Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (5): 48-57.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1151
Previous Articles Next Articles
DOU Jin-ping(), GAO Wei-song, WEI Shuang, GAO Xin-tao, LI Yi-nv()
Received:
2023-12-08
Online:
2024-05-26
Published:
2024-04-19
Contact:
LI Yi-nv
E-mail:idoujinping@163.com;liyinv@caas.cn
DOU Jin-ping, GAO Wei-song, WEI Shuang, GAO Xin-tao, LI Yi-nv. Functional Analysis of Exosomal MicroRNA in Antiviral Immunity[J]. Biotechnology Bulletin, 2024, 40(5): 48-57.
Fig. 2 Mechanism of exosome formation With the assistance of the ESCRT complex, the cytoplasmic membrane invagination of cells eventually forms exosomes through a series of material sorting, and information communication with target cells is completed by recognizing receptors
Fig. 3 Biomedical applications of exosomes The exosomes purified by gradient centrifugation can be used in the fields of medicine and immunology research
Fig. 4 Dual role of exosomes in viral infection Left: The exosomal miRNA secreted by HBV-infected hepatocytes, can restrict viral infection. Right: The exosomal miRNA secreted by various virus-infected cells, can promote viral replication
[1] |
Admyre C, Johansson SM, Paulie S, et al. Direct exosome stimulation of peripheral human T cells detected by ELISPOT[J]. Eur J Immunol, 2006, 36(7): 1772-1781.
doi: 10.1002/eji.200535615 pmid: 16761310 |
[2] | Tan A, Rajadas J, Seifalian AM. Exosomes as nano-theranostic delivery platforms for gene therapy[J]. Adv Drug Deliv Rev, 2013, 65(3): 357-367. |
[3] | 李双双, 杜春阳, 袁媛, 等. 不同细胞来源的外泌体的特点和功能[J]. 国际药学研究杂志, 2019, 46(6): 411-417. |
Li SS, Du CY, Yuan Y, et al. Characteristics and functions of exosomes from different cell sources[J]. J Int Pharm Res, 2019, 46(6): 411-417. | |
[4] | Wolf P. The nature and significance of platelet products in human plasma[J]. Br J Haematol, 1967, 13(3): 269-288. |
[5] |
Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978.
doi: 10.1016/0092-8674(83)90040-5 pmid: 6307529 |
[6] | Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles(exosomes). J. Biol. Chem 1987 ;262(19):9412-9420. |
[7] |
Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles[J]. J Exp Med, 1996, 183(3): 1161-1172.
doi: 10.1084/jem.183.3.1161 pmid: 8642258 |
[8] |
Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes[J]. Nat Med, 1998, 4(5): 594-600.
doi: 10.1038/nm0598-594 pmid: 9585234 |
[9] |
Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659.
doi: 10.1038/ncb1596 pmid: 17486113 |
[10] |
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232.
doi: S0092-8674(16)30057-5 pmid: 26967288 |
[11] |
Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles[J]. Circ Res, 2017, 120(10): 1632-1648.
doi: 10.1161/CIRCRESAHA.117.309417 pmid: 28495994 |
[12] | Wang T, Zhang L, Liang WL, et al. Extracellular vesicles originating from autophagy mediate an antibody-resistant spread of classical swine fever virus in cell culture[J]. Autophagy, 2022, 18(6): 1433-1449. |
[13] |
Xia BQ, Pan XY, Luo RH, et al. Extracellular vesicles mediate antibody-resistant transmission of SARS-CoV-2[J]. Cell Discov, 2023, 9: 2.
