Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (5): 187-193.doi: 10.13560/j.cnki.biotech.bull.1985.2016.05.025
Previous Articles Next Articles
HE Nan1,2,XU Heng2
Received:
2015-08-13
Online:
2016-05-25
Published:
2016-05-27
HE Nan,XU Heng. Effect of Phosphate-solubilizing Bacteria on Oxidative Response of Pleurotus eryngii Under Lead Stress[J]. Biotechnology Bulletin, 2016, 32(5): 187-193.
[1] Mishra S, Srivastava S, Tripathi RD, et al. Lead detoxification by co-ontail(Ceratophyllum demersum L.)involves induction of phytoch-elatins and antioxidant system in response to its accumulation[J]. Chemosphere, 2006, 65:1027-1039. [2]Cai QY, Mo CH, Li HQ, et al. Heavy metal contamination of urban soils and dusts in Guangzhou, South China[J]. Environmental Monitoring and Assessment, 2013, 185:1095-1106. [3]冯琦丽, 魏忠义, 王晶. 沈阳城市土壤Pb的污染状况及其化学形态研究[J]. 江西农业学报, 2008, 20:97-99. [4]S?vik ML, Larssen T, Vogt RD, et al. Potentially harmful elements in rice paddy fields in mercury hot spots in Guizhou, China[J]. Applied Geochemistry, 2011, 26:167-173. [5]刘铮. 中国土壤微量元素[M]. 南京:江苏科学技术出版社, 1996. [6]Naseem R, Tahir SS. Removal of Pb(II)from aqueous solution by using bentonite as an adsorbent[J]. Water Res, 2001, 35:3982-3986. [7]Salt DE, Blaylock M, Kumar NPBA, et al. Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plants[J]. Nat Biotech, 1995, 13:468-474. [8]Garbisu C, Alkorta I. Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment[J]. Bioresource Technology, 2001, 77:229-236. [9]王兴明, 刘桂建, 董众兵, 等. 淮南煤矸石山周边土壤中蚯蚓对重金属的富集特征[J]. 煤炭学报, 2012, 37:1219-1226. [10]孙中涛, 王汉忠, 孙凤鸣, 等. 硒在香菇体内的生物转化及硒蛋白的生物活性[J]. 食品与发酵工业, 2003, 23:57-60. [11]叶明, 陈辉, 章建国, 等. 香菇富锌及其培养条件优化[J]. 食品科学, 2006, 27:572-575. [12]方荣利, 康德灿, 万昌秀, 等. 微生物富钙的研究[J]. 四川大学学报, 2004, 2004:24-27. [13]Dazy M, Masfaraud JF, Ferard JF. Induction of oxidative stress bio-markers associated with heavy metal stress in Fontinalis antipyre-tica Hedw[J]. Chemosphere, 2009, 75:297-302. [14]Zhang FQ, Wang YS, Lou ZP, Dong JD. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings(Kandelia candel and Bruguiera gymnorrhiza)[J]. Chemosphere, 2007, 67:44-50. [15] Mishra SSS, Tripathi RD, et al. Phytochelatin synthesis and res-ponse of antioxidants during cadmium stress in Bacopa monnieri L.[J]. Plant Physiol Biochem, 2006, 44:25-37. [16]Wang C, Wang X, Tian Y, et al. Oxidative stress and potential bio-markers in tomato seedlings subjected to soil lead contamination [J]. Ecotoxicol Environ Saf, 2008, 71:685-691. [17]陈兰, 陈玉霞, 冯军, 徐恒. PbⅡ和CdⅡ在长根菇菌丝体中的富集及其对SOD、CAT酶活的影响[J]. 四川大学学报:自然科学版, 2011, 48:1391-1396. [18]Duponnois R, Colombet A, Hien V, et al. The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea[J]. Soil Biol Biochem, 2005, 37:1460-1468. [19]Chen Z, Ma S, Liu LL. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China[J]. Bioresource Technology, 2008, 99:6702-6707. [20]Jacobs H, Boswell GP, Harper FA, et al. Solubilization of metal phosphates by Rhizoctonia solani[J]. Mycological Research, 2002, 106:1468-1479. [21]Park JH, Bolan N, Megharaj M, Naidu R. