Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (5): 129-140.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0980
ZHAO Jing1(
), GUO Qian1, LI Rui-qi1, LEI Ying-yang1, YUE Ai-qin1, ZHAO Jin-zhong2, YIN Cong-cong2, DU Wei-jun1(
), NIU Jing-ping3(
)
Received:2024-10-08
Online:2025-05-26
Published:2025-06-05
Contact:
DU Wei-jun, NIU Jing-ping
E-mail:z15517796474@163.com;duweijun68@126.com;niujingping@sxau.edu.cn
ZHAO Jing, GUO Qian, LI Rui-qi, LEI Ying-yang, YUE Ai-qin, ZHAO Jin-zhong, YIN Cong-cong, DU Wei-jun, NIU Jing-ping. Sequence Analysis and Induced Expression Analysis of GmGST Gene Cluster Genes in Soybean[J]. Biotechnology Bulletin, 2025, 41(5): 129-140.
基因 Gene | 正向引物 Forward primer (5′‒3′) | 反向引物 Reverse primer (5′‒3′) | 退火温度 Annealing temperature (℃) |
|---|---|---|---|
| GmGSTU12 | TTACCAGCTATACTTGTTCC | ATTCAAACAGCAATAACTCAA | 55 |
| GmGSTU13 | GGTTAGAAGTGCTACAATACAAA | AATTCAAACAGCAGTAACTCAAC | 56 |
| GmGSTU16 | ACCTTAGGACCCATCACAGAC | GATTGTGTGAACTACTTGTCG | 58 |
| GmGSTU47 | AGTCAAGAGAAGAAGTGAAGTG | AGGTTGTTGACATTTTCGCT | 55 |
Table 1 Primer information for amplification
基因 Gene | 正向引物 Forward primer (5′‒3′) | 反向引物 Reverse primer (5′‒3′) | 退火温度 Annealing temperature (℃) |
|---|---|---|---|
| GmGSTU12 | TTACCAGCTATACTTGTTCC | ATTCAAACAGCAATAACTCAA | 55 |
| GmGSTU13 | GGTTAGAAGTGCTACAATACAAA | AATTCAAACAGCAGTAACTCAAC | 56 |
| GmGSTU16 | ACCTTAGGACCCATCACAGAC | GATTGTGTGAACTACTTGTCG | 58 |
| GmGSTU47 | AGTCAAGAGAAGAAGTGAAGTG | AGGTTGTTGACATTTTCGCT | 55 |
软件名称 Software name | 软件网址 Software URL |
|---|---|
| SignalP4.1 | http://www.cbs.dtu.dk/services /SignalP-4.1/ |
| PlantCARE | http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ |
| ProtParam | http://web.expasy.org/protparam/ |
| SOPMA | https://npsaprabi.ibcp. fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_gor4.html |
| Phyre2 | http://www.sbg.bio.ic.ac.uk/phyre2/html |
| Evolview | http://www.omicsclass.com/article/671 |
| MEME | http://meme suite.org/ |
| GSDS2.0 | http://gsds.cbi.pku.edu.cn/ |
| TMHMM-2.0 | http://www.cbs.dtu.dk/services/TMHMM/ |
| WoLF PSORT | https://wolfpsort.hgc.jp/ |
| Pfam | https://www.ebi.ac.uk/interpro/entry/pfam |
Table 2 Online software URLs
软件名称 Software name | 软件网址 Software URL |
|---|---|
| SignalP4.1 | http://www.cbs.dtu.dk/services /SignalP-4.1/ |
| PlantCARE | http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ |
| ProtParam | http://web.expasy.org/protparam/ |
| SOPMA | https://npsaprabi.ibcp. fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_gor4.html |
| Phyre2 | http://www.sbg.bio.ic.ac.uk/phyre2/html |
| Evolview | http://www.omicsclass.com/article/671 |
| MEME | http://meme suite.org/ |
| GSDS2.0 | http://gsds.cbi.pku.edu.cn/ |
| TMHMM-2.0 | http://www.cbs.dtu.dk/services/TMHMM/ |
| WoLF PSORT | https://wolfpsort.hgc.jp/ |
| Pfam | https://www.ebi.ac.uk/interpro/entry/pfam |
基因 Gene | 正向引物 Forward primer (5′‒3′) | 反向引物 Reverse primer (5′‒3′) |
|---|---|---|
| GmTublin | GGAGTTCACAGAGGCAGAG | CACTTACGCATCACATAGC |