doi: 10.1038/s41421-022-00510-2 pmid: 36609376 |
[14] | Liang JQ, Yin H. STAM transports STING oligomers into extracellular vesicles, down-regulating the innate immune response[J]. J Extracell Vesicles, 2023, 12(3): e12316. |
[15] | 郑忠涛, 祝叶, 刘小强. 巨噬细胞外泌体介导mir-222靶向Caspase-10促进胶质瘤增殖[J]. 海南医学院学报, 2023, 29(24): 1848-1854. |
Zheng ZT, Zhu Y, Liu XQ, et al. Macrophage-derived exosomes mediate mir-222 targeting Caspase-10 to promote glioma proliferation[J]. Journal of Hainan Medical University, 2023, 29(24): 1848-1854. | |
[16] | 彭梦阳, 贺花, 王献伟, 等. 外泌体的生物学功能和调控机制研究进展[J]. 中国畜牧杂志, 2021, 57(1): 11-16. |
Peng MY, He H, Wang XW, et al. Advances in biological functions and regulatory mechanisms of exosomes[J]. Chin J Anim Sci, 2021, 57(1): 11-16. | |
[17] | 高文静, 侯敏, 王攀, 等. 外泌体作为中药新活性成分的研究进展[J]. 世界科学技术-中医药现代化, 2019, 21(9): 1869-1876. |
Gao WJ, Hou M, Wang P, et al. Advances in research on exosome As a new active ingredient in traditional Chinese medicine[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2019, 21(9): 1869-1876. | |
[18] | 刘满宇, 付璐, 张文慧, 等. 免疫细胞与外泌体相互作用机制的研究进展[J]. 中国免疫学杂志, 2019, 35(22): 2806-2812. |
Liu MY, Fu L, Zhang WH, et al. Progress in mechanism of interaction between immune cells and exosomes[J]. Chin J Immunol, 2019, 35(22): 2806-2812. | |
[19] |
Yang M, Song DH, Cao XY, et al. Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS[J]. Food Res Int, 2017, 92: 17-25.
doi: S0963-9969(16)30590-7 pmid: 28290293 |
[20] |
Bagno L, Hatzistergos KE, Balkan W, et al. Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges[J]. Mol Ther, 2018, 26(7): 1610-1623.
doi: S1525-0016(18)30212-0 pmid: 29807782 |
[21] | Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis[J]. J Mol Med, 2013, 91(4): 431-437. |
[22] |
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function[J]. Nat Rev Immunol, 2002, 2(8): 569-579.
doi: 10.1038/nri855 pmid: 12154376 |
[23] | Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. |
[24] | 肖倍倍, 高瑛, 林雨洁, 等. 细胞外囊泡与肿瘤[J]. 中国细胞生物学学报, 2022, 44(4): 594-603. |
Xiao BB, Gao Y, Lin YJ, et al. Extracellular vesicles and cancers[J]. Chin J Cell Biol, 2022, 44(4): 594-603. | |
[25] | Vietri M, Radulovic M, Stenmark H. The many functions of ESCRTs[J]. Nat Rev Mol Cell Biol, 2020, 21(1): 25-42. |
[26] |
Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway[J]. Dev Cell, 2011, 21(1): 77-91.
doi: 10.1016/j.devcel.2011.05.015 pmid: 21763610 |
[27] |
Morita E, Sundquist WI. Retrovirus budding[J]. Annu Rev Cell Dev Biol, 2004, 20: 395-425.
pmid: 15473846 |
[28] | 张光辉, 任静朝, 姚武, 等. 外泌体在病毒感染中的作用[J]. 中华微生物学和免疫学杂志, 2018, 38(6): 476-480. |
Zhang GH, Ren JC, Yao W, et al. Role of exosomes in virus infection[J]. Chin J Microbiol Immunol, 2018, 38(6): 476-480. | |
[29] | Moon B, Chang S. Exosome as a delivery vehicle for cancer therapy[J]. Cells, 2022, 11(3): 316. |
[30] |
Wang QH, Ding XQ, Zhen F, et al. Remedial applications of exosomes in cancer, infections and diabetes[J]. Acta Pol Pharm, 2017, 74(2): 313-320.
