[1] Sasaki K, Watanabe M, Tanaka T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid[J]. Applied Microbiology and Biotechnology, 2002, 58(1):23-29. [2] Sasaki K, Watanabe M, Suda Y, et al. Applications of photosynthetic bacteria for medical fields[J]. Journal of Bioscience and Bioengineering, 2005, 100(5):481-488. [3] 李月梅, 郭亚平, 李琦, 等. 卟啉杀虫剂对稻蝗的毒杀作用及机理初探[J]. 山西大学学报:自然科学版, 2005, 28(2):196-201. [4] Chu EM, Yow CN. Modulation of telomerase and signal transduction proteins by hexyl-ALA-photodynamic therapy PDT in human doxorubicin resistant cancer cell models[J]. Photodiagnosis and Photodynamic Therapy, 2012, 9(3):243-255. [5] Namikawa T, Inoue K, Uemura S, et al. Photodynamic diagnosis using 5-aminolevulinic acid during gastrectomy for gastric cancer[J]. Journal of Surgical Oncology, 2014, 109(3):213-217. [6] Chen YJ, Kim IH, Cho JH, et al. Effect of δ-aminolevulinic acid on growth performance, nutrient digestibility, blood parameters and the immune response of weanling pigs challenged with Escherichia coli lipopolysaccharide[J]. Livestock Science, 2008, 114(1):108-116. [7] Chen Y, Kim I, Cho JH, et al. Utilization of delta-aminolevulinic acid for livestock:blood characteristics and immune organ weight in broilers[J]. Journal of Animal and Feed Sciences, 2008, 17(2):215-223. [8] Wang JP, Jung JH, Kim IH. Effects of dietary supplementation with delta-aminolevulinic acid on growth performance, hematological status, and immune responses of weanling pigs[J]. Livestock Science, 2011, 140(1):131-135. [9] Wang JP, Kim HJ, Chen Y, et al. Effects of delta-aminolevulinic acid and vitamin C supplementation on feed intake, backfat, and iron status in sows[J]. Journal of Animal Science, 2009, 87(11):3589-3595. [10] Wang PJ, Lee J, Jang HD, et al. Effects of δ-aminolevulinic acid and vitamin C supplementation on iron status, production performance, blood characteristics and egg quality of laying hens[J]. Journal of Animal Physiology and Animal Nutrition, 2011, 95(4):417-423. [11] Miyachi N, Tanaka T, Nishikawa S, et al. Preparation and chemical properties of 5-aminolevulinic acid and its derivatives[J]. Porphyrins, 1998, 7(23):342-347. [12] 付士凯, 李伟华, 时建刚. 氨基乙酰丙酸的应用及合成方法[J]. 山东化工, 2003, 32(3):24-27. [13] Xie L, Hall D, Eiteman MA, et al. Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design[J]. Appl Microbiol Biotechnol, 2003, 63(3):267-273. [14] Werf MJVD, Zeikus JG. Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene[J]. Appl Environ Microbiol, 1996, 62(10):3560-3566. [15] Fu WQ, Lin JP, Cen P. Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production[J]. Appl Biochem Biotechnol, 2010, 160(2):456-466. [16] Judith B, Christoph W. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory[J]. Current Opinion in Biotechnology, 2012, 23(4):631-640. [17] Ahmad B, Jeong EH, Kim S, et al. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway[J]. Enzyme and Microbial Technology, 2015, 81(2015):1-7. [18] Feng LL, Zhang Y, Fu J, et al. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid[J]. Biotechnology and Bioengineering, 2015, 113(6):1-10. [19] Yang P, Liu WJ, Cheng XL, et al. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield[J]. Applied and Environmental Microbiology, 2016, 82(9):2709-2717. [20] Zhang LL, Chen JZ, Chen N, et al. Cloning of two 5-aminolevulinic acid synthase isozymes HemA mand HemO from Rhodopseudomo-nas palustris with favorable characteristics for 5-aminolevulinic acid production[J]. Biotechnol Lett, 2013, 35(5):763-768. [21] Mauzerall D, Granick S The occurrence and determination of d-aminolevulinic acid and porphobilinogen in Urine[J]. J Biol Chem, 1956, 219(1):435-446. [22] Blombach B, Riester T, Wieschalka S, et al. Corynebacterium glutamicum tailored for efficient isobutanol production[J]. Appl Environ Microbiol, 2011, 77(10):3300-3310. [23] Burnham BF. δ-aminolevulinic acid synthase(Rhodopseudomonas spheroides)[M]//Tabor H, Tabor CM. Methods in Enzymology, 1970, 17(A):195-200. [24] 李黔蜀, 叶华, 贺立虎. 玉米浆作为氮源对透明质酸发酵的影响[J]. 杨凌职业技术学院学报, 2011, 10(2):5-7. [25] 王宁宁, 吴振, 江建梅, 等. 酵母粉有机氮源及其在发酵行业的应用[J]. 产业与科技论坛, 2014, 13(2):69-70. [26] Qin G, Lin JP, Liu XX. Effects of Medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli[J]. Journal of Bioscience and Bioengineering, 2006, 102(4):316-322. [27] 赵春晖, 林建平, 刘晓侠, 等. 过表达自身的基因的重组大肠杆菌发酵生产-氨基乙酰丙酸的研究[J]. 生物加工过程, 2005, 3(4):36-39. [28] 丁海燕, 张兴, 刘晓娟, 等. 生物合成-氨基乙酰丙酸的发酵条件[J]. 化工进展, 2006, 25(10):1218-1221. |