| GmGSTU12 | TGTGTGCAGGGTCCAGATTG | GCTATGGGCTGCTCATTGTG |
| GmGSTU13 | GCGAAGAATCCCTTAACCACC | AGCGGGCTTTGAAGAAGGTA |
| GmGSTU16 | GGGTCCAGATTGCCCTCAAA | ACGGGGTTGGATTTGAGAAGT |
| GmGSTU47 | CAGGGTGCAGATTGCTCTCA | CAAGGGACTCGGATATGGGC |
Table 3 Primers' sequences for real-time quantitative PCR
基因 Gene | 正向引物 Forward primer (5′‒3′) | 反向引物 Reverse primer (5′‒3′) |
|---|---|---|
| GmTublin | GGAGTTCACAGAGGCAGAG | CACTTACGCATCACATAGC |
| GmGSTU12 | TGTGTGCAGGGTCCAGATTG | GCTATGGGCTGCTCATTGTG |
| GmGSTU13 | GCGAAGAATCCCTTAACCACC | AGCGGGCTTTGAAGAAGGTA |
| GmGSTU16 | GGGTCCAGATTGCCCTCAAA | ACGGGGTTGGATTTGAGAAGT |
| GmGSTU47 | CAGGGTGCAGATTGCTCTCA | CAAGGGACTCGGATATGGGC |
组分 Component | 体积 Content/μL |
|---|---|
| MonAmp™ RapidStart Universai SYBR® Green qPCR Mix | 10 |
| Forward primer | 0.4 |
| Reverse primer | 0.4 |
| cDNA | 2 |
| ddH2O | 7.2 |
Table 4 RT-qPCR reaction system
组分 Component | 体积 Content/μL |
|---|---|
| MonAmp™ RapidStart Universai SYBR® Green qPCR Mix | 10 |
| Forward primer | 0.4 |
| Reverse primer | 0.4 |
| cDNA | 2 |
| ddH2O | 7.2 |
蛋白名称 Protein name | 跨膜螺旋数量 Transmembrane helices | 信号肽 Signal peptide | 细胞定位 Subcellular localization |
|---|---|---|---|
| GmGSTU12 | 0 | 无 No | 细胞质Cytoplasm |
| GmGSTU13 | 0 | 无 No | 细胞质Cytoplasm |
| GmGSTU16 | 0 | 无 No | 叶绿体Chloroplast |
| GmGSTU47 | 0 | 无 No | 细胞核Nucleus |
Table 5 Transmembrane helices、signal peptide and subcellular localizationof GmGST proteins
蛋白名称 Protein name | 跨膜螺旋数量 Transmembrane helices | 信号肽 Signal peptide | 细胞定位 Subcellular localization |
|---|---|---|---|
| GmGSTU12 | 0 | 无 No | 细胞质Cytoplasm |
| GmGSTU13 | 0 | 无 No | 细胞质Cytoplasm |
| GmGSTU16 | 0 | 无 No | 叶绿体Chloroplast |
| GmGSTU47 | 0 | 无 No | 细胞核Nucleus |
Fig. 3 Analysis of promoter cis-acting elements of the GmGST geneABRE: Abscisic acid response element; GARE-motif: gibberellin response element; G-box: light-responsive element; TCA-element: salicylic acid response element; MBS: drought stress response element; ARE: anaerobic recovery element; ERE: ethylene responsive element; CGTCA-motif: jasmonic acid response element; WUN-motif: damage response element
基因名称 Gene name | 基因全长 Gene length (bp) | CDS序列 CDS sequence (bp) | 氨基酸数 Amino acid amounts | 分子式 Molecular formula | 分子量 Mw (kD) | 等电点 pI | 不稳定系数 Instability index | 亲水性平均值 GRAVY |
|---|---|---|---|---|---|---|---|---|
| GmGSTU12 | 1 473 | 678 | 225 | C1218H1855N293O334S2 | 26.01 | 5.39 | 30.27 | -0.130 |
| GmGSTU13 | 1 700 | 678 | 225 | C1218H1864N292O335S2 | 26.02 | 5.30 | 30.22 | -0.138 |
| GmGSTU16 | 1 269 | 952 | 316 | C1664H2559N399O464S8 | 35.66 | 5.74 | 37.76 | 0.007 |
| GmGSTU47 | 1 989 | 669 | 222 | C1184H1831N291O327S4 | 25.50 | 6.13 | 36.38 | -0.175 |
Table 6 Analysis of GmGST gene sequence information and physicochemical properties
基因名称 Gene name | 基因全长 Gene length (bp) | CDS序列 CDS sequence (bp) | 氨基酸数 Amino acid amounts | 分子式 Molecular formula | 分子量 Mw (kD) | 等电点 pI | 不稳定系数 Instability index | 亲水性平均值 GRAVY |
|---|---|---|---|---|---|---|---|---|
| GmGSTU12 | 1 473 | 678 | 225 | C1218H1855N293O334S2 | 26.01 | 5.39 | 30.27 | -0.130 |