pmid: 29624236 |
[31] | Song H, Liu B, Dong B, et al. Exosome-based delivery of natural products in cancer therapy[J]. Front Cell Dev Biol, 2021, 9: 650426. |
[32] |
丁军, 付子琳, 和俊豪, 等. 乳源外泌体研究进展[J]. 畜牧兽医学报, 2022, 53(4): 1019-1029.
doi: 10.11843/j.issn.0366-6964.2022.04.003 |
Ding J, Fu ZL, He JH, et al. Research progress of milk-derived exosomes[J]. Acta Vet Zootechnica Sin, 2022, 53(4): 1019-1029. | |
[33] |
陈婷, 谢梅英, 魏立民, 等. 猪乳外泌体对猪流行性腹泻病毒的抑制作用[J]. 生物技术通报, 2021, 37(12): 141-150.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0112 |
Chen T, Xie MY, Wei LM, et al. Inhibitory effects of porcine milk-derived exosome on porcine epidemic diarrhea virus[J]. Biotechnol Bull, 2021, 37(12): 141-150.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0112 |
|
[34] | Hao R, Yu ZT, Du J, et al. A high-throughput nanofluidic device for exosome nanoporation to develop cargo delivery vehicles(small 35/2021)[J]. Small, 2021, 17(35): 2170184. |
[35] |
Shao MY, Xu Q, Wu ZR, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p[J]. Stem Cell Res Ther, 2020, 11(1): 37.
doi: 10.1186/s13287-020-1550-0 pmid: 31973730 |
[36] |
Altan-Bonnet N. Extracellular vesicles are the Trojan horses of viral infection[J]. Curr Opin Microbiol, 2016, 32: 77-81.
doi: S1369-5274(16)30059-5 pmid: 27232382 |
[37] | Liu T, Zhang Q, Zhang JK, et al. EVmiRNA: a database of miRNA profiling in extracellular vesicles[J]. Nucleic Acids Res, 2019, 47(D1): D89-D93. |
[38] | 方程, 沈智杰, 王肖龙, 等. Exosomes介导的细胞与细胞之间的信息传递[J]. 中西医结合心脑血管病杂志, 2014, 12(5): 608-610. |
Fang C, Shen ZJ, Wang XL, et al. Exosomes-mediated information transmission between cells[J]. Chin J Integr Med Cardio /cerebrovascular Dis, 2014, 12(5): 608-610. | |
[39] |
Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition[J]. Cell, 2019, 177(2): 428-445.e18.
doi: S0092-8674(19)30212-0 pmid: 30951670 |
[40] |
Kadiu I, Narayanasamy P, Dash PK, et al. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages[J]. J Immunol, 2012, 189(2): 744-754.
doi: 10.4049/jimmunol.1102244 pmid: 22711894 |
[41] |
Gould SJ, Booth AM, Hildreth JEK. The Trojan exosome hypothesis[J]. Proc Natl Acad Sci USA, 2003, 100(19): 10592-10597.
pmid: 12947040 |
[42] |
Ramakrishnaiah V, Thumann C, Fofana I, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells[J]. Proc Natl Acad Sci USA, 2013, 110(32): 13109-13113.
