Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (6): 179-190.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1205
WANG Miao-miao1(
), ZHAO Xiang-long1, WANG Zhao-ming2, LIU Zhi-peng1, YAN Long-feng3(
)
Received:2024-12-12
Online:2025-06-26
Published:2025-06-30
Contact:
YAN Long-feng
E-mail:977441324@qq.com;yanlf@lzu.edu.cn
WANG Miao-miao, ZHAO Xiang-long, WANG Zhao-ming, LIU Zhi-peng, YAN Long-feng. Identification of TCP Gene Family in Medicago ruthenica and Their Expression Pattern Analysis under Drought Stress[J]. Biotechnology Bulletin, 2025, 41(6): 179-190.
基因名称 Gene name | 正向引物Forward primer sequence (5'-3') | 反向引物Reverse primer sequence (5'-3') |
|---|---|---|
| MruActin | ATCCAGGCTGTCCTCTCCCT | ACGAAGGATGGCATGTGGGA |
| MruTCP01 | CCACTCCTGCTTCTTTCTCT | GCCGGAAGGTTTTTCTGTTT |
| MruTCP02 | GGAAACGGAAAACAACAGCC | GGAGCTAGGTCACAAATCCG |
| MruTCP03 | GGAAACGGAAAACAACAGCC | GGAGCTAGGTCACAAATCCG |
| MruTCP05 | CACTTCACTCGACCACAAAC | CGGCCTGATTTTGGACAAAT |
| MruTCP06 | CAGATCTGAACCACCTCCTC | TGTGCAGCTAGAGTTTTCCA |
| MruTCP09 | TGTTGGTGGTGGTAATGGAA | TTAGGTTCAGGAATCGTCGG |
| MruTCP16 | AGGAACAAATTTGGGAGGGA | GGTTCATCAGCAGAATCAGC |
| MruTCP17 | ACTCAAAATCCCAACCACCT | CGTTTCTGTTTCAACCGGTT |
| MruTCP18 | ACCGATCCAACCAACTAGTC | CTTTGCGCTGCTAGAGTTTT |
Table 1 RT-qPCR primer sequences for the M. ruthenicaTCP gene family
基因名称 Gene name | 正向引物Forward primer sequence (5'-3') | 反向引物Reverse primer sequence (5'-3') |
|---|---|---|
| MruActin | ATCCAGGCTGTCCTCTCCCT | ACGAAGGATGGCATGTGGGA |
| MruTCP01 | CCACTCCTGCTTCTTTCTCT | GCCGGAAGGTTTTTCTGTTT |
| MruTCP02 | GGAAACGGAAAACAACAGCC | GGAGCTAGGTCACAAATCCG |
| MruTCP03 | GGAAACGGAAAACAACAGCC | GGAGCTAGGTCACAAATCCG |
| MruTCP05 | CACTTCACTCGACCACAAAC | CGGCCTGATTTTGGACAAAT |
| MruTCP06 | CAGATCTGAACCACCTCCTC | TGTGCAGCTAGAGTTTTCCA |
| MruTCP09 | TGTTGGTGGTGGTAATGGAA | TTAGGTTCAGGAATCGTCGG |
| MruTCP16 | AGGAACAAATTTGGGAGGGA | GGTTCATCAGCAGAATCAGC |
| MruTCP17 | ACTCAAAATCCCAACCACCT | CGTTTCTGTTTCAACCGGTT |
| MruTCP18 | ACCGATCCAACCAACTAGTC | CTTTGCGCTGCTAGAGTTTT |
| 基因名称Gene name | 基因ID Gene ID | 氨基酸数目 Number of amino acids (aa) | 分子量 Molecular weight (kD) | 理论等电点 pI | 不稳定系数Instability index | 脂肪系数Aliphatic index | 疏水性 Hydrophobicity | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|---|---|
| MruTCP01 | MruT001875 | 225 | 24.52 | 8.01 | 56.29 | 62.98 | -0.76 | 细胞核 |
| MruTCP02 | MruT002689 | 206 | 22.20 | 7.02 | 81.12 | 65.29 | -0.47 | 细胞核 |
| MruTCP03 | MruT005553 | 342 | 35.89 | 4.97 | 56.45 | 62.84 | -0.364 | 细胞核 |
| MruTCP04 | MruT005664 | 390 | 44.27 | 6.32 | 55.17 | 53.31 | -0.766 | 细胞核 |
| MruTCP05 | MruT006387 | 255 | 27.23 | 9.51 | 48.03 | 69.76 | -0.543 | 细胞核 |
| MruTCP06 | MruT006697 | 509 | 54.44 | 6.43 | 58.12 | 51.1 | -0.863 | 细胞核 |
| MruTCP07 | MruT011216 | 328 | 36.21 | 6.03 | 45.67 | 61.89 | -0.74 | 细胞核 |
| MruTCP08 | MruT022062 | 337 | 37.82 | 6.1 | 43.68 | 56.05 | -0.904 | 细胞核 |
