rev, 2018, 42(3): 353-375.
doi: 10.1093/femsre/fuy009 pmid: 29529204 |
[32] |
Lv HX, Kim M, Park S, et al. Comparative transcriptome analysis of short-term responses to salt and glycerol hyperosmotic stress in the green alga Dunaliella salina[J]. Algal Res, 2021, 53: 102147.
doi: 10.1016/j.algal.2020.102147 URL |
[33] |
Ben-Amotz A, Avron M. Glycerol and β-carotene metabolism in the halotolerant alga Dunaliella: a model system for biosolar energy conversion[J]. Trends Biochem Sci, 1981, 6: 297-299.
doi: 10.1016/0968-0004(81)90106-7 URL |
[34] |
Hellebust JA, Le Gresley SML. Growth characteristics of the marine rock pool flagellate Chlamydomonas pulsatilla Wollenweber(Chlorophyta)[J]. Phycologia, 1985, 24(2): 225-229.
doi: 10.2216/i0031-8884-24-2-225.1 URL |
[35] |
Liu LJ, Huang L, Lin XY, et al. Hydrogen peroxide alleviates salinity-induced damage through enhancing proline accumulation in wheat seedlings[J]. Plant Cell Rep, 2020, 39(5): 567-575.
doi: 10.1007/s00299-020-02513-3 pmid: 32025801 |
[36] |
Mohseni A, Fan LH, Roddick FA. Impact of microalgae species and solution salinity on algal treatment of wastewater reverse osmosis concentrate[J]. Chemosphere, 2021, 285: 131487.
doi: 10.1016/j.chemosphere.2021.131487 URL |
[37] |
Ma XC, Wei HY, Zhang YD, et al. Glutathione peroxidase 5 deficiency induces lipid metabolism regulated by reactive oxygen species in Chlamydomonas reinhardtii[J]. Microb Pathog, 2020, 147: 104358.
doi: 10.1016/j.micpath.2020.104358 URL |
[38] |
Moghimifam R, Niknam V, Ebrahimzadeh H, et al. The influence of different CO2 concentrations on the biochemical and molecular response of two isolates of Dunaliella sp.(ABRIINW-CH2 and ABRIINW-SH33)[J]. J Appl Phycol, 2020, 32(1): 175-187.
doi: 10.1007/s10811-019-01914-6 |
[39] |
Pathak J, Singh PR, Häder DP, et al. UV-induced DNA damage and repair: a cyanobacterial perspective[J]. Plant Gene, 2019, 19: 100194.
doi: 10.1016/j.plgene.2019.100194 URL |
[40] |
Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sci, 2002, 7(9): 405-410.
doi: 10.1016/s1360-1385(02)02312-9 pmid: 12234732 |
[41] |
Yeh HL, Lin TH, Chen CC, et al. Monodehydroascorbate reductase plays a role in the tolerance of Chlamydomonas reinhardtii to photooxidative stress[J]. Plant Cell Physiol, 2019, 60(10): 2167-2179.
doi: 10.1093/pcp/pcz110 URL |
[42] |
Lin ST, Chiou CW, Chu YL, et al. Enhanced ascorbate regeneration via dehydroascorbate reductase confers tolerance to photo-oxidative stress in Chlamydomonas reinhardtii[J]. Plant Cell Physiol, 2016, 57(10): 2104-2121.
doi: 10.1093/pcp/pcw129 URL |
[43] |
Choi BY, Kim H, Shim D, et al. The Chlamydomonas bZIP transcription factor BLZ8 confers oxidative stress tolerance by inducing the carbon-concentrating mechanism[J]. Plant Cell, 2022, 34(2): 910-926.
doi: 10.1093/plcell/koab293 URL |
[44] |
Peng Z, Liu G, Huang KY. Cold adaptation mechanisms of a snow alga Chlamydomonas nivalis during temperature fluctuations[J]. Front Microbiol, 2021, 11: 611080.
doi: 10.3389/fmicb.2020.611080 URL |
[45] |
Podgornaia AI, Laub MT. Determinants of specificity in two-component signal transduction[J]. Curr Opin Microbiol, 2013, 16(2): 156-162.
