Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (6): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2016-1138
ZHOU Zhi-Hao, WANG Yue, MIN Xiong, LI Zhong-Guang
Received:
2016-12-19
Online:
2017-06-26
Published:
2017-06-19
ZHOU Zhi-Hao, WANG Yue, MIN Xiong, LI Zhong-Guang. Crosstalk Between Hydrogen Sulfide Signal and Other Signals Regulates Drought Tolerance of Plants[J]. Biotechnology Bulletin, 2017, 33(6): 1-9.
[1] Yamasaki H, Cohen MF. Biological consilience of hydrogen sulfide and nitric oxide in plants:Gases of primordial earth linking plant, microbial and animal physiologies[J]. Nitric Oxide, 2016, 55-56:91-100. [2] Goodwin LR, Francom D, Dieken FP, et al. Determination of sulfide in brain tissue by gas dialysis/ion chromatography:postmortem studies and two case reports[J]. J Anal Toxicol, 1989, 13(2):105-109. [3] Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat[J]. Biochem J, 1982, 206(2):267-277. [4] Hancock JT. Harnessing evolutionary toxins for signaling:reactive oxygen species, nitric oxide and hydrogen sulfide in plant cell regulation[J]. Front Plant Sci, 2017, 8:189. [5] 闵雄, 周志豪, 李忠光. 信号分子硫化氢的代谢及其在植物耐热性形成中的作用[J]. 植物生理学报, 2016, 52(1):37-46. [6] Szabo C. Hydrogen sulphide and its therapeutic potential[J]. Nat Rev Drug Discov, 2007, 6(11):917-935. [7] Li ZG, Gong M, Liu P. Hydrogen sulfide is a mediator in H 2 O 2 -induced seed germination in Jatropha Curcas[J]. Acta Physiol Plant, 2012, 34(6):2207-2213. [8] Li ZG, Min X, Zhou ZH. Hydrogen sulfide:A signal molecule in plant cross-adaptation[J]. Front Plant Sci, 2016, 7:1621. [9] Hasan MR, Ghosh A, Kaur C et al. Glyoxalase pathway and drought stress tolerance in plants[M]//Hossain MA, Wani SH, Bhattacharjee S, et al. Drought stress tolerance in plants Volume 1, Switzerland:Springer International Publishing, 2016:379-399. [10] 车永梅, 侯丽霞, 孙艳君, 等. H 2 S 参与植物气孔运动调节与逆境响应过程研究进展[J]. 生物技术通报, 2016, 32(10):1-9. [11] Ma D, Ding H, Wang C et al. Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat[J]. PLoS One 2016, 11(9):e0163082. [12] Li ZG. Methylglyoxal and glyoxalase system in plants:old players, new concepts[J]. Bot Rev, 2016, 82:183-203. [13] Guo H, Xiao T, Zhou H, et al. Hydrogen sulfide:a versatile regulator of environmental stress in plants[J]. Acta Physiol Plant, 2016, 38(1):1-13. [14] Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951):901-908. [15] Scuffi D, Alvarez C, Laspina N, et al. Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure[J]. Plant Physiol, 2014, 166(4):2065-2076. [16] 刘菁, 侯丽霞, 刘国华, 等. NO介导的H 2 S合成参与乙烯诱导的拟南芥气孔关闭[J]. 科学通报, 2011(30):2515-2522. [17] 侯智慧, 刘菁, 侯丽霞, 等. H 2 S可能作为H 2 O 2 的下游信号介导茉莉酸诱导的蚕豆气孔关闭[J]. 植物学报, 2011, 46(4):396-406. [18] Hua Z, Hao J, Jiang CX, et al. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress[J]. Acta Physiol Plant, 2010, 32(5):849-857. [19] Li ZG, He QQ. Hydrogen peroxide might be a downstream signal molecule of hydrogen sulfide in seed germination of mung bean(Vigna radiata)[J]. Biologia, 2015, 70:753-759. [20] Li ZG, Xie LR, Li XJ. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize(Zea mays L. )seedlings[J]. J Plant Physiol, 2015, 177:121-127. [21] Li ZG. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize(Zea mays L. )seedlings[J]. Plant Signal Behav, 2015, 10:9, e1051278. [22] Li ZG, Luo LJ, Sun YF. Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide-induced thermotolerance in maize seedlings[J]. Russ J Plant Physiol, 2015, 62:507-514. [23] Li ZG, Gu SP. Hydrogen sulfide as a signal molecule in hematin-induced heat tolerance of tobacco cell suspension[J]. Biol Plant, 2016, 60(3):595-600. [24] Li ZG, Jin JZ. Hydrogen sulfide partly mediates abscisic acid-induced heat tolerance in tobacco(Nicotiana tabacum L. )suspension cultured cells[J]. Plant Cell Tiss Organ Cult, 2016, 125:207-214. [25] Li ZG, Long WB, Yang SZ, et al. Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures[J]. Acta Physiol Plant, 2015, 37:219. [26] Lin YT, Li MY, Cui WT, et al. Haem oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation[J]. J Plant Growth Regul, 2012, 31(4):519-528. [27] Shen J, Xing T, Yuan H, et al. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions[J]. PLoS One, 2016, 8(10):e77047. [28] Hossain MA, Wani SH, Bhattacharjee S, et al. Drought stress tolerance in plants Vol 2[M]. Springer International Puhlishing, Switzerland, 2016. [29] Iqbal N, Nazar R, Khan NA. Osmolytes and plants acclimation to changing environment:Emerging omics technologies[M]. New York:Springer, 2016. [30] Hossain MA, Hoque MA, Burritt DJ, et al. Proline protects plants against abiotic oxidative stress:Biochem Mol Mechan[M]// Ahmad P. Oxidative damage to plants. Amsterdam:ELSEVIER, 2014:477-522. [31] Zhang H, Wang MJ, Hu LY, et al. Hydrogen sulfide promotes wheat seed germination under osmotic stress[J]. Russ J Plant Physiol, 2010, 57(4):532-539. [32] 谢虹, 杨兰, 李忠光. 脯氨酸在植物非生物胁迫耐性形成中的作用[J]. 生物技术通报, 2011(2):23-27. [33] 李永生, 方永丰, 李玥, 等. 外源硫化氢对PEG模拟干旱条件下玉米种子萌发及幼苗生长的影响[J]. 核农学报, 2016, 30(4):813-821. [34] Shi H, Ye T, Chan Z. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass(Cynodon dactylon, (L). Pers. )[J]. Plant Physiol Biochem, 2013, 71(2):226-234. [35] Chen J, Shang YT, Wang WH, et al. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings[J]. Front Plant Sci, 2016, 7:1173. [36] Li ZG, Zhu LP. Hydrogen sulfide donor sodium hydrosulfide-induced accumulation of betaine is involved in the acquisition of heat tolerance in maize seedlings[J]. Braz J Bot, 2015, 38(1):31-38. [37] Ruizlozano JM, Alguacil MDM, Bárzana G, et al. Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins[J]. Plant Mol Biol, 2009, 70(5):565-579. [38] Christou A, Filippou P, Manganaris GA, et al. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin[J]. BMC Plant Biol, 2014, 14:42. [39] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12):909-930. [40] Asthir B. Mechanisms of heat tolerance in crop plants[J]. J Plant Inter, 2015, 10(1):1-21. [41] Breusegem FV, Vranová E, Dat JF, et al. The role of active oxygen species in plant signal transduction[J]. Plant Sci, 2001, 161(3):405-414. [42] Zhang H, Wang MG, Hua LY, et al. Hydrogen sulfide promotes wheat seed germination under osmotic stress[J]. Russ J Plant Physiol, 2010, 57:532-539. [43] Shan CJ, Zhang SL, Li DF, et al. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress[J]. Acta Physiol Plant, 2011, 33(6):2533-2540. [44] 单长卷, 周岩, 赵元增, 等. 外源硫化氢对干旱条件下玉米幼苗抗氧化特性的影响[J]. 干旱地区农业研究, 2015, 33(6):161-166. [45] Aroca Á, Serna A, Gotor C, et al. S-sulfhydration:a cysteine posttranslational modification in plant systems[J]. Plant Physiol, 2015, 168(1):334-342. [46] Hoque TS, Hossain MA, Mostofa MG, et al. Signalling roles of methylglyoxal and the involvement of the glyoxalase system in plant abiotic stress responses and tolerance[M]//Azooz MM, Ahmad P. Plant-environment interaction:Responses and approaches to mitigate stress. New Jersey:Wiley, 2016:311-326. [47] Hoque TS, Hossain MA, Mostofa MG, et al. Methylglyoxal:An emerging signaling mmolecule in plant abiotic stress responses and tolerance[J]. Front Plant Sci, 2016, 7:1341. [48] Hoque TS, Okuma E, Uraji M, et al. Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K + channel activity in Arabidopsis[J]. Biosci Biotechnol Biochem, 2012, 76:617-619. [49] Hoque TS, Uraji M, Ye W, et al. Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis[J]. J Plant Physiol, 2012, 169:979-986. [50] Kaur C, Sharma S, Singla-Pareek SL, et al. Methylglyoxal, triose phosphate isomerase, and glyoxalase pathway:Implications in abiotic stress and signaling in plants[M]//Pandey GK. Elucidation of abiotic stress signaling in plants. Berlin:Springer, 2015:347-365. [51] Hossain MA, Silva JAT, Fujita M. Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance:An intimate relationship[M]//Shanker AK, Venkateswarlu B. Abiotic stress in plants-mechanisms and adaptations. Croatia:InTech, 2011:235-266. [52] Kaur C, Ghosh A, Pareek A, et al. Glyoxalases and stress tolerance in plants[J]. Biochem Soc Trans, 2014, 42:485-490. [53] Kaur C, Singla-Pareek SL, Sopory SK. Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance[J]. Crit Rev Plant Sci, 2014, 33:429-456. [54] Nahar K, Hasanuzzaman M, Alam MM, et al. Glutathione-induced drought stress tolerance in mung bean:coordinated roles of the antioxidant defence and methylglyoxal detoxification systems[J]. AoB Plants, 7:plv069. doi:10.1093/aohpla/plv069. [55] Hasanuzzaman M, Fujita M. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings[J]. Biol Trace Element Res, 2011, 143:1758-1776. [56] Le DT, Nishiyama R, Watanabe Y et al. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis[J]. PLoS One, 2012, 7(11):e49522. [57] Kaur C, Kushwaha HR, Mustafiz A et al. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule[J]. Front Plant Sci, 2016, 6:682. [58] Li ZG, Duan XQ, Xia YM, et al. Methylglyoxal alleviates cadmium toxicity in wheat(Triticum aestivum L.)[J]. Plant Cell Rep, 2017, 36:367-370. [59] Kaur H, Petla BP, Majee M. Small heat shock proteins:Roles in development, desiccation tolerance and seed longevity[M]//Asea AAA, Kaur P, Calderwood ST. Heat shock proteins and plants. New York:Springer, 2016:3-18. [60] . Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling[J]. pharmacol and Toxicol, 2011, 51(51):169-187. [61] Bright J, Desikan R, Hancock JT, et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H 2 O 2 synthesis[J]. Plant J, 2006, 45(1):113-122. |
[1] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[2] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[3] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. pOsHAK1:OsFLN2 Expression Enhances the Drought Tolerance by Altering Sugar Metabolism in Rice [J]. Biotechnology Bulletin, 2022, 38(8): 92-100. |
[4] | CHEN Hong-yan, LI Xiao-er, LI Zhong-guang. Sugar Signaling and Its Role in Plant Response to Environmental Stress [J]. Biotechnology Bulletin, 2022, 38(7): 80-89. |
[5] | LI Cai-xia, LAN Hai-yan. Research Progress in the Stress Tolerance Mechanisms of Desert Plant Tamarix spp. [J]. Biotechnology Bulletin, 2021, 37(5): 128-140. |
[6] | MA Xu-hui, CHEN Ru-mei, LIU Xiao-qing, ZHAO Jun, ZHANG Xia. Effects of Melatonin on Root Growth and Drought Tolerance of Maize Seedlings [J]. Biotechnology Bulletin, 2021, 37(2): 1-14. |
[7] | ZHANG Yun-chuan, LIN Yi-xuan, CAO Xin-wen, WANG Hai-nan, YAN Jie. TkDREB2 Clone from Taraxacum kok-saghyz and Drought Tolerance Analysis of Transgenic Nicotiana tabacum [J]. Biotechnology Bulletin, 2021, 37(11): 212-224. |
[8] | WU Pei, LI Hao, ZAO Hao-long, WANG Yu-yun, YANG Jian-li, TANG Li, FAN Wei. Physiological and Molecular Mechanisms of Plant Co-evolution Responses to Phosphorous Deficiency and Aluminum Toxicity [J]. Biotechnology Bulletin, 2020, 36(7): 170-181. |
[9] | MENG Wen-ting, WANG Tian-tian, ZHAO Xue-lin, ZHU Lin. Effects of Different Slope Positions on Soil Moisture and Physiological Indicators of Artemisia ordosica Root Zone in the Mu Us Sandy Land [J]. Biotechnology Bulletin, 2019, 35(12): 57-63. |
[10] | HE Nan,XU Heng. Effect of Phosphate-solubilizing Bacteria on Oxidative Response of Pleurotus eryngii Under Lead Stress [J]. Biotechnology Bulletin, 2016, 32(5): 187-193. |
[11] | Li Yushun, Liu Yiling, Liu Bucang, Mu Jianqiang, Zhu Jianbo. Cloning and Function Analysis of Aquaporin Protein Gene sikPIP1 from Saussurea involucrata Kar. et Kir [J]. Biotechnology Bulletin, 2015, 31(9): 97-105. |
[12] | Tian Xiaowei, Peng Shouhua, Wei Jiqiang, Jiang Yong, Wang Zhiqiang, Wang Huaqi. Advances of ABA Related Genes on Plant Drought Tolerance Gene Engineering Studies [J]. Biotechnology Bulletin, 2014, 0(5): 8-14. |
[13] | Zhai Ying, Zhao Yan, Yang Xiaojie ,Sun Tianguo, Zhang Jun, Yao Yanan. Functional Analysis of Ethylene-response Factor GmERF6 in Soybean [J]. Biotechnology Bulletin, 2013, 0(12): 73-77. |
[14] | Guo Lina, Zhang Rui, Sun Guoqing, Meng Zhigang, Zhou Tao, Guo Sandui. Overexpression of cyFBPase Gene Can Enhance the Drought Tolerance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2013, 0(11): 63-68. |
[15] | Liu Chun, Cao Limin, Li Yuzhong, Peng Wanxia, Ma Hao. Progress in the Improvement of Abiotic Stress Tolerance in Plants Using Transgenic Approaches [J]. Biotechnology Bulletin, 2013, 0(1): 16-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||