| GmGSTU13 | 1 700 | 678 | 225 | C1218H1864N292O335S2 | 26.02 | 5.30 | 30.22 | -0.138 |
| GmGSTU16 | 1 269 | 952 | 316 | C1664H2559N399O464S8 | 35.66 | 5.74 | 37.76 | 0.007 |
| GmGSTU47 | 1 989 | 669 | 222 | C1184H1831N291O327S4 | 25.50 | 6.13 | 36.38 | -0.175 |
蛋白质名称 Protein name | α螺旋 Alpha helix (%) | 延伸链 Extended strand (%) | 无规则卷曲 Random coil (%) |
|---|---|---|---|
| GmGSTU12 | 54.22 | 11.56 | 34.22 |
| GmGSTU13 | 54.67 | 11.56 | 33.78 |
| GmGSTU16 | 59.49 | 10.93 | 29.58 |
| GmGSTU47 | 54.50 | 10.36 | 35.14 |
Table 7 Prediction of secondary structure and subcellular localization of GmGST
蛋白质名称 Protein name | α螺旋 Alpha helix (%) | 延伸链 Extended strand (%) | 无规则卷曲 Random coil (%) |
|---|---|---|---|
| GmGSTU12 | 54.22 | 11.56 | 34.22 |
| GmGSTU13 | 54.67 | 11.56 | 33.78 |
| GmGSTU16 | 59.49 | 10.93 | 29.58 |
| GmGSTU47 | 54.50 | 10.36 | 35.14 |
Fig. 5 Analysis of the phylogenetic evolution of GmGST proteinsAtGST: Arabidopsis thaliana; HbGST: Hevea brasiliensis; TcGST: Theobroma cacao; PtGST: Populus euphratica; ZmGST: Zea mays; GsGST: Glycine soja Siebold; MtrGST: Medicago sativa; CcGST: Capsicum annuum L.; PvGST: Phaseolus vulgaris; PDGST: Populus pilosa
Fig. 9 Analysis of the expression pattern of GmGST gene in hormone-treated soybeanA: MeJA treatment; B: ABA treatment; C: ETH treatment; D: SA treatment
| 1 | 刘虹洁, 王金星, 刘昭军, 等. 大豆种子蛋白和油脂含量调控的研究进展 [J]. 热带亚热带植物学报, 2022, 30(6): 791-800. |
| Liu HJ, Wang JX, Liu ZJ, et al. Research progress on protein and oil contents of soybean seeds [J]. J Trop Subtrop Bot, 2022, 30(6): 791-800. | |
| 2 | Mandal KG, Hati KM, Misra AK, et al. Root biomass, crop response and water-yield relationship of mustard (Brassica juncea L.) grown under combinations of irrigation and nutrient application [J]. Irrig Sci, 2010, 28(3): 271-280. |
| 3 | Song YP, Li C, Zhao L, et al. Disease spread of a popular soybean mosaic virus strain (SC7) in Southern China and effects on two susceptible soybean cultivars [J]. Philipp Agric Sci, 2016, 99(4): 355-364. |
| 4 | Tu JC. Symptom severity, yield, seed mottling and seed transmission of soybean mosaic virus in susceptible and resistant soybean: the influence of infection stage and growth temperature [J]. J Phytopathol, 1992, 135(1): 28-36. |
| 5 | Domier LL, Hobbs HA, McCoppin NK, et al. Multiple loci condition seed transmission of soybean mosaic virus (SMV) and SMV-induced seed coat mottling in soybean [J]. Phytopathology, 2011, 101(6): 750-756. |
| 6 | Lallement PA, Meux E, Gualberto JM, et al. Structural and enzymatic insights into Lambda glutathione transferases from Populus trichocarpa, monomeric enzymes constituting an early divergent class specific to terrestrial plants [J]. Biochem J, 2014, 462(1): 39-52. |
| 7 | Nianiou-Obeidat I, Madesis P, Kissoudis C, et al. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications [J]. Plant Cell Rep, 2017, 36(6): 791-805. |
| 8 | Wei LJ, Zhu Y, Liu RY, et al. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus [J]. Sci Rep, 2019, 9(1): 9196. |