doi: 10.1016/j.mib.2013.01.004 pmid: 23352354 |
[46] |
Lenzoni G, Liu JL, Knight MR. Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures[J]. New Phytol, 2018, 217(4): 1598-1609.
doi: 10.1111/nph.14924 pmid: 29218709 |
[47] |
Li YJ, Fei XW, Dai HF, et al. Genome-wide identification of calcium-dependent protein kinases in Chlamydomonas reinhardtii and functional analyses in nitrogen deficiency-induced oil accumulation[J]. Front Plant Sci, 2019, 10: 1147.
doi: 10.3389/fpls.2019.01147 URL |
[48] |
Gomez-Osuna A, Calatrava V, Galvan A, et al. Identification of the MAPK cascade and its relationship with nitrogen metabolism in the green alga Chlamydomonas reinhardtii[J]. Int J Mol Sci, 2020, 21(10): 3417.
doi: 10.3390/ijms21103417 URL |
[49] |
Tang ZY, Cao XY, Zhang YP, et al. Two splice variants of the DsMEK1 mitogen-activated protein kinase kinase(MAPKK)are involved in salt stress regulation in Dunaliella salina in different ways[J]. Biotechnol Biofuels, 2020, 13: 147.
doi: 10.1186/s13068-020-01786-w |
[50] |
Waditee R, Hibino T, Nakamura T, et al. Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water[J]. Proc Natl Acad Sci USA, 2002, 99(6): 4109-4114.
doi: 10.1073/pnas.052576899 URL |
[51] |
Soontharapirakkul K, Promden W, Yamada N, et al. Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance[J]. J Biol Chem, 2011, 286(12): 10169-10176.
doi: 10.1074/jbc.M110.208892 pmid: 21262962 |
[52] |
Fukaya F, Promden W, Hibino T, et al. An mrp-like cluster in the halotolerant Cyanobacterium Aphanothece halophytica functions as a Na+/H+ antiporter[J]. Appl Environ Microbiol, 2009, 75(20): 6626-6629.
doi: 10.1128/AEM.01387-09 URL |
[53] |
Checchetto V, Segalla A, Sato Y, et al. Involvement of potassium transport systems in the response of Synechocystis PCC 6803 cyanobacteria to external pH change, high-intensity light stress and heavy metal stress[J]. Plant Cell Physiol, 2016, 57(4): 862-877.
doi: 10.1093/pcp/pcw032 pmid: 26880819 |
[54] |
Pade N, Michalik D, Ruth W, et al. Trimethylated homoserine functions as the major compatible solute in the globally significant oceanic cyanobacterium Trichodesmium[J]. Proc Natl Acad Sci USA, 2016, 113(46): 13191-13196.
doi: 10.1073/pnas.1611666113 URL |
[55] |
Song K, Tan XM, Liang YJ, et al. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production[J]. Appl Microbiol Biotechnol, 2016, 100(18): 7865-7875.
doi: 10.1007/s00253-016-7510-z pmid: 27079574 |
[56] |
Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments[J]. Arch Microbiol, 1998, 170(5): 319-330.
pmid: 9818351 |
[57] |
Chen THH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes[J]. Curr Opin Plant Biol, 2002, 5(3): 250-257.
doi: 10.1016/s1369-5266(02)00255-8 pmid: 11960744 |
[58] |
Rontein D, Basset G, Hanson AD. Metabolic engineering of osmoprotectant accumulation in plants[J]. Metab Eng, 2002, 4(1): 49-56.
pmid: 11800574 |
[59] |
Waditee R, Tanaka Y, Aoki K, et al. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica[J]. J Biol Chem, 2003, 278(7): 4932-4942.
doi: 10.1074/jbc.M210970200 URL |
[60] |
Waditee-Sirisattha R, Singh M, Kageyama H, et al. Anabaena sp. PCC7120 transformed with glycine methylation genes from Aphan-othece halophytica synthesized glycine betaine showing increased tolerance to salt[J]. Arch Microbiol, 2012, 194(11): 909-914.
doi: 10.1007/s00203-012-0824-z pmid: 22707090 |
[61] |
Verma E, Singh S, Niveshika, et al. Salinity-induced oxidative stress-mediated change in fatty acids composition of cyanobacterium Synechococcus sp. PCC7942[J]. Int J Environ Sci Technol, 2019, 16(2): 875-886.
