Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (4): 242-254.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1071
Previous Articles Next Articles
WANG Hao-jie1(), CHANG Dong2, LI Jun-ying2, MENG Hao-guang1, JIANG Shi-jun1, ZHOU Shuo-ye3(), CUI Jiang-kuan1()
Received:
2023-11-14
Online:
2024-04-26
Published:
2024-04-30
Contact:
ZHOU Shuo-ye, CUI Jiang-kuan
E-mail:whj_1917@163.com;jk_cui@163.com;82109049@qq.com
WANG Hao-jie, CHANG Dong, LI Jun-ying, MENG Hao-guang, JIANG Shi-jun, ZHOU Shuo-ye, CUI Jiang-kuan. Analysis of Microbial Community Changes and Stress-resistant Enzyme Activities of Flue-cured Tobacco Three-stage Seedling Raising in Different Habitats[J]. Biotechnology Bulletin, 2024, 40(4): 242-254.
Fig. 1 Effects of different seedling raising methods on temperature and humidity A: Temperature; B: humidity. The data in the figure is shown as the average
Fig. 2 Effects of different seedling raising methods on water quality physicochemical properties A: pH; B: dissolved oxygen concentration; C: electric conductivity. The data are presented as mean ± standard error
处理Treatment | 株高 Plant height/cm | 鲜重 Fresh weight/g | 根长 Root length/cm | 侧根数 Number of lateral roots | 最大叶面积 Maximum leaf area/cm2 | 成苗率 Seedling rate/% |
---|---|---|---|---|---|---|
三段式育苗 | 8.22 ± 1.71 a | 6.26 ± 1.21 a | 10.40 ± 2.01 a | 133.08 ± 26.15 a | 50.27 ± 7.51 a | 96.18 ± 2.02 a |
漂浮育苗 | 8.08 ± 1.98 a | 4.66 ± 0.97 b | 7.74 ± 1.91 b | 97.56 ± 16.87 b | 40.53 ± 6.94 b | 85.27 ± 4.18 b |
Table 1 Effects of different seedling raising methods on the agronomic traits of tobacco seedlings
处理Treatment | 株高 Plant height/cm | 鲜重 Fresh weight/g | 根长 Root length/cm | 侧根数 Number of lateral roots | 最大叶面积 Maximum leaf area/cm2 | 成苗率 Seedling rate/% |
---|---|---|---|---|---|---|
三段式育苗 | 8.22 ± 1.71 a | 6.26 ± 1.21 a | 10.40 ± 2.01 a | 133.08 ± 26.15 a | 50.27 ± 7.51 a | 96.18 ± 2.02 a |
漂浮育苗 | 8.08 ± 1.98 a | 4.66 ± 0.97 b | 7.74 ± 1.91 b | 97.56 ± 16.87 b | 40.53 ± 6.94 b | 85.27 ± 4.18 b |
Fig. 3 Effects of different seedling raising methods on the enzyme activities and root vitalities of tobacco seedlings A: CAT enzyme activity; B: POD enzyme activity; C: SOD enzyme activity; D: MDA content; E: root vitality. The data in the column chart is shown as mean ± standard error. * indicates a significant difference at the 0.05 level, and ** indicates a significant difference at the 0.01 level. The same below
Fig. 4 Analysis of alpha diversity in microbial communities A: Fungal ACE index; B: fungal Chao index; C: fungal Simpson index; D: fungal Shannon index; E: bacterial ACE index; F: bacterial Chao index; G: bacterial Simpson index; H: bacterial Shannon index
Fig. 5 PCA analysis of microbial communities A: Fungal PCA analysis; B: bacterial PCA analysis. a: Three-stage seedling raising pool water; b: floating seedling raising pool water; c: three-stage seedling raising tray matrix; d: floating seedling raising tray matrix; e: three-stage seedling raising tobacco seedling root; f: floating seedling raising tobacco seedling root
Fig. 6 Effects of seedling raising methods on the abundance of microbial community A: Fungal phylum level; B: bacterial phylum level; C: fungal genus level; D: bacterial genus level. a: Three-stage seedling raising pool water; b: floating seedling raising pool water; c: three-stage seedling raising tray matrix; d: floating seedling raising tray matrix; e: three-stage seedling raising tobacco seedling root; f: floating seedling raising tobacco seedling root
Fig. 7 Analysis of alpha diversity of soil microbial communities A: Fungal ACE index; B: fungal Chao index; C: fungal Simpson index; D: fungal Shannon index; E: bacterial ACE index; F: bacterial Chao index; G: bacterial Simpson index; H: bacterial Shannon index
