Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (4): 88-97.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1178
Previous Articles Next Articles
WEN Bo-lin1(
), WAN Min1,2, HU Jian-jun3,4, WANG Ke-xiu3,4, JING Sheng-lin1,2, WANG Xin-yue1, ZHU Bo1,2, TANG Ming-xia3,4, LI Bing3,4, HE Wei3,4, ZENG Zi-xian1,2(
)
Received:2024-12-05
Online:2025-04-26
Published:2025-04-25
Contact:
ZENG Zi-xian
E-mail:w1666425267@163.com;zengzixian@sicnu.edu.cn
WEN Bo-lin, WAN Min, HU Jian-jun, WANG Ke-xiu, JING Sheng-lin, WANG Xin-yue, ZHU Bo, TANG Ming-xia, LI Bing, HE Wei, ZENG Zi-xian. Establishment of Genetic Transformation and Gene Editing System for a Potato Cultivar Chuanyu 50[J]. Biotechnology Bulletin, 2025, 41(4): 88-97.
培养基体系 Medium system | 培养基 Medium | 培养基成分 Medium composition | pH |
|---|---|---|---|
| A | A1 | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+2.49 mg/L TZR+0.027 8 mg/L GA3+0.2 mg/L NAA+2 g/L Phytagel | 5.7 |
| A2 | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+2.49 mg/L TZR+1.0 mg/L NAA+2.0 g/L Phytagel | 5.7 | |
| B | BS(茎段) | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+1.0 mg/L TZR+0.027 8 mg/L GA3+0.02 mg/L NAA+2.0 g/L Phytagel | 5.7 |
| BL(叶片) | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N 维生素+0.5 mg/L TZR+2.5 mg/L IAA+2.0 g/L Phytagel | 5.7 | |
| B2 | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+2.0 mg/L TZR+10 mg/L GA3 +2.0 g/L Phytagel | 5.7 | |
| C | C1 | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+1.0 mg/L TZR+2.0 mg/L NAA+2.0 g/L Phytagel | 5.7 |
| C2 | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+0.5 mg/L GA3+2.0 mg/L 6-BA +0.02 mg/L NAA+2.0 g/L Phytagel | 5.7 | |
| D | D | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+4.78 mg/L TZR+0.2 mg/L GA3 +0.01 mg/L IAA+2.0 g/L Phytagel | 5.7 |
MS 液体 Liquid MS | 4.33 g/L MS基础盐(Phyto NO.524)+ 30 g/L蔗糖 | 5.8 | |
生根培养基 Rooting medium | 4.74 g/L MS培养基(不含琼脂和蔗糖)+30 g/L蔗糖+2.0 g/L植物凝胶(Phytagel) | 5.6 |
Table 1 Media used in the study
培养基体系 Medium system | 培养基 Medium | 培养基成分 Medium composition | pH |
|---|---|---|---|
| A | A1 | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+2.49 mg/L TZR+0.027 8 mg/L GA3+0.2 mg/L NAA+2 g/L Phytagel | 5.7 |
| A2 | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+2.49 mg/L TZR+1.0 mg/L NAA+2.0 g/L Phytagel | 5.7 | |
| B | BS(茎段) | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+1.0 mg/L TZR+0.027 8 mg/L GA3+0.02 mg/L NAA+2.0 g/L Phytagel | 5.7 |
| BL(叶片) | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N 维生素+0.5 mg/L TZR+2.5 mg/L IAA+2.0 g/L Phytagel | 5.7 | |
| B2 | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+2.0 mg/L TZR+10 mg/L GA3 +2.0 g/L Phytagel | 5.7 | |
| C | C1 | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+1.0 mg/L TZR+2.0 mg/L NAA+2.0 g/L Phytagel | 5.7 |
| C2 | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+0.5 mg/L GA3+2.0 mg/L 6-BA +0.02 mg/L NAA+2.0 g/L Phytagel | 5.7 | |
| D | D | MS基础盐+20 g/L 蔗糖+1 mL/L 1 000× N&N维生素+4.78 mg/L TZR+0.2 mg/L GA3 +0.01 mg/L IAA+2.0 g/L Phytagel | 5.7 |