| MruTCP09 | MruT028007 | 418 | 44.08 | 6.26 | 57.08 | 59.35 | -0.609 | 细胞核 |
| MruTCP10 | MruT031885 | 329 | 36.89 | 6.36 | 48.26 | 76.38 | -0.604 | 细胞核 |
| MruTCP11 | MruT032111 | 412 | 46.55 | 9.35 | 54.68 | 57.31 | -0.966 | 细胞核 |
| MruTCP12 | MruT033252 | 233 | 25.94 | 10.08 | 70.54 | 64.08 | -0.682 | 细胞核 |
| MruTCP13 | MruT034692 | 351 | 39.72 | 7.23 | 48.98 | 57.75 | -0.948 | 细胞核 |
| MruTCP14 | MruT034836 | 383 | 43.73 | 6.71 | 53.45 | 52.53 | -1.155 | 细胞核 |
| MruTCP15 | MruT034841 | 383 | 43.74 | 6.71 | 53.45 | 52.27 | -1.154 | 细胞核 |
| MruTCP16 | MruT035144 | 286 | 30.94 | 8.68 | 51.03 | 60.42 | -0.851 | 细胞核 |
| MruTCP17 | MruT041006 | 325 | 35.38 | 9.27 | 62.8 | 75.94 | -0.424 | 细胞核 |
| MruTCP18 | MruT043711 | 439 | 47.62 | 7.01 | 63.2 | 53.62 | -0.893 | 细胞核 |
| MruTCP19 | MruT043927 | 390 | 44.87 | 8.9 | 50.63 | 55.23 | -1.029 | 细胞核 |
| MruTCP20 | MruT045760 | 439 | 47.62 | 7.01 | 63.2 | 53.62 | -0.893 | 细胞核 |
Table 2 Basic information of TCP gene family in M. ruthenica
| 基因名称Gene name | 基因ID Gene ID | 氨基酸数目 Number of amino acids (aa) | 分子量 Molecular weight (kD) | 理论等电点 pI | 不稳定系数Instability index | 脂肪系数Aliphatic index | 疏水性 Hydrophobicity | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|---|---|
| MruTCP01 | MruT001875 | 225 | 24.52 | 8.01 | 56.29 | 62.98 | -0.76 | 细胞核 |
| MruTCP02 | MruT002689 | 206 | 22.20 | 7.02 | 81.12 | 65.29 | -0.47 | 细胞核 |
| MruTCP03 | MruT005553 | 342 | 35.89 | 4.97 | 56.45 | 62.84 | -0.364 | 细胞核 |
| MruTCP04 | MruT005664 | 390 | 44.27 | 6.32 | 55.17 | 53.31 | -0.766 | 细胞核 |
| MruTCP05 | MruT006387 | 255 | 27.23 | 9.51 | 48.03 | 69.76 | -0.543 | 细胞核 |
| MruTCP06 | MruT006697 | 509 | 54.44 | 6.43 | 58.12 | 51.1 | -0.863 | 细胞核 |
| MruTCP07 | MruT011216 | 328 | 36.21 | 6.03 | 45.67 | 61.89 | -0.74 | 细胞核 |
| MruTCP08 | MruT022062 | 337 | 37.82 | 6.1 | 43.68 | 56.05 | -0.904 | 细胞核 |
| MruTCP09 | MruT028007 | 418 | 44.08 | 6.26 | 57.08 | 59.35 | -0.609 | 细胞核 |
| MruTCP10 | MruT031885 | 329 | 36.89 | 6.36 | 48.26 | 76.38 | -0.604 | 细胞核 |
| MruTCP11 | MruT032111 | 412 | 46.55 | 9.35 | 54.68 | 57.31 | -0.966 | 细胞核 |
| MruTCP12 | MruT033252 | 233 | 25.94 | 10.08 | 70.54 | 64.08 | -0.682 | 细胞核 |
| MruTCP13 | MruT034692 | 351 | 39.72 | 7.23 | 48.98 | 57.75 | -0.948 | 细胞核 |
| MruTCP14 | MruT034836 | 383 | 43.73 | 6.71 | 53.45 | 52.53 | -1.155 | 细胞核 |
| MruTCP15 | MruT034841 | 383 | 43.74 | 6.71 | 53.45 | 52.27 | -1.154 | 细胞核 |
| MruTCP16 | MruT035144 | 286 | 30.94 | 8.68 | 51.03 | 60.42 | -0.851 | 细胞核 |
| MruTCP17 | MruT041006 | 325 | 35.38 | 9.27 | 62.8 | 75.94 | -0.424 | 细胞核 |
| MruTCP18 | MruT043711 | 439 | 47.62 | 7.01 | 63.2 | 53.62 | -0.893 | 细胞核 |
| MruTCP19 | MruT043927 | 390 | 44.87 | 8.9 | 50.63 | 55.23 | -1.029 | 细胞核 |
| MruTCP20 | MruT045760 | 439 | 47.62 | 7.01 | 63.2 | 53.62 | -0.893 | 细胞核 |
Fig. 8 Analysis of the expression pattern of TCP gene in M. ruthenica under different time of drought stress* indicates P<0.05 and ** indicates P<0.01. The same below