doi: 10.1073/pnas.1221899110 pmid: 23878230 |
[43] | Bukong TN, Momen-Heravi F, Kodys K, et al. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90[J]. PLoS Pathog, 2014, 10(10): e1004424. |
[44] | 毛元鹏, 于哲, 宋阿倩, 等. 从病毒性肝炎到肝细胞癌: 外泌体microRNA的作用[J]. 临床肝胆病杂志, 2023, 39(2): 439-443. |
Mao YP, Yu Z, Song AQ, et al. From viral hepatitis to hepatocellular carcinoma: The role of exosomal microRNAs[J]. Journal of Clinical Hepatology, 2023, 39(2): 439-443. | |
[45] | 傅煜轩. 外泌体介导的miR——146a通过抑制I型干扰素产生进而促进肠道病毒71型复制[D]. 南京: 南京大学, 2018. |
Fu YX. MiR—146a mediated by exosomes can promote the replication of enterovirus 71 by inhibiting the production of interferon type I[D]. Nanjing: Nanjing University, 2018. | |
[46] | 叶贺贺, 卢涛, 钟婧, 等. 流感病毒感染 A549 细胞外泌体差异 microRNA 筛选及靶基因分析[J]. 中国免疫学杂志, 2022, 38(12):1414-1422. |
Ye HH, Lu T, Zhong J, et al. Screening differentially expressed microRNA in exosomes from A549 cells infected with influenza virus and analyzing their target genes[J]. Chinese Journal of Immunology, 2022, 38(12):1414-1422. | |
[47] | Hsu YC, Wei MT, Nguyen MH. Tenofovir alafenamide as compared to tenofovir disoproxil fumarate in the management of chronic hepatitis B with recent trends in patient demographics[J]. Expert Rev Gastroenterol Hepatol, 2017, 11(11): 999-1008. |
[48] | 刘娇, 刘青, 王大明, 等. 慢性乙型肝炎患者血清外泌体miR-122、miR-146a表达与HBV-DNA载量的相关性[J]. 疑难病杂志, 2020, 19(10): 976-979, 984. |
Liu J, Liu Q, Wang DM, et al. Correlation between serum exosomal miR-122 and miR-146a expression and HBV-DNA load in patients with chronic hepatitis B[J]. Chin J Difficult Complicat Cases, 2020, 19(10): 976-979, 984. | |
[49] | 中华医学会肝病学分会, 中华医学会感染病学分会. 慢性乙型肝炎防治指南(2022年版)[J]. 中华临床感染病杂志, 2022, 15(6): 401-427. |
Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B(2022version)[J]. Chin J Infect Dis, 2022, 15(6): 401-427. | |
[50] | 贾小芳, 褚巧芳, 袁正宏. 外泌体与病毒感染及HBV相关肝病的关系[J]. 临床肝胆病杂志, 2017, 33(8): 1465-1470. |
Jia XF, Chu QF, Yuan ZH. Association of exosomes with viral infection and hepatitis B virus-related liver diseases[J]. J Clin Hepatol, 2017, 33(8): 1465-1470. | |
[51] | Yang X, Li HF, Sun HH, et al. Hepatitis B virus-encoded microRNA controls viral replication[J]. J Virol, 2017, 91(10): e01919-16. |
[52] |
Chen RD, Zhao X, Wang YX, et al. Hepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G[J]. Sci Rep, 2017, 7: 40783.
doi: 10.1038/srep40783 pmid: 28098260 |
[53] | Ahmed W, Tariq S, Khan G. Tracking EBV-encoded RNAs(EBERs)from the nucleus to the excreted exosomes of B-lymphocytes[J]. Sci Rep, 2018, 8(1): 15438. |
[54] | 黄豪博, 沈建箴. EB病毒潜伏感染致淋巴瘤细胞外泌体分泌和功能异常的研究进展[J]. 中国实验血液学杂志, 2020, 28(1): 325-328. |
Huang HB, Shen JZ. Research advances on abnormal secretion and function abnormality of exosomes derived from lymphoma cells caused by latent EB virus—review[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2020, 28(1): 325-328. | |
[55] | 毛立. 外泌体和自噬在山羊副流感病毒3型感染中的作用研究[D]. 北京: 中国农业科学院, 2019. |
Mao L. Study on the role of exosomes and autophagy in goat parainfluenza virus type 3 infection[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
[56] | Zhou CL, Tan L, Sun YJ, et al. Exosomes carry microRNAs into neighboring cells to promote diffusive infection of Newcastle disease virus[J]. Viruses, 2019, 11(6): 527. |
[57] | 外泌体携带miRNA进入邻近细胞能够促进新城疫病毒(NDV)感染[J]. 中国预防兽医学报, 2019, 41(7): 775. |
Exosomes carry microRNAs into neighboring cells to promote diffusive infection of Newcastle disease virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(07): 775. | |
[58] |
Kouwaki T, Okamoto T, Ito A, et al. Hepatocyte factor JMJD5 regulates hepatitis B virus replication through interaction with HBx[J]. J Virol, 2016, 90(7): 3530-3542.