MS 液体 Liquid MS | 4.33 g/L MS基础盐(Phyto NO.524)+ 30 g/L蔗糖 | 5.8 | |
生根培养基 Rooting medium | 4.74 g/L MS培养基(不含琼脂和蔗糖)+30 g/L蔗糖+2.0 g/L植物凝胶(Phytagel) | 5.6 |
外植体类型 Explant type | 培养基体系 Media system | 外植体数 Number of explants | 愈伤数 Number of calluses | 诱导率 Induction rate/% | 分化率 Differentiation rate/% |
|---|---|---|---|---|---|
| 茎段 Stem | A | 100 | 90 | 90 | 9 |
| B | 100 | 93 | 93 | 25 | |
| C | 100 | 65 | 65 | 0 | |
| D | 100 | 43 | 43 | 0 | |
| 叶片 Leaf | A | 50 | 40 | 80 | 0 |
| B | 50 | 44 | 88 | 22 | |
| C | 50 | 29 | 58 | 0 | |
| D | 50 | 31 | 62 | 0 |
Table 2 Effects of different media on the callus formation and differentiation of stem segments and leaves
外植体类型 Explant type | 培养基体系 Media system | 外植体数 Number of explants | 愈伤数 Number of calluses | 诱导率 Induction rate/% | 分化率 Differentiation rate/% |
|---|---|---|---|---|---|
| 茎段 Stem | A | 100 | 90 | 90 | 9 |
| B | 100 | 93 | 93 | 25 | |
| C | 100 | 65 | 65 | 0 | |
| D | 100 | 43 | 43 | 0 | |
| 叶片 Leaf | A | 50 | 40 | 80 | 0 |
| B | 50 | 44 | 88 | 22 | |
| C | 50 | 29 | 58 | 0 | |
| D | 50 | 31 | 62 | 0 |
Fig. 4 gRNA location and structure of gene editing vectorA: Position of the gRNAs on T#01 and sequencing validation. B: Schematic diagram of pJCV55-StU6-200-StUBI10-T#01. KanR : Kanamycin resistance gene; StUBI10: potato ubiquitin 10 promoter; StU6: potato U6snoRNA promoter; NosT: nopaline synthase terminator; LB: T-DNA left border; RB: T-DNA right border
Fig. 5 PCR detection of transgenic potato linesM: 100 bp plus DNA marker; #1-#40: transgenic potato lines; WT: negative control (wild type); C: blank control (ddH2O);P: positive control (plasmid pJCV55-StU6-200-StUBI10-T#01)
Fig. 7 Mutated sites and types in transgenic potato linesMutant sequences of #1, #12, and #19 were aligned with wild-type sequences. gRNA1 region mutation type/gRNA2 region mutation type with insertion (+) or deletion (-) in red. PAM sites are indicated in blue. The gRNA positions are indicated in purple
| 4 | Zhou Q, Tang D, Huang W, et al. Haplotype-resolved genome analyses of a heterozygous diploid potato [J]. Nat Genet, 2020, 52(10): 1018-1023. |
| 5 | Bánfalvi Z, Csákvári E, Villányi V, et al. Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation [J]. BMC Biotechnol, 2020, 20: 25. |
| 6 | Zhang SJ, Zhang RZ, Song GQ, et al. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat [J]. BMC Plant Biol, 2018, 18(1): 302. |
| 7 | Char SN, Neelakandan AK, Nahampun H, et al. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize [J]. Plant Biotechnol J, 2017, 15(2): 257-268. |
| 8 | Yu QH, Wang BK, Li N, et al. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines [J]. Sci Rep, 2017, 7(1): 11874. |
| 9 | Benjamin C, Zhang F, Daniel FV. Potatoes with reduced granule-bound starch synthase [J]. Patent WO, 2015,193(858):A1. |
| 10 | Veillet F, Chauvin L, Kermarrec MP, et al. The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato [J]. Plant Cell Rep, 2019, 38(9): 1065-1080. |
| 11 | Johansen IE, Liu Y, Jørgensen B, et al. High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato [J]. Sci Rep, 2019, 9(1): 17715. |