| 9 | Hasan MS, Singh V, Islam S, et al. Genome-wide identification and expression profiling of glutathione S-transferase family under multiple abiotic and biotic stresses in Medicago truncatula L [J]. PLoS One, 2021, 16(2): e0247170. |
| 10 | Dixon DP, Hawkins T, Hussey PJ, et al. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily [J]. J Exp Bot, 2009, 60(4): 1207-1218. |
| 11 | Vaish S, Gupta D, Mehrotra R, et al. Glutathione S-transferase: a versatile protein family [J]. 3 Biotech, 2020, 10(7): 321. |
| 12 | Shao DN, Li YJ, Zhu QH, et al. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.) [J]. Plant Sci, 2021, 305: 110827. |
| 13 | Loyall L, Uchida K, Braun S, et al. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to Chalcone synthase in cell cultures [J]. Plant Cell, 2000, 12(10): 1939-1950. |
| 14 | Mano J, Kanameda S, Kuramitsu R, et al. Detoxification of reactive carbonyl species by glutathione transferase tau isozymes [J]. Front Plant Sci, 2019, 10: 487. |
| 15 | Sappl PG, Carroll AJ, Clifton R, et al. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress [J]. Plant J, 2009, 58(1): 53-68. |
| 16 | Lan T, Yang ZL, Yang X, et al. Extensive functional diversification of the Populus glutathione S-transferase supergene family [J]. Plant Cell, 2009, 21(12): 3749-3766. |
| 17 | Rezaei MK, Shobbar ZS, Shahbazi M, et al. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern [J]. J Plant Physiol, 2013, 170(14): 1277-1284. |
| 18 | Ghangal R, Rajkumar MS, Garg R, et al. Genome-wide analysis of glutathione S-transferase gene family in chickpea suggests its role during seed development and abiotic stress [J]. Mol Biol Rep, 2020, 47(4): 2749-2761. |
| 19 | Islam S, Rahman IA, Islam T, et al. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: Gaining an insight to their physiological and stress-specific roles [J]. PLoS One, 2017, 12(11): e0187504. |
| 20 | Song S, Wang J, Zhou JY, et al. Single-cell RNA-sequencing of soybean reveals transcriptional changes and antiviral functions of GmGSTU23 and GmGSTU24 in response to soybean mosaic virus [J]. Plant Cell Environ, 2024. |
| 21 | McGonigle B, Keeler SJ, Lau SM, et al. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize [J]. Plant Physiol, 2000, 124(3): 1105-1120. |
| 22 | Jha B, Sharma A, Mishra A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance [J]. Mol Biol Rep, 2011, 38(7): 4823-4832. |
| 23 | Cicero LL, Madesis P, Tsaftaris A, et al. Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses [J]. Phytochemistry, 2015, 116: 69-77. |
| 24 | Yang GY, Xu ZG, Peng SB, et al. In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance [J]. Plant Cell Rep, 2016, 35(3): 681-692. |
| 25 | Csiszár J, Váry Z, Horváth E, et al. Role of glutathione transferases in the improved acclimation to salt stress in salicylic acid-hardened tomato [J]. Acta Biol Szeged, 2011, 55(1): 67-68. |