| 1 | Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form [J]. Plant Cell, 1998, 10(7): 1075-1082. |
| 2 | Ma J, Liu F, Wang QL, et al. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development [J]. Sci Rep, 2016, 6: 21535. |
| 3 | Chen X, Chen Z, Zhao HL, et al. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments [J]. PLoS One, 2014, 9(2): e87156. |
| 4 | Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize [J]. Nature, 1997, 386(6624): 485-488. |
| 5 | Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum [J]. Cell, 1999, 99(4): 367-376. |
| 6 | Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to Cis elements in the rice proliferating cell nuclear antigen gene [J]. Plant Cell, 1997, 9(9): 1607-1619. |
| 7 | Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later [J]. Trends Plant Sci, 2010, 15(1): 31-39. |
| 8 | Horn S, Pabón-Mora N, Theuß VS, et al. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids [J]. Plant J, 2015, 81(4): 559-571. |
| 9 | Yao X, Ma H, Wang J, et al. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa [J]. J Integr Plant Biol, 2007, 49(6): 885-897. |
| 10 | Ding SC, Cai ZZ, Du HW, et al. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance [J]. Int J Mol Sci, 2019, 20(11): 2762. |
| 11 | Yang MF, He GD, Hou QD, et al. Systematic analysis and expression profiles of TCP gene family in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) revealed the potential function of FtTCP15 and FtTCP18 in response to abiotic stress [J]. BMC Genomics, 2022, 23(1): 415. |
| 12 | Parapunova V, Busscher M, Busscher-Lange J, et al. Identification, cloning and characterization of the tomato TCP transcription factor family [J]. BMC Plant Biol, 2014, 14: 157. |
| 13 | Xu RR, Sun P, Jia FJ, et al. Genomewide analysis of TCP transcription factor gene family in Malus domestica [J]. J Genet, 2014, 93(3): 733-746. |
| 14 | Bao S, Zhang ZX, Lian Q, et al. Evolution and expression of genes encoding TCP transcription factors in Solanum tuberosum reveal the involvement of StTCP23 in plant defence [J]. BMC Genet, 2019, 20(1): 91. |
| 15 | Shi PB, Guy KM, Wu WF, et al. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus [J]. BMC Plant Biol, 2016, 16: 85. |
| 16 | Shang XW, Han ZL, Zhang DY, et al. Genome-wide analysis of the TCP gene family and their expression pattern analysis in tea plant (Camellia sinensis) [J]. Front Plant Sci, 2022, 13: 840350. |
| 17 | Zhang W, Cochet F, Ponnaiah M, et al. The MPK8-TCP14 pathway promotes seed germination in Arabidopsis [J]. Plant J, 2019, 100(4): 677-692. |
| 18 | Yun YJ, Kim SS, Lee JH, et al. Overexpression of lettuce TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor genes (LsTCP13 and LsTCP17) promotes flowering time through upregulation of AtFT and AtAP1 in Arabidopsis [J]. Plant Biotechnol Rep, 2023, 17(4): 509-517. |