| 12 | Tuncel A, Corbin KR, Ahn-Jarvis J, et al. Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of Tuber starch phenotypes [J]. Plant Biotechnol J, 2019, 17(12): 2259-2271. |
| 13 | 朱雪瑞, 季静, 王罡, 等. 马铃薯不同组织的诱导分化及其对遗传转化效率的影响 [J]. 中国生物工程杂志, 2016, 36(10): 53-59. |
| Zhu XR, Ji J, Wang G, et al. Influence on the conversion efficiency of induced differentiation of various potato tissues [J]. China Biotechnol, 2016, 36(10): 53-59. | |
| 14 | 司怀军, 谢从华, 柳俊. 农杆菌介导的马铃薯试管薯遗传转化体系的优化及反义class Ⅰ patatin基因的导入 [J]. 作物学报, 2003, 29(6): 801-805. |
| 1 | Birch PRJ, Bryan G, Fenton B, et al. Crops that feed the world 8: potato: are the trends of increased global production sustainable? [J]. Food Secur, 2012, 4(4): 477-508. |
| 2 | Grossi CEM, Santin F, Quintana SA, et al. Calcium-dependent protein kinase 2 plays a positive role in the salt stress response in potato [J]. Plant Cell Rep, 2022, 41(3): 535-548. |
| 3 | 包山敏, 王崇进, 向成轶, 等. 马铃薯育种现状及发展对策 [J]. 安徽农学通报, 2024, 30(21): 8-12. |
| Bao SM, Wang CJ, Xiang CY, et al. Current situation and development strategies of potato breeding [J]. Anhui Agric Sci Bull, 2024, 30(21): 8-12. | |
| 14 | Si HJ, Xie CH, Liu J. An efficient protocol for Agrobacterium-mediated transformation with microtuber and the introduction of an antisense class Ⅰ patatin gene into potato [J]. Acta Agron Sin, 2003, 29(6): 801-805. |
| 15 | 武小娟, 吴娟, 王沛捷, 等. 马铃薯'华颂66号'遗传转化体系的建立 [J]. 中国农业大学学报, 2024, 29(1): 21-30. |
| Wu XJ, Wu J, Wang PJ, et al. Establishment of genetic transformation system for 'huasong 66' [J]. J China Agric Univ, 2024, 29(1): 21-30. | |
| 16 | 蒋敏华. 农杆菌介导hrap基因的马铃薯遗传转化及抗病性鉴定 [D]. 南京: 南京农业大学, 2007. |
| Jiang MH. Agrobacterium-mediated genetic transformation and disease resistance identification of potato with hrap gene [D]. Nanjing: Nanjing Agricultural University, 2007. | |
| 17 | Bakhsh A. Development of efficient, reproducible and stable Agrobacterium-mediated genetic transformation of five potato cultivars [J]. Food Technol Biotechnol, 2020, 58(1): 57-63. |
| 18 | Bruce MA, Shoup Rupp JL. Agrobacterium-mediated transformation of Solanum tuberosum L., potato [J]. Methods Mol Biol, 2019, 1864: 203-223. |
| 19 | 闫建俊, 白云凤, 张忠梁, 等. 根癌农杆菌介导的马铃薯遗传转化的一些影响因素 [J]. 山西农业科学, 2013, 41(6): 532-534. |
| Yan JJ, Bai YF, Zhang ZL, et al. Influencing factors to potato transformation mediated by Agrobacterium [J]. J Shanxi Agric Sci, 2013, 41(6): 532-534. | |
| 20 | 杨永智. 农杆菌介导法马铃薯遗传转化体系的优化 [J]. 江苏农业学报, 2013, 29(4): 738-742. |
| Yang YZ. Optimization of Agrobacterium tumerfaciens mediated potato transformation system [J]. Jiangsu J Agric Sci, 2013, 29(4): 738-742. | |
| 21 | 刘可心, 王克秀, 唐铭霞, 等. 马铃薯新品种川芋50的选育 [J]. 四川农业科技, 2021(6): 18-19, 22. |
| Liu KX, Wang KX, Tang MX, et al. Breeding of a new potato variety Chuanyu 50 [J]. Sichuan Agric Sci Technol, 2021(6): 18-19, 22. | |
| 22 | Wan M, Xie HD, Guo HW, et al. Developing a pipeline for identification, characterization and molecular editing of cis-regulatory elements: a case study in potato [J]. aBIOTECH, 2024, 6(1): 91-96. |