| 26 | Han Q, Chen R, Yang Y, et al. A glutathione S-transferase gene from Lilium regale Wilson confers transgenic tobacco resistance to Fusarium oxysporum [J]. Sci Hortic, 2016, 198: 370-378. |
| 27 | Dixon DP, Cole DJ, Edwards R. Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs [J]. Plant Mol Biol, 1998, 36(1): 75-87. |
| 28 | Wagner U, Edwards R, Dixon DP, et al. Probing the diversity of the Arabidopsis glutathione S-transferase gene family [J]. Plant Mol Biol, 2002, 49(5): 515-532. |
| 29 | Gullner G, Komives T, Király L, et al. Glutathione S-transferase enzymes in plant-pathogen interactions [J]. Front Plant Sci, 2018, 9: 1836. |
| 30 | Yan Y, Jia HH, Wang F, et al. Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana [J]. Front Physiol, 2015, 6: 265. |
| 31 | 吴金华, 张西平, 胡言光, 等. 小麦抗白粉病相关基因GST克隆与表达 [J]. 西北植物学报, 2013, 33(1): 34-38. |
| Wu JH, Zhang XP, Hu YG, et al. Cloning and expression of glutathione-S-transferase (GST) gene related to powdery mildew of wheat [J]. Acta Bot Boreali Occidentalia Sin, 2013, 33(1): 34-38. | |
| 32 | 安秀红, 徐锴, 厉恩茂, 等. 苹果抗性相关的谷胱甘肽转移酶基因MdGSTU1的生物信息学和表达分析 [J]. 中国农业科学, 2014, 47(24): 4868-4877. |
| An XH, Xu K, Li EM, et al. Bioinformatics and expression analysis of MdGSTU1 gene encoding a resistance-related glutathione transferase from apple [J]. Sci Agric Sin, 2014, 47(24): 4868-4877. | |
| 33 | 马立功, 孟庆林, 张匀华, 等. 向日葵谷胱甘肽-S-转移酶基因的克隆及抗病功能研究 [J]. 中国油料作物学报, 2015, 37(5): 635-643. |
| Ma LG, Meng QL, Zhang YH, et al. Clone and function of a glutathione-S-transferase gene from sunflower (Helianthus annuus) [J]. Chin J Oil Crop Sci, 2015, 37(5): 635-643. | |
| 34 | Babu MH, Gagarinova AG, Brandle JE, et al. Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection [J]. J Gen Virol, 2008, 89(Pt 4): 1069-1080. |
| 35 | Zhang K, Shen YC, Wang T, et al. GmGSTU 13 is related to the development of mosaic symptoms in soybean plants infected with soybean mosaic virus [J]. Phytopathology, 2022, 112(2): 452-459. |
| 36 | Wang QP, Zhang LM, Xue CL, et al. GST family genes in jujube actively respond to phytoplasma infection [J]. Hortic Plant J, 2024, 10(1): 77-90. |
| 37 | Li ZK, Chen B, Li XX, et al. A newly identified cluster of glutathione S-transferase genes provides Verticillium wilt resistance in cotton [J]. Plant J, 2019, 98(2): 213-227. |
| 38 | Niu JP, Zhao J, Guo Q, et al. WGCNA reveals hub genes and key gene regulatory pathways of the response of soybean to infection by Soybean mosaic virus [J]. Genes, 2024, 15(5): 566. |
| 39 | Ahmad MZ, Nasir JA, Ahmed S, et al. Genome-wide analysis of glutathione S-transferase gene family in G. max [J]. Biologia, 2020, 75(10): 1691-1705. |
| 40 | Edwards R, Dixon DP, Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health [J]. Trends Plant Sci, 2000, 5(5): 193-198. |
| 41 | Sylvestre-Gonon E, Law SR, Schwartz M, et al. Functional, structural and biochemical features of plant serinyl-glutathione transferases [J]. Front Plant Sci, 2019, 10: 608. |
| 42 | Liu ZM, Faizan M, Chen C, et al. The combined analysis of transcriptome and antioxidant enzymes revealed the mechanism of EBL and ZnO NPs enhancing Styrax tonkinensis seed abiotic stress resistance [J]. Genes, 2022, 13(11): 2170. |