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil[J]. Journal of Hazardous Materials, 2011, 185:829-836. [22] Jeong S, Moon HS, Nam K, et al. Application of phosphate-solubili-zing bacteria for enhancing bioavailability and phytoextraction of cadmium(Cd)from polluted soil[J]. Chemosphere, 2012, 88:204-210. [23]Byers HK, Stackebrandt E, Hayward C, Blackall LL. Molecular investigation of a microbial mat associated with the Great Artesian Basin[J]. FEMS Microbiology Ecology, 1998, 25:391-403. [24]Jiang CY, Sheng XF, Qian M, Wang QY. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil[J]. Chemosphere, 2008, 72:157-164. [25]Beauchamp C, Fridovich I. Superoxide dismutase:Improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 1971, 44:276-287. [26] Omran RG. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings[J]. Plant Physiol, 1980, 65:407-408. [27]Heath RL, Packer L. Photoperoxidation in isolated chloroplasts:I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysics, 1968, 125:189-198. [28]Guimaraes-Soares L, Pascoal C, Cassio F. Effects of heavy metals on the production of thiol compounds by the aquatic fungi Fontanospora fusiramosa and Flagellospora curta[J]. Ecotox Environ Safe, 2007, 66:36-43. [29]牛廷香, 邓烈, 易时来, 等. 溶磷菌对柑桔嫁接苗磷素营养及生长发育的影响[J]. 中国南方果树, 2011, 40:11-14. [30]李玉娥, 姚拓, 荣良燕. 溶磷菌溶磷和分泌IAA 特性及对苜蓿生长的影响[J]. 草地学报, 2010, 18:84-88. [31]陈国潮, 何振立, 黄昌勇. 菜茶果园红壤微生物量磷与土壤磷以及磷植物有效性之间的关系研究[J]. 土壤学报, 2001, 38:75-80. [32]Chabot R, Antoun H, Cescas MP. Growth promotion of maize and lettuce by phosphate solubilizing rhizobium legume inorsarum biovar phaseoli[J]. Plant Soil, 1996, 184:311-321. [33] Martinoa E, Perottos S, Personsb R, et al. Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites[J]. Soil Biology & Biochemistry, 2003, 35:133-41. [34]Fomina MA, Alexander IJ, Colpaert JV, Gadd GM. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2005, 37:851-866. [35]Mishra S, Srivastava S, Tripathi RD, et al. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L.[J]. Plant Physiology and Biochemistry, 2006, 44:25-37. [36]Islam E, Liu D, Li T, et al. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi[J]. Journal of Hazardous Materials, 2008, 154:914-926. [37]Xu H, Song P, Gu W, Yang Z. Effects of heavy metals on production of thiol compounds and antioxidant enzymes in Agaricus bisporus[J]. Ecotoxicology and Environmental Safety, 2011, 74(6):1685-1692. [38]张敬旭, 符绍莲, 江河, 等. 妊娠期铅暴露对新生仔鼠脑组织MDA、SOD 的影响及金属硫蛋白的诱导[J]. 中国工业医学杂志, 2003, 16:15-19. [39]Bai Z, Harvey LM, McNeil B. Oxidative stress in submerged cultures of fungi[J]. Crit Rev Biotechnol, 2003, 23:267-302. [40]Mishra S, Srivastava S, Tripathi RD, et al. Prasad, Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L.[J]. Plant Physiology and Biochemistry, 2006, 44:25-37. [41]Islam E, Liu D, Li T, et al. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi[J]. Journal of Hazardous Materials, 2008, 154:914-926. [42]吴惠芳, 龚春风, 刘鹏, 等. 锰胁迫下龙葵和小飞蓬根叶中植物螯合肽和类金属硫蛋白的变化[J]. 环境科学学报, 2010, 30:2058-2064. [43]Cao YR, Zhang XY, Deng JY, et al. Lead and cadmium-induced oxidative stress impacting mycelial growth of Oudemansiella radi-cata in liquid medium alleviated by microbial siderophores[J]. World Journal of Microbiology & Biotechnology, 2012, 28:1727-1737. |