| 19 | Jin KM, Wang YJ, Zhuo RY, et al. TCP transcription factors involved in shoot development of ma bamboo (Dendrocalamus latiflorus Munro) [J]. Front Plant Sci, 2022, 13: 884443. |
| 20 | Giraud E, Ng S, Carrie C, et al. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana [J]. Plant Cell, 2010, 22(12): 3921-3934. |
| 21 | Li X, Yang Q, Liao XQ, et al. A natural antisense RNA improves Chrysanthemum cold tolerance by regulating the transcription factor DgTCP1 [J]. Plant Physiol, 2022, 190(1): 605-620. |
| 22 | Almeida DM, Gregorio GB, Margarida Oliveira M, et al. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype [J]. Plant Mol Biol, 2017, 93(1/2): 61-77. |
| 23 | 冯雅岚, 熊瑛, 张均, 等. TCP转录因子在植物发育和生物胁迫响应中的作用 [J]. 植物生理学报, 2018, 54(5): 709-717. |
| Feng YL, Xiong Y, Zhang J, et al. Role of TCP transcription factors in plant development and biotic stress responses [J]. Plant Physiol J, 2018, 54(5): 709-717. | |
| 24 | 魏娜, 李艳鹏, 马艺桐, 等. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析 [J]. 草业学报, 2022, 31(1): 118-130. |
| Wei N, Li YP, Ma YT, et al. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa(Medicago sativa)under drought stress [J]. Acta Prataculturae Sin, 2022, 31(1): 118-130. | |
| 25 | 李新, 杨丹, 牛奎举. 扁蓿豆SWEET基因家族鉴定及在干旱和寒冷胁迫下的表达分析 [J]. 中国草地学报, 2024, 46(9): 1-14. |
| Li X, Yang D, Niu KJ. Identification of SWEET gene family in Medicago ruthenica and expression analysis under drought and cold stress [J]. Chin J Grassland, 2024, 46(9): 1-14. | |
| 26 | Wang TZ, Ren LF, Li CH, et al. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress [J]. BMC Biol, 2021, 19(1): 96. |
| 27 | Yin M, Zhang SZ, Du X, et al. Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history [J]. Mol Ecol Resour, 2021, 21(5): 1641-1657. |
| 28 | 石蕊. 基于转录组及小RNA分析的扁蓿豆抗旱性研究 [D]. 呼和浩特: 内蒙古农业大学, 2022. |
| Shi R. Study on drought resistance of alfalfa based on transcriptome and small RNA analysis [D]. Hohhot: Inner Mongolia Agricultural University, 2022. | |
| 29 | Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes [J]. Science, 2000, 290(5499): 2105-2110. |
| 30 | Zhao JM, Zhai ZW, Li YN, et al. Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of wheat (Triticum aestivum L.) [J]. Front Plant Sci, 2018, 9: 1282. |
| 31 | Francis A, Dhaka N, Bakshi M, et al. Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum [J]. Sci Rep, 2016, 6: 38488. |
| 32 | Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants [J]. J Mol Evol, 2007, 65(1): 23-33. |
| 33 | Jiu ST, Xu Y, Wang JY, et al. Genome-wide identification, characterization, and transcript analysis of the TCP transcription factors in Vitis vinifera [J]. Front Genet, 2019, 10: 1276. |
| 34 | 谭政委, 郭水柱, 苏小雨, 等. 全基因组水平金银花TCP基因家族的鉴定及表达模式分析 [J]. 中草药, 2024, 55(5): 1665-1676. |
| Tan ZW, Guo SZ, Su XY, et al. Genome-wide analysis of TCP gene family and their expression pattern analysis in Lonicera japonica [J]. Chin Tradit Herb Drugs, 2024, 55(5): 1665-1676. | |