| 23 | Xie XR, Ma XL, Zhu QL, et al. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing [J]. Mol Plant, 2017, 10(9): 1246-1249. |
| 24 | Marillonnet S, Grützner R. Synthetic DNA assembly using golden gate cloning and the hierarchical modular cloning pipeline [J]. Curr Protoc Mol Biol, 2020, 130(1): e115. |
| 25 | Jing SL, Jiang P, Sun XM, et al. Long-distance control of potato storage organ formation by SELF PRUNING 3D and FLOWERING LOCUS T-like 1[J]. Plant Communications, 2023, 4(3): 100547. |
| 26 | 陈兆贵, 向雪梅, 李希陶, 等. 马铃薯"费乌瑞它"愈伤组织诱导及分化技术 [J]. 黑龙江农业科学, 2023(7): 20-24. |
| Chen ZG, Xiang XM, Li XT, et al. Callus induction and differentiation technology of potato "favorita" [J]. Heilongjiang Agric Sci, 2023(7): 20-24. | |
| 27 | Gustafson V, Mallubhotla S, MacDonnell J, et al. Transformation and plant regeneration from leaf explants of Solanum tuberosum L. cv. 'shepody' [J]. Plant Cell Tissue Organ Cult, 2006, 85(3): 361-366. |
| 28 | 蒋继滨, 高冬丽, 朱曦鉴, 等. 二倍体马铃薯基因编辑载体快速验证体系的建立 [J]. 种子, 2019, 38(10): 29-33. |
| Jiang JB, Gao DL, Zhu XJ, et al. Establishment of a rapid verification system for diploid potato gene editing vector [J]. Seed, 2019, 38(10): 29-33. | |
| 29 | 宋倩娜, 梅超, 霍利光, 等. 马铃薯品种'并薯6号'遗传转化体系的建立 [J]. 中国马铃薯, 2021, 35(5): 385-396. |
| Song QN, Mei C, Huo LG, et al. Establishment of genetic transformation system for potato variety 'bingshu 6' [J]. Chin Potato J, 2021, 35(5): 385-396. | |
| 30 | 潘映雪. 农杆菌介导BDN1基因转化马铃薯抗旱性研究 [D]. 哈尔滨: 东北农业大学, 2013. |
| Pan YX. Study on drought resistance of potato transformed by BDN1 gene mediated by Agrobacterium tumefaciens [D]. Harbin: Northeast Agricultural University, 2013. | |
| 31 | 刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展 [J]. 华南农业大学学报, 2019, 40(5): 38-49. |
| Liu YG, Li GS, Zhang YL, et al. Current advances on CRISPR/Cas genome editing technologies in plants [J]. J South China Agric Univ, 2019, 40(5): 38-49. | |
| 32 | Yin KQ, Gao CX, Qiu JL. Progress and prospects in plant genome editing [J]. Nat Plants, 2017, 3: 17107. |
| 33 | Soyars CL, Peterson BA, Burr CA, et al. Cutting edge genetics: CRISPR/Cas9 editing of plant genomes [J]. Plant Cell Physiol, 2018, 59(8): 1608-1620. |
| 34 | Song GY, Jia ML, Chen K, et al. CRISPR/Cas9: a powerful tool for crop genome editing [J]. Crop J, 2016, 4(2): 75-82. |
| 35 | Schaeffer SM, Nakata PA. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field [J]. Plant Sci, 2015, 240: 130-142. |
| 36 | Liu XJ, Xie CX, Si HJ, et al. CRISPR/Cas9-mediated genome editing in plants [J]. Methods, 2017, 121/122: 94-102. |
| [1] | LIU Tao, WANG Zhi-qi, WU Wen-bo, SHI Wen-ting, WANG Chao-nan, DU Chong, YANG Zhong-min. Identification and Expression Analysis of the GRAM Gene Family in Potato [J]. Biotechnology Bulletin, 2025, 41(4): 145-155. |
| [2] | CHEN Xiao-jun, HUI Jian, MA Hong-wen, BAI Hai-Bo, ZHONG Nan, LI Jia-run, FAN Yun-fang. Creating Rice Gerplasm Resources OsALS Rsistant to Herbicide through Single Base Gene Editing Technology [J]. Biotechnology Bulletin, 2025, 41(4): 106-114. |
