Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (3): 83-89.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0813
Previous Articles Next Articles
XUE Rui-ying1,2(
), LIU Yong-ju1,2, JIANG Yan-yan2,3, PENG Xin-ya1,2, CAO Dong1,3, LI Yun2(
), LIU Bao-long1,2,3(
), BAO Xue-mei1(
)
Received:2024-08-23
Online:2025-03-26
Published:2025-03-20
Contact:
LI Yun, LIU Bao-long, BAO Xue-mei
E-mail:xry198@foxmail.com;liyun@nwipb.cas.cn;baoxuemei1991@163.com
XUE Rui-ying, LIU Yong-ju, JIANG Yan-yan, PENG Xin-ya, CAO Dong, LI Yun, LIU Bao-long, BAO Xue-mei. Reducing the Expression of GBSSI Gene in Barley via the Editing in the 5′UTR Region[J]. Biotechnology Bulletin, 2025, 41(3): 83-89.
基因名称 Gene name | 引物序列 Primer sequence(5′-3′) | 备注 Remark |
|---|---|---|
| HvUTR-cta-F | GCTGCCTCTCGCACGGTC | 载体构建 Vector construction |
| HvUTR-aac-R | GCAAAGGAACCTCAGGGC | |
| BS8 | CAACTGCCGATGATCTGTCGTGTAG | 阳性克隆检测 Detection of positive clones |
| BS9 | CCGACGCGGAAATTCGTCAAGC | |
| BS11 | GGTAGAACTGATGTGAGAGATGTAGAAG | |
| BS32 | TGGTCTTCCCTTGGGGGACCGAA | |
| UTR-TOM-F | ggagtgagtacggtgtgcGCTGCCTCTCGCACGGTC | 高通量测序 High-throughput sequencing |
| UTR-TOM-R | gagttggatgctggatggCGGGACTCCAAGGAAACG | |
| WXQF1 | CCAGTCCAATGGCATCTACA | RT-qPCR |
| WXQR1 | GGCTCACCGTCAGCACCT | |
| Tubulin-F | CAAGGAGGTGGACGAGCAGATG | RT-qPCR |
| Tubulin-R | GACTTGACGTTGTTGGGGATCCA |
Table 1 The primer sequences
基因名称 Gene name | 引物序列 Primer sequence(5′-3′) | 备注 Remark |
|---|---|---|
| HvUTR-cta-F | GCTGCCTCTCGCACGGTC | 载体构建 Vector construction |
| HvUTR-aac-R | GCAAAGGAACCTCAGGGC | |
| BS8 | CAACTGCCGATGATCTGTCGTGTAG | 阳性克隆检测 Detection of positive clones |
| BS9 | CCGACGCGGAAATTCGTCAAGC | |
| BS11 | GGTAGAACTGATGTGAGAGATGTAGAAG | |
| BS32 | TGGTCTTCCCTTGGGGGACCGAA | |
| UTR-TOM-F | ggagtgagtacggtgtgcGCTGCCTCTCGCACGGTC | 高通量测序 High-throughput sequencing |
| UTR-TOM-R | gagttggatgctggatggCGGGACTCCAAGGAAACG | |
| WXQF1 | CCAGTCCAATGGCATCTACA | RT-qPCR |
| WXQR1 | GGCTCACCGTCAGCACCT | |
| Tubulin-F | CAAGGAGGTGGACGAGCAGATG | RT-qPCR |
| Tubulin-R | GACTTGACGTTGTTGGGGATCCA |
Fig. 1 BSMV vector and identification of positive strainsA: Target position. B: Schematic diagram of BSMV-α, BSMV-β, and BSMV-γ-sgUTR carriers. C: Electrophoretic map of colony PCR; lane 1-3: BSMV-α; lane 4-6: BSMV-β; lane 7-9: BSMV-γ-sgUTR
| Edit type | Sequence (5′-3′) | UTR-1 | UTR-2 | UTR-3 | UTR-4 | UTR-5 | UTR-6 | UTR-7 |
|---|---|---|---|---|---|---|---|---|
| WT | G | 7.01 | 25.55 | 98.87 | 96.89 | 19.5 | 98.26 | 98.94 |
| +A | G | 65.26 | 48.83 | / | / | 48.72 | / | / |
| +T | G | 13.42 | 7.56 | / | / | 11.48 | / | / |
| +AA | G | 1.44 | / | / | / | 1.96 | / | / |
| A→G | G | / | 2.70 | 1.13 | 1.53 | 4.20 | / | / |
| -GGT | G | / | 1.32 | / | / | / | / | / |
| +C | G | / | 2.46 | / | / | 2.62 | / | / |
| -T | G | 1.49 | 2.19 | / | / | 4.36 | / | / |
| -AT | G | 4.29 | 1.08 | / | / | 1.31 | / | / |
| -TAT | G | 1.39 | 3.72 | / | / | / | / | 1.06 |