Fig. 8 PCA analysis of soil microbial communities A: Fungal PCA analysis; B: bacterial PCA analysis. a: Tobacco root soil by three-stage seedling raising ; b: tobacco root soil by floating seedling raising
Fig. 9 Effects of different nursery methods on soil microbial community abundance A: Fungal phylum level; B: bacterial phylum level; C: fungal genus level; D: bacterial genus level. a: Tobacco root soil by three-stage seedling raising; B: tobacco root soil by floating seedling raising
[1] | 崔江宽, 常栋, 万笑迎, 等. 烟草漂浮育苗有害藻类致病机制及其防治研究进展[J]. 中国烟草学报, 2021, 27(4): 106-113. |
Cui JK, Chang D, Wan XY, et al. Research progress on pathogenic mechanism and controlling of the algae in tobacco floating seedling[J]. Acta Tabacaria Sin, 2021, 27(4): 106-113. | |
[2] | 万笑迎, 康晓博, 黄微微, 等. 烟草漂浮育苗小球藻和颤藻的防治药剂筛选[J]. 农药, 2021, 60(12): 913-916, 920. |
Wan XY, Kang XB, Huang WW, et al. Screening of algicides for controlling Chlorella and oscillatoriales of the algae in tobacco floating seedling in Henan Province[J]. Agrochemicals, 2021, 60(12): 913-916, 920. | |
[3] | 常栋, 孟颢光, 周博, 等. 药剂灌根防治隐性感染烟苗根腐病田间效果[J]. 中国植保导刊, 2021, 41(7): 88-91. |
Chang D, Meng HG, Zhou B, et al. Field effect of chemical root irrigation on controlling root rot of recessive infected tobacco seedlings[J]. China Plant Prot, 2021, 41(7): 88-91. | |
[4] | 王新月, 张阳, 蔡奇, 等. 育苗盘孔径、微生物菌剂和移栽叶龄对烤烟生长发育的影响[J]. 中国烟草科学, 2023, 44(5): 18-26. |
Wang XY, Zhang Y, Cai Q, et al. Effects of float seedling tray size, microbial agents and transplanting leaf age on growth of flue-cured tobacco[J]. Chin Tob Sci, 2023, 44(5): 18-26. | |
[5] | Jiang HL, Li NJ, Xu AD, et al. Development of closed-type transplant production system and discussion of its application mode for flue-cured tobacco[J]. Aust J Crop Sci, 2014, 8: 1566-1570. |
[6] | 王颢杰, 李俊营, 何晓冰, 等. 不同育苗方式和移栽方式对烤烟田间抗病抗逆性的影响[J/OL]. 河南农业大学学报, 2023, 57(6): 996-1007. |
Wang HJ, Li JY, He XB, et al. Effects of seedling raising and transplanting cultivation methods on tobacco field resistance to disease and stress[J/OL]. Journal of Henan Agricultural University, 2023, 57(6): 996-1007. | |
[7] | 许跃奇, 王颢杰, 常栋, 等. 烤烟不同育苗方式对烟草苗期抗病抗逆性的影响[J]. 植物医学, 2023, 2(4): 28-38. |
Xu YQ, Wang HJ, Chang D, et al. Effects of different seedling breeding methods on disease and stress resistance of flue-cured tobacco at seedling stage[J]. Plant Health Med, 2023, 2(4): 28-38. | |
[8] | 张义志, 孔凡玉, 黄建, 等. 水旱两段式育苗技术对烤烟成苗素质的影响[J]. 江苏农业科学, 2015, 43(1): 67-69. |
Zhang YZ, Kong FY, Huang J, et al. Effect of two-stage seedling raising technology of flood and drought on seedling quality of flue-cured tobacco[J]. Jiangsu Agric Sci, 2015, 43(1): 67-69. | |
[9] | 陈千思, 方明, 李泽锋, 等. 烟草抗冷相关基因在两种不同育苗方式下的低温应答差异分析[J]. 烟草科技, 2022, 55(9): 19-28. |
Chen QS, Fang M, Li ZF, et al. Differential analysis of low temperature gene responses related to cold resistance in tobacco under two seedling cultivation methods[J]. Tob Sci Technol, 2022, 55(9): 19-28. | |
[10] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 烟草集约化育苗技术规程第1部分:漂浮育苗: GB/T 25241.1—2010[S]. 北京: 中国标准出版社, 2011. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Rules for tobacco intensive seedling production-Part 1: Seedling with float system:GB/T 25241.1-2010[S]. Beijing: Standards Press of China, 2011. | |
[11] | 国家烟草专卖局. 烟草农艺性状调查测量方法: YC/T 142—2010[S]. 北京: 中国标准出版社, 2010. |
State Tobacco Monopoly Bureau of the People's Republic of China. Investigating and measuring methods of agronomical character of tobacco: YC/T 142—2010[S]. Beijing: Standards Press of China, 2010. | |
[12] |
Zhang JT, Mu CS. Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forageLathyrus quinquenervius[J]. Soil Sci Plant Nutr, 2009, 55(5): 685-697.