| 35 | Perez M, Guerringue Y, Ranty B, et al. Specific TCP transcription factors interact with and stabilize PRR2 within different nuclear sub-domains [J]. Plant Sci, 2019, 287: 110197. |
| 36 | 张志强, 卢世雄, 马宗桓, 等. 草莓TCP转录因子家族生物信息学鉴定及基因表达分析 [J]. 西北植物学报, 2020, 40(12): 2031-2043. |
| Zhang ZQ, Lu SX, Ma ZH, et al. Bioinformatics identification and expression analysis of TCP transcription factor family in strawberry [J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(12): 2031-2043. | |
| 37 | 周棋赢, 韩月华, 祝悦, 等. 茶树TCP家族的全基因组鉴定及其表达分析 [J]. 园艺学报, 2019, 46(10): 2021-2036. |
| Zhou QY, Han YH, Zhu Y, et al. Genome-wide identification, classification and expression analysis of TCP gene family in tea plant [J]. Acta Hortic Sin, 2019, 46(10): 2021-2036. | |
| 38 | Xiao XO, Lin WQ, Feng EY, et al. Genome-wide identification of binding sites for SmTCP7a transcription factors of eggplant during bacterial wilt resistance by ChIP-seq [J]. Int J Mol Sci, 2022, 23(12): 6844. |
| 39 | Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family [J]. Plant J, 2002, 30(3): 337-348. |
| 40 | 阚宝林, 杨勇, 杜鹏萌, 等. 香蕉TCP家族的全基因组鉴定及对低氮胁迫的响应 [J]. 分子植物育种, 2022, 20(1): 64-75. |
| Kan BL, Yang Y, Du PM, et al. Genome-wide identification of banana TCP family and its response to low nitrogen stress [J]. Mol Plant Breed, 2022, 20(1): 64-75. | |
| 41 | Chai WB, Jiang PF, Huang GY, et al. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize [J]. Physiol Mol Biol Plants, 2017, 23(4): 779-791. |
| 42 | 张龙, 徐世强, 李静宇, 等. 穿心莲TCP基因家族全基因组鉴定及非生物胁迫下的表达分析 [J]. 中国中药杂志, 2024, 49(2): 379-388. |
| Zhang L, Xu SQ, Li JY, et al. Genome-wide identification and expression analysis of TCP gene family in Andrographis paniculata under abiotic stress [J]. China Ind Econ, 2024, 49(2): 379-388. | |
| 43 | 刘俊, 陈玉龙, 刘燕, 等. 杜仲TIFY转录因子鉴定与表达分析 [J]. 中国实验方剂学杂志, 2021, 27(19): 165-174. |
| Liu J, Chen YL, Liu Y, et al. Identification and expression analysis of TIFY transcription factor in Eucommia ulmoides [J]. Chin J Exp Tradit Med Formulae, 2021, 27(19): 165-174. | |
| 44 | 梅文宇, 方燕芬, 宫超, 等. 茄子TCP转录因子的鉴定及胁迫处理下的表达分析 [J]. 广东农业科学, 2022, 49(12): 20-33. |
| Mei WY, Fang YF, Gong C, et al. Genome-wide identification and expression analysis in oxidative stress of TCP transcription factor family in eggplant(Solanum melongena L.) [J]. Guangdong Agric Sci, 2022, 49(12): 20-33. | |
| 45 | Maniatis T, Tasic B. Alternative pre-mRNA splicing and proteome expansion in metazoans [J]. Nature, 2002, 418(6894): 236-243. |
| 46 | 李海伦. 甜瓜TCP转录因子基因家族鉴定与表达分析 [D]. 郑州: 河南农业大学, 2022. |
| Li HL. Identification and expression analysis of TCP transcription factor gene family in melon [D]. Zhengzhou: Henan Agricultural University, 2022. | |
| 47 | Lei N, Yu X, Li SX, et al. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress [J]. Sci Rep, 2017, 7(1): 10016. |
| 48 | 雷其冬. 拟南芥miR319-TCP4调控植物应答干旱胁迫的分子机制研究 [D]. 昆明: 昆明理工大学, 2021. |