doi: 10.1128/JVI.02776-15 pmid: 26792738 |
[59] | 吴文煜. 干扰素作用下巨噬细胞外泌体内miR-574-5p抑制肝细胞HBV复制作用机制的研究[D]. 上海: 华中科技大学, 2022. |
Wu WY. Study on the mechanism of mi R-574-5p in exosomes secreted by macrophages to inhibit HBV replication in liver cells under the effect of interferon[D]. Shanghai: Huazhong University, 2022. | |
[60] |
Li JH, Liu KC, Liu Y, et al. Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity[J]. Nat Immunol, 2013, 14(8): 793-803.
doi: 10.1038/ni.2647 pmid: 23832071 |
[61] | Yao ZL, Qiao YS, Li XF, et al. Exosomes exploit the virus entry machinery and pathway to transmit alpha interferon-induced antiviral activity[J]. J Virol, 2018, 92(24): e01578-18. |
[62] | 滕亚为. 外泌体递送miR-101抑制II型单纯疱疹病毒和水痘-带状疱疹病毒复制[D]. 长春: 吉林大学, 2020. |
Teng YW. Exosomes deliver miR-101 to inhibit the replication of herpes simplex virus type II and varicella-zoster virus[D]. Changchun: Jilin University, 2020. | |
[63] | Wang X, Chen QZ, Zan YX, et al. Exosomal miR-145-5p derived from orthohantavirus-infected endothelial cells inhibits HTNV infection[J]. FASEB J, 2020, 34(10): 13809-13825. |
[64] | 王静宇. 外泌体在狂犬病毒感染MRC-5细胞和Vero细胞过程中的作用及机制研究[D]. 吉林: 吉林大学, 2019. |
Wang JY. Studies on the role and mechanism of exosomes during the infection processes of rabies virus in MRC-5 cells and Vero cells[D]. Jilin: Jinlin University, 2019. | |
[65] |
Maemura T, Fukuyama S, Sugita Y, et al. Lung-derived exosomal miR-483-3p regulates the innate immune response to influenza virus infection[J]. J Infect Dis, 2018, 217(9): 1372-1382.
doi: 10.1093/infdis/jiy035 pmid: 29373693 |
[66] |
Maemura T, Fukuyama S, Kawaoka Y. High levels of miR-483-3p are present in serum exosomes upon infection of mice with highly pathogenic avian influenza virus[J]. Front Microbiol, 2020, 11: 144.