doi: 10.1111/j.1747-0765.2009.00411.x URL |
[13] |
Chen Y, Wen Y, Cheng J, et al. Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: implications for denitrification in constructed wetlands[J]. Bioresour Technol, 2011, 102(3): 2433-2440.
doi: 10.1016/j.biortech.2010.10.122 URL |
[14] | Hasanuzzaman M, Nahar K, Fujita M. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages[M]// Ecophysiology and Responses of Plants under Salt Stress. New York: Springer, 2013: 25-87. |
[15] |
Hossain ST, Sugimoto H, Yamashita J. Effect of topdressing on individual leaf photosynthesis at different position in direct-sown rice with non-woven fabric mulch system[J]. Photosynthetica, 2007, 45(4): 576-581.
doi: 10.1007/s11099-007-0099-9 URL |
[16] |
Ma HZ, Liu C, Li ZX, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiol, 2018, 178(2): 753-770.
doi: 10.1104/pp.18.00436 pmid: 30126870 |
[17] |
Raza A, Charagh S, Zahid Z, et al. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants[J]. Plant Cell Rep, 2021, 40(8): 1513-1541.
doi: 10.1007/s00299-020-02614-z pmid: 33034676 |
[18] | Zhou R, Kong LP, Yu XQ, et al. Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress[J]. Acta Physiol Plant, 2019, 41(2): 20. |
[19] |
李琬婷, 宁朋, 王菲, 等. 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响[J]. 应用生态学报, 2020, 31(5):1543-1550.
doi: 10.13287/j.1001-9332.202005.009 |
Li WT, Ning P, Wang F, et al. Effects of exogenous abscisic acid on growth and physiological characteristics of seedlings of Dian Runnan under drought stress[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1543-1550.
doi: 10.13287/j.1001-9332.202005.009 |
|
[20] | 束胜, 胡晓辉, 王玉. 蔬菜作物逆境生理与抗逆栽培研究进展[J]. 南京农业大学学报, 2022, 45(6): 1087-1098. |
Shu S, Hu XH, Wang Y, et al. Research progress on stress physiology and stress tolerance cultivation of vegetable crops[J]. Journal of Nanjing Agricultural University, 2022, 45(6): 1087-1098. | |
[21] |
周闪闪, 黄远龙, 黄建忠, 等. 溶杆菌中活性天然产物的研究进展[J]. 生物技术通报, 2023, 39(10): 41-49.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0655 |
Zhou SS, Huang YL, Huang JZ, et al. Research progress in bioactive natural products from Lysobacter[J]. Biotechnol Bull, 2023, 39(10): 41-49. | |
[22] | Kumar M, Giri VP, Pandey S, et al. Plant-growth-promoting rhizobacteria emerging as an effective bioinoculant to improve the growth, production, and stress tolerance of vegetable crops[J]. Int J Mol Sci, 2021, 22(22): 12245. |
[23] |
李俊领, 马晓寒, 张豫丹, 等. 土壤微生物与烟草青枯病发生关系的研究进展[J]. 生物技术通报, 2020, 36(9): 88-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1268 |
Li JL, Ma XH, Zhang YD, et al. Research progress on the relationship between soil microorganism and tobacco bacterial wilt[J]. Biotechnol Bull, 2020, 36(9): 88-99. | |
[24] |
徐扬, 张冠初, 丁红, 等. 土壤类型对花生根际土壤细菌群落多样性和产量的影响[J]. 生物技术通报, 2022, 38(6): 221-234.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0912 |
Xu Y, Zhang GC, Ding H, et al. Effects of soil types on bacterial community diversity on the rhizosphere soil of Arachis hypogaea and yield[J]. Biotechnol Bull, 2022, 38(6): 221-234. | |
[25] | Goyal D, Prakash O, Pandey J. Rhizospheric microbial diversity: an important component for abiotic stress management in crop plants toward sustainable agriculture[M]// New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam: Elsevier, 2019: 115-134. |
[26] | Liu WX, Zhang R, Shu R, et al. Study of the relationship between microbiome and colorectal cancer susceptibility using 16S rRNA sequencing[J]. Biomed Res Int, 2020: 7828392. |
[27] | Okungbowa FI, Shittu HO. Fusarium wilts: An overview[J]. Environ Res J, 2012, 6(2): 83-102 |
[28] | Emenike CU, Agamuthu P, Fauziah SH. Blending Bacillus sp., Lysinibacillus sp. and Rhodococcus sp. for optimal reduction of heavy metals in leachate contaminated soil[J]. Environ Earth Sci, 2015, 75(1): 26. |
[29] | Omer A. Biovalorization of olive mill wastewater using phenol degrading bacteria to produce biofertilizer[J]. Egypt J Chem, 2023. |
[30] |
Ravi S, Sevugapperumal N, Nallusamy S, et al. Differential bacterial endophytome in Foc-resistant banana cultivar displays enhanced antagonistic activity against Fusarium oxysporum f.sp. cubense(Foc)[J]. Environ Microbiol, 2022, 24(6): 2701-2715.