[1] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[2] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[3] | CHEN Hong-yan, LI Xiao-er, LI Zhong-guang. Sugar Signaling and Its Role in Plant Response to Environmental Stress [J]. Biotechnology Bulletin, 2022, 38(7): 80-89. |
[4] | LI Yi-han, YU Lang-liu, LI Chun-yan, ZHANG Meng-meng, ZHANG Xiao-qin, FANG Yun-xia, XUE Da-wei. Whole Genome Identification of Barley NRAMP and Gene Expression Analysis Under Heavy Metal Stress [J]. Biotechnology Bulletin, 2022, 38(6): 103-111. |
[5] | SHEN Jia-jia, HOU Xiao-gai, WANG Er-qiang, WANG Fei, GUO Li-li. Organic Phosphate-solubilizing Bacteria Screening in the Rhizosphere of Paeonia ostii and Study on Their Phosphate-solubilizing Capabilities [J]. Biotechnology Bulletin, 2022, 38(6): 157-165. |
[6] | YANG Lu, XIN Jian-pan, TIAN Ru-nan. Research Progress in the Mitigative Effects of Rhizosphere Microorganisms on Heavy Metal Stress in Plants and Their Mechanisms [J]. Biotechnology Bulletin, 2022, 38(3): 213-225. |
[7] | HU Hua-ran, DU Lei, ZHANG Rui-hao, ZHONG Qiu-yue, LIU Fa-wan, GUI Min. Research Progress in the Adaptation of Hot Pepper(Capsicum annuum L.)to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(12): 58-72. |
[8] | ZHENG Hui-qing, GUO Zhong-jie, CAI Zhi-xin, LU Yuan-ping, LIAO Jian-hua, CHEN Mei-yuan. Analysis and Evaluation of Nutrient Components in Agaricus bisporus Wild Germplasm Resource [J]. Biotechnology Bulletin, 2021, 37(11): 109-118. |
[9] | HUANG Yu-xi, CHENG Shun-li, HE Ling-ling, XIAO Jin-bin, REN Qiu-he, PENG Zi-han, ZHOU Zhen, FANG Yu-mei. Study on the Reduction Characteristics of Cr(VI)by Two Species of Microorganisms [J]. Biotechnology Bulletin, 2021, 37(10): 63-71. |
[10] | CHEN Xuan, LIU Xiang-long, TANG Ting. Advances of Bryophytes in Response to Heavy Metal Stress [J]. Biotechnology Bulletin, 2020, 36(10): 191-199. |
[11] | Jimilamu JIAMALI, Miheriban ABILIMITI, Guhainisha MAIMAITI, Ainiwaer TUMIER. Tolerance and Adsorption of 2 Photobionts to Heavy Metal Cu and Zn [J]. Biotechnology Bulletin, 2019, 35(6): 69-75. |
[12] | MENG Wen-ting, WANG Tian-tian, ZHAO Xue-lin, ZHU Lin. Effects of Different Slope Positions on Soil Moisture and Physiological Indicators of Artemisia ordosica Root Zone in the Mu Us Sandy Land [J]. Biotechnology Bulletin, 2019, 35(12): 57-63. |
[13] | CHEN Zi-han, LIU Jin-juan. In Vitro Antioxidative and Anti-proliferative Activities of Extractions from Six Common Edible Mushrooms [J]. Biotechnology Bulletin, 2019, 35(11): 104-108. |
[14] | YUAN Jin-wei, CHEN Ji, CHEN Fang, LIU Wan-hong. The Augmentation Strategies and Mechanisms in the Phytoremediation of Heavy Metal-contaminated Soil [J]. Biotechnology Bulletin, 2019, 35(1): 120-130. |
[15] | TIAN Jing, XU Xiao-lin, KANG Yan-shun, TANG Wei-hua, LIU Si-qi. Screening and Characteristics of a Broad Spectrum Fungus Degrading Polycyclic-aromatic Hydrocarbons:Aspergillus flavus AD-X-1 [J]. Biotechnology Bulletin, 2018, 34(8): 115-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||