| 43 | Akbar S, Wei Y, Yuan Y, et al. Gene expression profiling of reactive oxygen species (ROS) and antioxidant defense system following Sugarcane mosaic virus (SCMV) infection [J]. BMC Plant Biol, 2020, 20(1): 532. |
| 44 | Garg N, Manchanda G. ROS generation in plants: Boon or bane? [J]. Plant Biosyst Int J Deal Aspects Plant Biol, 2009, 143(1): 81-96. |
| 45 | Dixon DP, Cummins L, Cole DJ, et al. Glutathione-mediated detoxification systems in plants [J]. Curr Opin Plant Biol, 1998, 1(3): 258-266. |
| 46 | Chen W, Chao G, Singh KB. The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites [J]. Plant J, 1996, 10(6): 955-966. |
| 47 | Polidoros AN, Scandalios JG. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.) [J]. Physiol Plant, 1999, 106(1): 112-120. |
| 48 | Xu FX, Lagudah ES, Moose SP, et al. Tandemly duplicated Safener-induced glutathione S-transferase genes from Triticum tauschii contribute to genome- and organ-specific expression in hexaploid wheat [J]. Plant Physiol, 2002, 130(1): 362-373. |
| 49 | Hossain MZ, Fujita M. Purification of a phi-type glutathione S-transferase from pumpkin flowers, and molecular cloning of its cDNA [J]. Biosci Biotechnol Biochem, 2002, 66(10): 2068-2076. |
| 50 | Zhu XL, Wang BQ, Wang X, et al. Genome-wide identification, characterization and expression analysis of the LIM transcription factor family in quinoa [J]. Physiol Mol Biol Plants, 2021, 27(4): 787-800. |
| 51 | Zhu XL, Wang BQ, Wang X, et al. Identification of the CIPK-CBL family gene and functional characterization of CqCIPK14 gene under drought stress in quinoa [J]. BMC Genomics, 2022, 23(1): 447. |
| 52 | Kaur A, Pati PK, Pati AM, et al. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa [J]. PLoS One, 2017, 12(9): e0184523. |
| 53 | Wani SH, Kumar V, Shriram V, et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants [J]. Crop J, 2016, 4(3): 162-176. |
| 54 | Zhou JM, Goldsbrough PB. An Arabidopsis gene with homology to glutathione S-transferases is regulated by ethylene [J]. Plant Mol Biol, 1993, 22(3): 517-523. |
| [1] | LIU Tao, WANG Zhi-qi, WU Wen-bo, SHI Wen-ting, WANG Chao-nan, DU Chong, YANG Zhong-min. Identification and Expression Analysis of the GRAM Gene Family in Potato [J]. Biotechnology Bulletin, 2025, 41(4): 145-155. |
| [2] | SUN Tian-guo, YI Lan, QIN Xu-yang, QIAO Meng-xue, GU Xin-ying, HAN Yi, SHA Wei, ZHANG Mei-juan, MA Tian-yi. Genome-wide Identification of the DABB Gene Family in Brassica rapa ssp. pekinensis and Expression Analysis under Saline and Alkali Stress [J]. Biotechnology Bulletin, 2025, 41(4): 156-165. |
| [3] | WANG Tian-tian, CHANG Xue-rui, HUANG Wan-yang, HUANG Jia-xin, MIAO Ru-yi, LIANG Yan-ping, WANG Jing. Identification and Analysis of GASA Gene Family in Pepper (Capsicum annuum L.) [J]. Biotechnology Bulletin, 2025, 41(4): 166-175. |