doi: 10.1111/emi.v24.6 URL |
[31] |
Andreolli M, Lampis S, Zapparoli G, et al. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control[J]. Microbiol Res, 2016, 183: 42-52.
doi: 10.1016/j.micres.2015.11.009 pmid: 26805617 |
[32] |
Devi R, Kaur T, Kour D, et al. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health[J]. Microb Biosyst, 2020, 5(1): 21-47.
doi: 10.21608/mb.2020.32802.1016 URL |
[33] | Altaf MM, Imran M, Abulreesh HH, et al. Diversity and applications of Penicillium spp. in plant-growth promotion[M]// New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam: Elsevier, 2018: 261-276. |
[34] | Moreira BC, Prates Júnior P, Dell B, et al. Roots and beneficial interactions with soil microbes[M]// Subsoil Constraints for Crop Production. Cham: Springer, 2022: 263-287. |
[35] |
Aqeel M, Ran JZ, Hu WG, et al. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions[J]. Chemosphere, 2023, 318: 137924.
doi: 10.1016/j.chemosphere.2023.137924 URL |
[1] | LI Can, JIANG Xiang-ning, GAI Ying. Cloning of the LkF3H2 Gene in Larix kaempferi and Its Function in Regulating Flavonoid Metabolism [J]. Biotechnology Bulletin, 2024, 40(2): 245-252. |
[2] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[3] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[4] | LIU Zhen-yin, DUAN Zhi-zhen, PENG Ting, WANG Tong-xin, WANG Jian. Establishment and Optimization of Virus-induced Gene Silencing System in Bougainvillea peruviana ‘Thimma’ [J]. Biotechnology Bulletin, 2023, 39(7): 123-130. |
[5] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[6] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[7] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[8] | YU Shi-zhou, CAO Ling-gai, WANG Shi-ze, LIU Yong, BIAN Wen-jie, REN Xue-liang. Development Core SNP Markers for Tobacco Germplasm Genotyping [J]. Biotechnology Bulletin, 2023, 39(3): 89-100. |
[9] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[10] | WANG Ge-ge, QIU Shi-rui, ZHANG Lin-han, YANG Guo-wei, XU Xiao-yun, WANG Ai-ling, ZENG Shu-hua, LIU Ya-jie. Molecular Cytology at Meiosis in Allotriploid Nicotiana tabacum(SST) [J]. Biotechnology Bulletin, 2023, 39(2): 183-192. |
[11] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[12] | CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2023, 39(11): 217-225. |
[13] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[14] | LIU Guang-chao, YE Qing, CHE yong-mei, LI Ya-hua, AN Dong, LIU Xin. Screening and Identification of High-efficiency Phosphate Solubilizing Bacteria in Tobacco Rhizosphere and Its Growth-promoting Effects [J]. Biotechnology Bulletin, 2022, 38(8): 179-187. |
[15] | ZHANG Hao-xin, WANG Zhong-hua, NIU bing, GUO Kang, LIU Lu, JIANG Ying, ZHANG Shi-xiang. Screening,Identification and Broad-spectrum Application of Efficient IAA-producing Bacteria Dissolving Phosphorus and Potassium [J]. Biotechnology Bulletin, 2022, 38(5): 100-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||