doi: 10.1007/s13762-018-1720-0 |
[62] |
Huflejt ME, Tremolieres A, Pineau B, et al. Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311[J]. Plant Physiol, 1990, 94(4): 1512-1521.
doi: 10.1104/pp.94.4.1512 URL |
[63] |
Ritter D, Yopp JH. Plasma membrane lipid composition of the halophilic cyanobacterium Aphanothece halophytica[J]. Arch Microbiol, 1993, 159(5): 435-439.
doi: 10.1007/BF00288590 URL |
[64] |
Joset F, Jeanjean R, Hagemann M. Dynamics of the response of cyanobacteria to salt stress: Deciphering the molecular events[J]. Physiol Plant, 1996, 96(4): 738-744.
doi: 10.1111/ppl.1996.96.issue-4 URL |
[65] |
Yamamori T, Kageyama H, Tanaka Y, et al. Requirement of alkanes for salt tolerance of Cyanobacteria: characterization of alkane synthesis genes from salt-sensitive Synechococcus elongatus PCC7942 and salt-tolerant Aphanothece halophytica[J]. Lett Appl Microbiol, 2018, 67(3): 299-305.
doi: 10.1111/lam.13038 pmid: 30039571 |
[66] |
Agostoni M, Montgomery BL. Survival strategies in the aquatic and terrestrial world: the impact of second messengers on cyanobacterial processes[J]. Life, 2014, 4(4): 745-769.
doi: 10.3390/life4040745 URL |
[67] |
Imashimizu M, Yoshimura H, Katoh H, et al. NaCl enhances cellular cAMP and upregulates genes related to heterocyst development in the cyanobacterium, Anabaena sp. strain PCC 7120[J]. FEMS Microbiol Lett, 2005, 252(1): 97-103.
pmid: 16182471 |
[68] |
Cadoret JC, Rousseau B, Perewoska I, et al. Cyclic nucleotides, the photosynthetic apparatus and response to a UV-B stress in the Cyanobacterium synechocystis sp. PCC 6803[J]. J Biol Chem, 2005, 280(40): 33935-33944.
doi: 10.1074/jbc.M503153200 URL |
[69] |
Agostoni M, Logan-Jackson AR, Heinz ER, et al. Homeostasis of second messenger cyclic-di-AMP is critical for cyanobacterial fitness and acclimation to abiotic stress[J]. Front Microbiol, 2018, 9: 1121.
doi: 10.3389/fmicb.2018.01121 pmid: 29896182 |
[70] |
Angerer V, Schwenk P, Wallner T, et al. The protein Slr1143 is an active diguanylate cyclase in Synechocystis sp. PCC 6803 and interacts with the photoreceptor Cph2[J]. Microbiology, 2017, 163(6): 920-930.
doi: 10.1099/mic.0.000475 URL |
[71] |
Xu CX, Sun T, Li SB, et al. Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803[J]. Biotechnol Biofuels, 2018, 11: 205.
doi: 10.1186/s13068-018-1205-x |
[72] |
Perrineau MM, Zelzion E, Gross J, et al. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhard-tii[J]. Environ Microbiol, 2014, 16(6): 1755-1766.
doi: 10.1111/emi.2014.16.issue-6 URL |
[73] |
Kato Y, Ho SH, Vavricka CJ, et al. Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching[J]. Bioresour Technol, 2017, 245(Pt B): 1484-1490.
doi: 10.1016/j.biortech.2017.06.035 URL |
[74] |
Chen H, Jiang JG. Osmotic responses of Dunaliella to the changes of salinity[J]. J Cell Physiol, 2009, 219(2): 251-258.
doi: 10.1002/jcp.21715 pmid: 19202552 |
[75] |
Goyal A. Osmoregulation in Dunaliella, Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta[J]. Plant Physiol Biochem, 2007, 45(9): 705-710.