| [3] | YANG Chao-jie, ZHANG Lan, CHEN Hong, HUANG Juan, SHI Tao-xiong, ZHU Li-wei, CHEN Qing-fu, LI Hong-you, DENG Jiao. Functional Identification of the Transcription Factor Gene FtbHLH3 in Regulating Flavonoid Biosynthesis in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2025, 41(4): 134-144. |
| [4] | LU Yong-jie, XIA Hai-qian, LI Yong-ling, ZHANG Wen-jian, YU Jing, ZHAO Hui-na, WANG Bing, XU Ben-bo, LEI Bo. Cloning and Expression Analysis of AP2/ERF Transcription Factor NtESR2 in Nicotiana tabacum [J]. Biotechnology Bulletin, 2025, 41(4): 266-277. |
| [5] | ZHANG Yi-xuan, MA Yu, WANG Tong-tong, SHENG Su-ao, SONG Jia-feng, LYU Zhao-yan, ZHU Xiao-biao, HOU Hua-lan. Genome-wide Identification and Expression Profiles of DIR Gene Family in Potato [J]. Biotechnology Bulletin, 2025, 41(3): 123-136. |
| [6] | YU Ting, HUANG Dan-dan, ZHU Yan-hui, YANG Mei-hong, AI Ju, GAO Dong-li. Screening and Interaction Verification of Transcription Factors Stpatatin 05 Gene in Potato [J]. Biotechnology Bulletin, 2025, 41(3): 137-145. |
| [7] | QIN Yue, YANG Yan, ZHANG Lei, LU Li-li, LI Xian-ping, JIANG Wei. Identification and Comparative Analysis of the StGAox Genes in Diploid and Tetraploid Potatoes [J]. Biotechnology Bulletin, 2025, 41(3): 146-160. |
| [8] | LIANG Li-cun, WANG Ke-fen, SONG Zu-huan, LIU Meng-ting, LI Jia-yu, LUO Hui-ying, YAO Bin, YANG Hao-meng. Improving the Efficiency of Gene Editing by Optimizing sgRNA in Aspergillus tubingensis [J]. Biotechnology Bulletin, 2025, 41(3): 62-70. |
| [9] | XUE Rui-ying, LIU Yong-ju, JIANG Yan-yan, PENG Xin-ya, CAO Dong, LI Yun, LIU Bao-long, BAO Xue-mei. Reducing the Expression of GBSSI Gene in Barley via the Editing in the 5′UTR Region [J]. Biotechnology Bulletin, 2025, 41(3): 83-89. |
| [10] | SHEN Peng, GAO Ya-Bin, DING Hong. Identification and Expression Analysis of SAT Gene Family in Potato(Solanum tuberosum L.) [J]. Biotechnology Bulletin, 2024, 40(9): 64-73. |
| [11] | SONG Bing-fang, LIU Ning, CHENG Xin-yan, XU Xiao-bin, TIAN Wen-mao, GAO Yue, BI Yang, WANG Yi. Identification of Potato G6PDH Gene Family and Its Expression Analysis in Damaged Tubers [J]. Biotechnology Bulletin, 2024, 40(9): 104-112. |
| [12] | WANG Chao, BAI Ru-qian, GUAN Jun-mei, LUO Ji-lin, HE Xue-jiao, CHI Shao-yi, MA Ling. Promotion of StHY5 in the Synthesis of SGAs during Tuber Turning-green of Potato [J]. Biotechnology Bulletin, 2024, 40(9): 113-122. |
| [13] | TONG Wei-jing, LUO Shu, LU Xin-lu, SHEN Jian-fu, LU Bai-yi, LI Kai-mian, MA Qiu-xiang, ZHANG Peng. CRISPR/Cas9 Editing MeHNL Gene to Generate Cassava Plants with Low Cyanogenic Glycoside [J]. Biotechnology Bulletin, 2024, 40(9): 11-19. |
| [14] | XIA Shi-xuan, GENG Ze-dong, ZHU Guang-tao, ZHANG Chun-zhi, LI Da-wei. Quick Detection of Potato Pollen Viability Based on Deep Learning [J]. Biotechnology Bulletin, 2024, 40(9): 123-130. |
| [15] | MAO Xiang-hong, LU Yao, FAN Xiang-bin, DU Pei-bing, BAI Xiao-dong. Genetic Diversity Analysis of Potato Varieties Based on SSR Fluorescent Marker Capillary Electrophoresis and Construction of Molecular Identity Card [J]. Biotechnology Bulletin, 2024, 40(9): 131-140. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||