| -GC | G | 3.87 | / | / | / | / | / | / |
| -GT | G | / | 1.62 | / | / | 2.26 | / | / |
| -GGTATT | G | 1.83 | / | / | / | / | / | / |
| -ATT | G | / | 3.02 | / | / | 1.71 | / | / |
| T→G | G | / | / | / | / | 1.88 | / | / |
| T→C | G | / | / | / | 1.58 | / | 1.74 | / |
| Edit type | Sequence (5′-3′) | UTR-8 | UTR-9 | UTR-10 | UTR-11 | UTR-12 | UTR-13 | UTR-14 |
| WT | G | 98.81 | 98.11 | 19.77 | 12.81 | 11.48 | 7.93 | 92.81 |
| +A | G | / | / | 52.05 | 56.66 | 49.91 | 40.35 | 4.00 |
| +T | G | / | / | 7.68 | 13.62 | 17.86 | 25.89 | 1.23 |
| +C | G | / | / | 6.08 | 3.32 | / | 4.78 | / |
| +AT | G | / | / | / | 4.68 | / | 2.47 | / |
| +G | G | / | / | / | 3.03 | 6.27 | 5.23 | / |
| -GT | G | / | / | 1.19 | / | / | / | / |
| -CG | G | 1.19 | / | 3.08 | / | / | / | / |
| -TAT | G | / | / | 3.24 | / | / | / | / |
| T→C | G | / | / | 1.59 | / | / | 6.12 | / |
| T→G | G | / | / | 4.18 | / | 7.60 | / | / |
| +GG | G | / | / | / | 5.89 | / | / | / |
| T→A | G | / | / | 1.14 | / | / | 7.23 | / |
| A→G | G | / | 1.89 | / | / | 6.87 | / | 1.96 |
Table 2 M0 generation editing efficiency and mutation types in BSMV:UTR plants
| Edit type | Sequence (5′-3′) | UTR-1 | UTR-2 | UTR-3 | UTR-4 | UTR-5 | UTR-6 | UTR-7 |
|---|---|---|---|---|---|---|---|---|
| WT | G | 7.01 | 25.55 | 98.87 | 96.89 | 19.5 | 98.26 | 98.94 |
| +A | G | 65.26 | 48.83 | / | / | 48.72 | / | / |
| +T | G | 13.42 | 7.56 | / | / | 11.48 | / | / |
| +AA | G | 1.44 | / | / | / | 1.96 | / | / |
| A→G | G | / | 2.70 | 1.13 | 1.53 | 4.20 | / | / |
| -GGT | G | / | 1.32 | / | / | / | / | / |
| +C | G | / | 2.46 | / | / | 2.62 | / | / |
| -T | G | 1.49 | 2.19 | / | / | 4.36 | / | / |
| -AT | G | 4.29 | 1.08 | / | / | 1.31 | / | / |
| -TAT | G | 1.39 | 3.72 | / | / | / | / | 1.06 |
| -GC | G | 3.87 | / | / | / | / | / | / |
| -GT | G | / | 1.62 | / | / | 2.26 | / | / |
| -GGTATT | G | 1.83 | / | / | / | / | / | / |
| -ATT | G | / | 3.02 | / | / | 1.71 | / | / |
| T→G | G | / | / | / | / | 1.88 | / | / |
| T→C | G | / | / | / | 1.58 | / | 1.74 | / |
| Edit type | Sequence (5′-3′) | UTR-8 | UTR-9 | UTR-10 | UTR-11 | UTR-12 | UTR-13 | UTR-14 |
| WT | G | 98.81 | 98.11 | 19.77 | 12.81 | 11.48 | 7.93 | 92.81 |
| +A | G | / | / | 52.05 | 56.66 | 49.91 | 40.35 | 4.00 |
| +T | G | / | / | 7.68 | 13.62 | 17.86 | 25.89 | 1.23 |
| +C | G | / | / | 6.08 | 3.32 | / | 4.78 | / |
| +AT | G | / | / | / | 4.68 | / | 2.47 | / |
| +G | G | / | / | / | 3.03 | 6.27 | 5.23 | / |
| -GT | G | / | / | 1.19 | / | / | / | / |
| -CG | G | 1.19 | / | 3.08 | / | / | / | / |
| -TAT | G | / | / | 3.24 | / | / | / | / |
| T→C | G | / | / | 1.59 | / | / | 6.12 | / |
| T→G | G | / | / | 4.18 | / | 7.60 | / | / |
| +GG | G | / | / | / | 5.89 | / | / | / |
| T→A | G | / | / | 1.14 | / | / | 7.23 | / |
| A→G | G | / | 1.89 | / | / | 6.87 | / | 1.96 |
Fig. 3 Relative expressions of GBSSI gene RNA in M1 plantsDifferent lowercase letters indicate significant difference among different treatments (P<0.05)