doi: 10.1016/j.plaphy.2007.05.009 URL |
[76] | Gong WF, Zhao LN, Hu B, et al. Identifying novel salt-tolerant genes from Dunaliella salina using a Haematococcus pluvialis expression system[J]. Plant Cell Tissue Organ Cult PCTOC, 2014, 117(1): 113-124. |
[77] |
Miller DM, Jones JH, Yopp JH, et al. Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica[J]. Arch Microbiol, 1976, 111(1/2): 145-149.
doi: 10.1007/BF00446561 URL |
[78] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[79] |
Ono K, Hibino T, Kohinata T, et al. Overexpression of DnaK from a halotolerant Cyanobacterium Aphanothece halophytica enhances the high-temperatue tolerance of tobacco during germination and early growth[J]. Plant Sci, 2001, 160(3): 455-461.
pmid: 11166432 |
[80] |
Scaife MA, Nguyen GTDT, Rico J, et al. Establishing Chla-mydomonas reinhardtii as an industrial biotechnology host[J]. Plant J, 2015, 82(3): 532-546.
doi: 10.1111/tpj.2015.82.issue-3 URL |
[81] |
Ma XR, Kim EJ, Kook I, et al. Small interfering RNA-mediated translation repression alters ribosome sensitivity to inhibition by cycloheximide in Chlamydomonas reinhardtii[J]. Plant Cell, 2013, 25(3): 985-998.
doi: 10.1105/tpc.113.109256 URL |
[82] |
Akella S, Ma XR, Bacova R, et al. Co-targeting strategy for precise, scarless gene editing with CRISPR/Cas9 and donor ssODNs in Chlamydomonas[J]. Plant Physiol, 2021, 187(4): 2637-2655.
doi: 10.1093/plphys/kiab418 URL |
[1] | LI Hao, WU Guo-qiang, WEI Ming, HAN Yue-xin. Genome-wide Identification of the BvBADH Gene Family in Sugar Beet(Beta vulgaris)and Their Expression Analysis Under High Salt Stress [J]. Biotechnology Bulletin, 2024, 40(2): 233-244. |
[2] | XU Yang, ZHANG Rui-ying, DAI Liang-xiang, ZHANG Guan-chu, DING Hong, ZHANG Zhi-meng. Regulation of Nitrogen Application on Peanut Seed Germination and Spermosphere Bacterial Community Structure Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(2): 253-265. |
[3] | WANG Yu-qing, MA Zi-qi, HOU Jia-xin, ZONG Yu-qi, HAO Han-rui, LIU Guo-yuan, WEI Hui, LIAN Bo-lin, CHEN Yan-hong, ZHANG Jian. Research Progress in the Composition Analysis and Ecological Function of Plant Root Exudates Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(1): 12-23. |
[4] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[5] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[6] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[7] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[8] | YE Hong, WANG Yu-kun. Research Progress in Immune Receptor Functions of Pattern-Recognition Receptor in Plants [J]. Biotechnology Bulletin, 2023, 39(12): 1-15. |
[9] | WANG Ming-tao, LIU Jian-wei, ZHAO Chun-zhao. Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(11): 18-27. |
[10] | ZHANG Yu-juan, LI Dong-hua, GONG Hui-hui, CUI Xin-xiao, GAO Chun-hua, ZHANG Xiu-rong, YOU Jun, ZHAO Jun-sheng. Cloning and Salt-tolerance Analysis of NAC Transcription Factor SiNAC77 from Sesamum indicum L. [J]. Biotechnology Bulletin, 2023, 39(11): 308-317. |
[11] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[12] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[13] | ZHANG Ye-meng, ZHU Li-li, CHEN Zhi-guo. Identification and Expression Analysis of NHX Gene Family in Quinoa Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(12): 184-193. |
[14] | ZHANG Tong-tong, ZHENG Deng-yu, WU Zhong-yi, ZHANG Zhong-bao, YU Rong. Functional Analysis of ZmNF-YB13 Responding to Drought and Salt Stress [J]. Biotechnology Bulletin, 2022, 38(10): 115-123. |
[15] | MA Ya-nan, LU Xu, WEI Yun-chun, LI Kang, WEI Ruo-nan, LI Sheng, MA Shao-ying. Identification and Tissue Specific Expression Analysis of AKR Gene Family in Grape [J]. Biotechnology Bulletin, 2021, 37(8): 141-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||