| [4] | HUANG Jin-heng, HUANG Xi, ZHANG Jia-yan, ZHOU Xin-yu, LIAO Pei-ran, YANG Quan. Identification and Expression Analysis of the C3H Gene Family in Grona styracifolia across Different Varieties [J]. Biotechnology Bulletin, 2025, 41(4): 243-255. |
| [5] | BAN Qiu-yan, ZHAO Xin-yue, CHI Wen-jing, LI Jun-sheng, WANG Qiong, XIA Yao, LIANG Li-yun, HE Wei, LI Ye-yun, ZHAO Guang-shan. Cloning of Phytochrome Interaction Factor CsPIF3a and Its Response to Light and Temperature Stress in Camellia sinensis [J]. Biotechnology Bulletin, 2025, 41(4): 256-265. |
| [6] | LU Yong-jie, XIA Hai-qian, LI Yong-ling, ZHANG Wen-jian, YU Jing, ZHAO Hui-na, WANG Bing, XU Ben-bo, LEI Bo. Cloning and Expression Analysis of AP2/ERF Transcription Factor NtESR2 in Nicotiana tabacum [J]. Biotechnology Bulletin, 2025, 41(4): 266-277. |
| [7] | QIN Yue, YANG Yan, ZHANG Lei, LU Li-li, LI Xian-ping, JIANG Wei. Identification and Comparative Analysis of the StGAox Genes in Diploid and Tetraploid Potatoes [J]. Biotechnology Bulletin, 2025, 41(3): 146-160. |
| [8] | WANG Chen, LIU Guo-mei, CHEN Chang, ZHANG Jin-long, YAO Lin, SUN Xuan, DU Chun-fang. Genome-wide Identification and Expression Analysis of CCDs Family in Brassia rapa L. [J]. Biotechnology Bulletin, 2025, 41(3): 161-170. |
| [9] | LIN Zi-yi, WU Yi-zhou, YE Fang-xian, ZHU Shu-ying, LIU Yan-min, LIU Su-shuang. Functional Analysis of Soybean GmPM31 Gene Promoter Involvement in Response to High Temperature and Humidity Stress [J]. Biotechnology Bulletin, 2025, 41(3): 90-97. |
| [10] | MA Tian-yi, XU Jia-jia, LU Wen-jing, WU Yan, SHA Wei, ZHANG Mei-juan, PENG Yi-fang. Expression Analysis and Resistance Identification of BrcGASA3 in Chinese Cabbage ‘Jinxiaotong’ Cultivar under Saline-alkali Stress [J]. Biotechnology Bulletin, 2025, 41(2): 127-138. |
| [11] | XU Yuan-meng, MAO Jiao, WANG Meng-yao, WANG Shu, REN Jiang-ling, LIU Yu-han, LIU Si-chen, QIAO Zhi-jun, WANG Rui-yun, CAO Xiao-ning. Cloning and Expression Characteristics Analysis of Millet Genes PmDEP1 and PmEP3 [J]. Biotechnology Bulletin, 2025, 41(2): 150-162. |
| [12] | JIA Zi-jian, WANG Bao-qiang, CHEN Li-fei, WANG Yi-zhen, WEI Xiao-hong, ZHAO Ying. Expression Patterns of CHX Gene Family in Quinoa in Response to NO under Saline-alkali Stress [J]. Biotechnology Bulletin, 2025, 41(2): 163-174. |
| [13] | QIAN Zheng-yi, WU Shao-fang, CAO Shu-yi, SONG Ya-xin, PAN Xin-feng, LI Zhao-wei, FAN Kai. Identification of the NAC Transcription Factors in Nymphaea colorata and Their Expression Analysis [J]. Biotechnology Bulletin, 2025, 41(2): 234-247. |
| [14] | HUANG Ying, YU Wen-jing, LIU Xue-feng, DIAO Gui-ping. Bioinformatics and Expression Pattern Analysis of Glutathione S-transferase in Populus davidiana × P. bolleana [J]. Biotechnology Bulletin, 2025, 41(2): 248-256. |
| [15] | XIANG Chun-fan, LI Le-song, WANG Juan, LIANG Yan-li, YANG Sheng-chao, LI Meng-fei, ZHAO Yan. Functional Identification and Expression Analysis of Cinnamonyl Alcohol Dehydrogenase AsCAD in Angelica sinensis [J]. Biotechnology Bulletin, 2025, 41(2): 295-308. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||