| 1 | Vaezi B, Pour-Aboughadareh A, Mohammadi R, et al. Integrating different stability models to investigate genotype × environment interactions and identify stable and high-yielding barley genotypes [J]. Euphytica, 2019, 215(4): 63. |
| 2 | 龚谨. 我国大麦进口增长的原因、冲击及贸易政策研究 [D]. 北京: 中国农业科学院, 2020. |
| Gong J. Study on the reasons, impact and trade policy of the increase of barley import in China [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
| 3 | Moreno Ravelo RC, Gastl M, Becker T. Influence of dextrins and β-glucans on palate fullness and mouthfeel of beer [J]. Eur Food Res Technol, 2024, 250(2): 495-509. |
| 4 | Rani H, Bhardwaj RD, Sen R, et al. Deciphering the potential of diverse barley genotypes for improving the malt quality [J]. J Stored Prod Res, 2024, 105: 102247. |
| 5 | Steiner E., Auer, A, et al. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material [J]. Journal of the Science of Food and Agriculture. 2012 92(4):803-13 |
| 6 | Chen ZW, Li LL, Halford NG, et al. Advances in barley breeding for improving nitrogen use efficiency [J]. Agronomy, 2022, 12(7): 1682. |
| 7 | Aljahdali N, Gadonna-Widehem P, Anton PM, et al. Gut microbiota modulation by dietary barley malt melanoidins [J]. Nutrients, 2020, 12(1): 241. |
| 8 | Gebre BA, Liu XN, Zhang CC, et al. Exploring the therapeutic potential of barley grain in type 2 diabetes management: a review [J]. Int J Food Sci Tech, 2024, 59(7): 4393-4402. |
| 9 | Simkin AJ. Genetic engineering for global food security: photosynthesis and biofortification [J]. Plants (Basel), 2019, 8(12): 586. |
| 10 | Yang Q, Ral JP, Wei YM, et al. Genome editing of five starch synthesis genes produces highly resistant starch and dietary fibre in barley grains [J]. Plant Biotechnol J, 2024, 22(7): 2051-2053. |
| 11 | Tang HJ, Mitsunaga T, Kawamura Y. Relationship between functionality and structure in barley starches [J]. Carbohydr Polym, 2004, 57(2): 145-152. |
| 12 | Punia S. Barley starch: Structure, properties and in vitro digestibility - A review [J]. Int J Biol Macromol, 2020, 155: 868-875. |
| 13 | Yang Q, Zhong XJ, Li Q, et al. Mutation of the d-hordein gene by RNA-guided Cas9 targeted editing reducing the grain size and changing grain compositions in barley [J]. Food Chem, 2020, 311: 125892. |
| 14 | Chen XY, Shao SS, Chen MX, et al. Morphology and physicochemical properties of starch from waxy and non-waxy barley [J]. Starch Stärke, 2020, 72(5-6): 1900206. |
| 15 | Hellemans T, Nekhudzhiga H, Van Bockstaele F, et al. Variation in amylose concentration to enhance wheat flour extrudability [J]. J Cereal Sci, 2020, 95: 102992. |
| 16 | Fan XY, Sun YD, Zhu J, et al. A 191-bp insertion/deletion in GBSS1 region is responsible for the changes in grain amylose content in barley (Hordeum vulgare L.) [J]. Mol Breed, 2017, 37(6): 81. |