doi: 10.3389/fmicb.2020.00144 pmid: 32117163 |
[67] | 李艳梅, 程侠菊, 王燕. 外泌体包裹的miR-19b抑制EV71复制的影响[J]. 河南师范大学学报: 自然科学版, 2023, 51(2): 115-120. |
Li YM, Cheng XJ, Wang Y. Exosome mediated miR-19b effect on the replication of EV71[J]. J Henan Norm Univ Nat Sci Ed, 2023, 51(2): 115-120. | |
[68] | Wu YC, Yue Y, Xiong SD. Cardiac miR-19a/19b was induced and hijacked by CVB3 to facilitate virus replication via targeting viral genomic RdRp-encoding region[J]. Antiviral Res, 2023, 217: 105702. |
[1] | ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques [J]. Biotechnology Bulletin, 2023, 39(5): 32-43. |
[2] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[3] | WANG Meng-ting, CAO Jie-yu, WANG Zhong-xin, WANG Ya-yu, YANG Da-zuo, ZHOU Yi-bing, ZHAO Huan. Research Progress of MicroRNA Involvement in the Stress Responses of Aquatic Animals to Envirnmental Pollutants [J]. Biotechnology Bulletin, 2021, 37(6): 272-278. |
[4] | ZHANG Ting-huan, LONG Xi, GUO Zong-yi, CHAI Jie. miR-378 Promoting Lipogenesis and Identification of Target Genes [J]. Biotechnology Bulletin, 2021, 37(2): 80-87. |
[5] | TANG De-ping, YAO Hui-hui, TANG Jin-zhou, MAO Ai-hong. Mutual Regulation of microRNAs and Epigenetics in Human Cancers [J]. Biotechnology Bulletin, 2020, 36(8): 194-200. |
[6] | SUN Rui-ping, WANG Feng, CHAO Zhe, LIU Hai-long, XING Man-ping, LIU Quan-wei, ZHENG Xin-li, HUANG Li-li, WEI Li-min. Comparative Analysis on miRNA Transcriptome of Skeletal Muscle Between Wuzhishan Pig and Landrace [J]. Biotechnology Bulletin, 2020, 36(10): 40-48. |
[7] | LIU Na, DU Pan-pan, YANG Yang, LI Xiao-mao. Research Progress on Exosomes Isolation Methods Based on Microfluidics Technology [J]. Biotechnology Bulletin, 2019, 35(1): 207-213. |
[8] | ZHAO Yan, CAO Xiao-ying, ZHOU Hao-tian, SONG Ling-yuan, TU Han-qing, HUANG Si-ying, ZHAO Jin-liang. Analysis of miRNA Transcriptome in Early Developmental Stage and Identification of Growth-related miRNA of Siniperca chuatsi [J]. Biotechnology Bulletin, 2018, 34(8): 181-189. |
[9] | XIE Jie ,WANG Ming ,LI Qing ,PAN Fei ,XIONG Xing-yao ,QIN Yu-zhi. Research Progress on Plant miR390 [J]. Biotechnology Bulletin, 2018, 34(6): 1-10. |
[10] | LI Yu-peng ,ZHANG Yi-ming,HU Hai-bi ,KANG Cheng-yu, LI Mu-zhou ,GUO Zhi-yun. Bioinformatics Analysis and Functional Verification of p53 Regulating miRNA-3661 in Hepatoma Cell HepG2 [J]. Biotechnology Bulletin, 2017, 33(7): 216-223. |
[11] | YANG Ya-lan, GUO Zhi-yun, DING Ruo-fan, MAO Can-quan, GUO Jian-xiu, XIONG Li-li. Differential Expression Profile Analysis of MicroRNAs in Doxorubicin-induced Hepatoma Cell Line HepG2 [J]. Biotechnology Bulletin, 2016, 32(6): 244-249. |
[12] | LIU Wei-can ,ZHOU Yong-gang, WANG Xing-chao, WANG Fa-wei, WANG Nan, DONG Yuan-yuan, LI Xiao-wei, LI Hai-yan. The Potential Application of microRNA-mediated Gene Regulation in Crop Improvement [J]. Biotechnology Bulletin, 2016, 32(4): 6-15. |
[13] | Lü Yang, WANG Yu, SUN Jia-jia, GONG Chun-ling, LI Guang-peng. Expression of microRNA-483 and microRNA-486 in the Cloned and fat-1-transgenic Bovine [J]. Biotechnology Bulletin, 2016, 32(3): 105-108. |
[14] | LIU Jing-jing, CHENG Chun-ling, XI Yu-zhen, WEI Shu. Roles of Nicotiana tobacum NtWRKY40 in Plant Responding to Virus Infection [J]. Biotechnology Bulletin, 2016, 32(10): 188-198. |
[15] | Qi Renli, Huang Jinxiu, Long Dingbiao, Huang Ping. The Role of MicroRNA in the Cell Apoptosis Mediated by NF-κB [J]. Biotechnology Bulletin, 2015, 31(5): 27-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||