| Lei QD. Molecular mechanism of Arabidopsis miR319-TCP4 regulating plant response to drought stress [D]. Kunming: Kunming University of Science and Technology, 2021. | |
| 49 | Wang ST, Sun XL, Hoshino Y, et al. microRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.) [J]. PLoS One, 2014, 9(3): e91357. |
| [1] | ZONG Jian-wei, DENG Hai-fang, CAI Yuan-yuan, CHANG Ya-wen, ZHU Ya-qi, YANG Yu-hua. Coupling Effect of AM Fungi on the Root Morphology and Leaf Structure of Xanthoceras sorbifolium Bunge under Drought Stress [J]. Biotechnology Bulletin, 2025, 41(6): 167-178. |
| [2] | HE Wei, LI Jun-yi, LI Xin-ni, MA Xue-hua, XING Yuan, CAO Xiao-ning, QIAO Zhi-ju, LIU Si-chen. Genome-wide Identification of U-box E3 Ubiquitin Ligase Gene Family in Setaria italica and Response Analysis to Abiotic Stress [J]. Biotechnology Bulletin, 2025, 41(5): 104-118. |
| [3] | YANG Chun, WANG Xiao-qian, WANG Hong-jun, CHAO Yue-hui. Cloning, Subcellular Localization and Expression Analysis of MtZHD4 Gene from Medicago truncatula [J]. Biotechnology Bulletin, 2025, 41(5): 244-254. |
| [4] | TIAN Qin, LIU Kui, WU Xiang-wei, JI Yuan-yuan, CAO Yi-bo, ZHANG Ling-yun. Functional Study of Transcription Factor VcMYB17 in Regulating Drought Tolerance in Blueberry [J]. Biotechnology Bulletin, 2025, 41(4): 198-210. |
| [5] | QIAN Qi, WANG Zeng-hui, SUN Rong-hua, LUO Ying-zhi, SU Liang-chen. Mechanism of Tolerance of Protein Phosphatase AhPDCP37 in Peanut to Drought [J]. Biotechnology Bulletin, 2025, 41(3): 98-103. |
| [6] | LIU Jie, WANG Fei, TAO Ting, ZHANG Yu-jing, CHEN Hao-ting, ZHANG Rui-xing, SHI Yu, ZHANG Yi. Overexpression of SlWRKY41 Improves the Tolerance of Tomato Seedlings to Drought [J]. Biotechnology Bulletin, 2025, 41(2): 107-118. |
| [7] | KONG Qing-yang, ZHANG Xiao-long, LI Na, ZHANG Chen-jie, ZHANG Xue-yun, YU Chao, ZHANG Qi-xiang, LUO Le. Identification and Expression Analysis of GRAS Transcription Factor Family in Rosa persica [J]. Biotechnology Bulletin, 2025, 41(1): 210-220. |
| [8] | HAN Kai, ZHOU Yong-shun, ZHANG Kai-yue, WANG Lu, GAO Jian-feng, CHEN Fu-long. Evaluation of Drought Resistance of Three Chlorella Strains [J]. Biotechnology Bulletin, 2024, 40(8): 244-254. |
| [9] | WEN Jie, DU Yuan-xin, WU An-bo, YANG Guang-rong, LU Min, AN Hua-ming, NAN Hong. Identification and Expression Pattern Analysis of Rosa roxburghii SOD Gene Family [J]. Biotechnology Bulletin, 2024, 40(5): 153-166. |
| [10] | CHEN Zhi-hua, QIAO Zhen-sheng, LI Jia-qi, ZHANG Xiao-lin, MA Shao-jie, HE Cheng-zhong, ZONG Dan. Genome-wide Identification and Analysis of the TCP Gene Family in Populus yunnanensis [J]. Biotechnology Bulletin, 2024, 40(11): 214-226. |
| [11] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
| [12] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
| [13] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
| [14] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
| [15] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||