| 17 | Li Q, Pan ZF, Liu J, et al. A mutation in Waxy gene affects amylose content, starch granules and kernel characteristics of barley (Hordeum vulgare) [J]. Plant Breed, 2019, 138(5): 513-523. |
| 18 | Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5'-untranslated regions of eukaryotic mRNAs [J]. Science, 2016, 352(6292): 1413-1416. |
| 19 | Theil K, Herzog M, Rajewsky N. Post-transcriptional regulation by 3' UTRs can be masked by regulatory elements in 5' UTRs [J]. Cell Rep, 2018, 22(12): 3217-3226. |
| 20 | Li Q, Pan ZF, Deng GB, et al. Effect of wide variation of the Waxy gene on starch properties in hull-less barley from Qinghai-Tibet plateau in China [J]. J Agric Food Chem, 2014, 62(47): 11369-11385. |
| 21 | Kluth A, Sprunck S, Becker D, et al. 5' deletion of a gbss1 promoter region from wheat leads to changes in tissue and developmental specificities [J]. Plant Mol Biol, 2002, 49(6): 669-682. |
| 22 | Huang LC, Li QF, Zhang CQ, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system [J]. Plant Biotechnol J, 2020, 18(11): 2164-2166. |
| 23 | Zeng DC, Liu TL, Ma XL, et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice [J]. Plant Biotechnol J, 2020, 18(12): 2385-2387. |
| 24 | Panwar V, McCallum B, Bakkeren G. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus [J]. Plant Mol Biol, 2013, 81(6): 595-608. |
| 25 | Prado GS, Rocha DC, Dos Santos LN, et al. CRISPR technology towards genome editing of the perennial and semi-perennial crops Citrus, coffee and sugarcane [J]. Front Plant Sci, 2024, 14: 1331258. |
| 26 | Li TD, Hu JC, Sun Y, et al. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture [J]. Mol Plant, 2021, 14(11): 1787-1798. |
| 27 | 刘永菊, 姜燕燕, 薛瑞莹, 等. BSMV-sg系统介导的大麦基因编辑体系的建立 [J]. 麦类作物学报, 2024, 44(3): 281-288. |
| Liu YJ, Jiang YY, Xue RY, et al. Heritable genome editing in barley using BSMV-sg system [J]. J Triticeae Crops, 2024, 44(3): 281-288. | |
| 28 | 黄学娟, 张金迪, 张壮, 等. 一种优化的大肠杆菌感受态细胞制备及转化方法 [J]. 基因组学与应用生物学, 2017, 36(12): 5199-5204. |
| Huang XJ, Zhang JD, Zhang Z, et al. An optimized method for preparation and transformation of Escherichia coli competent cells [J]. Genom Appl Biol, 2017, 36(12): 5199-5204. | |
| 29 | Hoekema A, Roelvink PW, Hooykaas PJ, et al. Delivery of T-DNA from the Agrobacterium tumefaciens chromosome into plant cells [J]. EMBO J, 1984, 3(11): 2485-2490. |
| 30 | Yuan C, Li C, Yan LJ, et al. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots [J]. PLoS One, 2011, 6(10): e26468. |
| 31 | Chen H, Su ZQ, Tian B, et al. Development and optimization of a Barley stripe mosaic virus-mediated gene editing system to improve Fusarium head blight resistance in wheat [J]. Plant Biotechnol J, 2022, 20(6): 1018-1020. |
| 32 | 徐志民, 鄢梦雨, 兰海燕. 5'UTR在植物基因表达调控中的功能研究进展 [J]. 植物生理学报, 2024, 60(1): 9-19. |
| Xu ZM, Yan MY, Lan HY. Progress on the effect of 5' UTR on gene expression and regulation in plants [J]. Plant Physiol J, 2024, 60(1): 9-19. | |
| 33 | Lakshmi Jayaraj K, Thulasidharan N, Antony A, et al. Targeted editing of tomato carotenoid isomerase reveals the role of 5' UTR region in gene expression regulation [J]. Plant Cell Rep, 2021, 40(4): 621-635. |
| 34 | Xue CX, Qiu FT, Wang YX, et al. Tuning plant phenotypes by precise, graded downregulation of gene expression [J]. Nat Biotechnol, 2023, 41(12): 1758-1764. |
| 35 | Wei X, Liu Q, Sun TT, et al. Manipulation of genetic recombination by editing the transcriptional regulatory regions of a meiotic gene in hybrid rice [J]. Plant Commun, 2023, 4(2): 100474. |
| [1] | LIANG Li-cun, WANG Ke-fen, SONG Zu-huan, LIU Meng-ting, LI Jia-yu, LUO Hui-ying, YAO Bin, YANG Hao-meng. Improving the Efficiency of Gene Editing by Optimizing sgRNA in Aspergillus tubingensis [J]. Biotechnology Bulletin, 2025, 41(3): 62-70. |
| [2] | TONG Wei-jing, LUO Shu, LU Xin-lu, SHEN Jian-fu, LU Bai-yi, LI Kai-mian, MA Qiu-xiang, ZHANG Peng. CRISPR/Cas9 Editing MeHNL Gene to Generate Cassava Plants with Low Cyanogenic Glycoside [J]. Biotechnology Bulletin, 2024, 40(9): 11-19. |
| [3] | HOU Wen-ting, SUN Lin, ZHANG Yan-jun, DONG He-zhong. Application of Gene-editing Technology for Germplasm Innovation and Genetic Improvement in Cotton [J]. Biotechnology Bulletin, 2024, 40(7): 68-77. |
| [4] | LONG Jing, CHEN Jing-min, LIU Xiao, ZHANG Yi-fan, ZHOU Li-bin, DU Yan. Repair Mechanisms of DNA Double-strand Breaks and Their Roles in Heavy Ion Mutagenesis and Gene Editing in Plants [J]. Biotechnology Bulletin, 2024, 40(7): 55-67. |
| [5] | WANG Feng-ting, ZHAO Fu-shun, QIAO Kai-bin, XU Xun, LIU Jin-liang. Progress on the Molecular Mechanism of Scion-rootstock Interactions in Vegetable Grafting [J]. Biotechnology Bulletin, 2024, 40(10): 149-159. |
| [6] | ZHOU Jia-wei, WU Zhi-qiang. Construction Method of mitoTALENs Mitochondrial Gene Editing Vector in Plants [J]. Biotechnology Bulletin, 2024, 40(10): 172-180. |
| [7] | LI Ming-kun, BI Mei-ying, ZHANG Tian-hang, WU Xiang-yu, YANG Pei-ru, YING Ming. Restoration of Agricultural Function of Rhizobacteria by UgRNA/Cas9 Multi-gene Editing [J]. Biotechnology Bulletin, 2024, 40(10): 275-287. |
| [8] | ZHANG Shuo, KAN Jun-hu, ZHOU Jia-wei, WU Zhi-qiang. Advance in Plant Mitochondrial Genome Editing [J]. Biotechnology Bulletin, 2024, 40(10): 41-52. |
| [9] | YANG Shuai-peng, QU Zi-xiao, ZHU Xiang-xing, TANG Dong-sheng. Optimization of DNA Base Editing Technology and Its Application in Pig Genetic Modification [J]. Biotechnology Bulletin, 2024, 40(1): 127-144. |
| [10] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
| [11] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
| [12] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
| [13] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
| [14] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
| [15] | LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing [J]. Biotechnology Bulletin, 2022, 38(6): 1-12. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||