Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (7): 1-14.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0262
ZHANG Cui-ju, MO Bei-xin, CHEN Xue-mei, CUI Jie
Received:
2020-03-12
Online:
2020-07-26
Published:
2020-07-28
ZHANG Cui-ju, MO Bei-xin, CHEN Xue-mei, CUI Jie. Advances on the Molecular Action Mechanisms of Plant miRNA[J]. Biotechnology Bulletin, 2020, 36(7): 1-14.
[1] Lee RC, Feinbaum RL, Ambres V.The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854. [2] Reinhart BJ, Slack FJ, Basson M, et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772):901-906. [3] Reinhart BJ, Weinstein EG, Rhoades MW, et al.MicroRNAs in plants[J]. Genes & Development, 2002, 16(13):1616-1626. [4] Llave C.Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589):2053-2056. [5] Park W, Li J, Song R, et al.CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J]. Current Biology, 2002, 12(17):1484-1495. [6] Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase:from microRNA sequences to function[J]. Nucleic Acids Research, 2019, 47(1):D155-D162. [7] Hamilton AJ, Baulcombe DC.A species of small antisense RNA in posttranscriptional gene silencing in plants[J]. Science, 1999, 286(5441):950-952. [8] Aukerman MJ, Sakai H.Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes[J]. The Plant Cell, 2003, 15(11):2730-2741. [9] Chen X.A MicroRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666):2022-2025. [10] Gandikota M, Birkenbihl RP, Höhmann S, et al.The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. The Plant Journal, 2007, 49(4):683-693. [11] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al.Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880):1185-1190. [12] 熊雪梅, 吴莹, 王洋. 植物体内调控miRNA合成与功能的机制研究进展[J]. 植物研究, 2014, 34(2):282-288. [13] 郭韬, 李广林, 魏强, 等. 植物MicroRNA功能的研究进展[J]. 西北植物学报, 2011, 31(11):2347-2354. [14] 许硕, 胡正, 姜奇彦, 等. 植物microRNA功能及其在逆境条件下的研究进展[J]. 生物技术通报, 2012(2):1-7. [15] 张俊红, 张守攻, 齐力旺. 植物成熟microRNA转录后修饰与降解的研究进展[J]. 植物学报, 2014, 49(4):483-489. [16] Yu Y, Jia T, Chen X.The ‘how’ and ‘where’ of plant microRNAs[J]. The New Phytologist, 2017, 216(4):1002-1017. [17] Ipsaro JJ, Joshua-Tor L.From guide to target:molecular insights into eukaryotic RNA-interference machinery[J]. Nature Structural & Molecular Biology, 2015, 22(1):20-28. [18] Iwakawa HO, Tomari Y.The functions of microRNAs:mRNA decay and translational repression[J]. Trends in Cell Biology, 2015, 25(11):651-665. [19] Iwakawa HO, Tomari Y.Molecular insights into microRNA-mediated translational repression in plants[J]. Molecular Cell, 2013, 52(4):591-601. [20] Arribas-Hernández L, Kielpinski LJ, Brodersen P. mRNA decay of most Arabidopsis miRNA targets requires slicer activity of AGO1[J]. Plant Physiology, 2016, 171(4):2620-2632. [21] German MA, Pillay M, Jeong DH, et al.Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nature Biotechnology, 2008, 26(8):941-946. [22] Höck J, Meister G.The Argonaute protein family[J]. Genome Biology, 2008, 9(2):210. [23] Baumberger N, Baulcombe DC.Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33):11928-11933. [24] Qi Y, Denli AM, Hannon GJ.Biochemical specialization within Arabidopsis RNA silencing pathways[J]. Molecular Cell, 2005, 19(3):421-428. [25] Mi S, Cai T, Hu Y, et al.Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5' terminal nucleotide[J]. Cell, 2008, 133(1):116-127. [26] Montgomery TA, Howell MD, Cuperus JT, et al.Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation[J]. Cell, 2008, 133(1):128-141. [27] Takeda A, Iwasaki S, Watanabe T, et al.The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins[J]. Plant and Cell Physiology, 2008, 49(4):493-500. [28] Ji L, Liu X, Yan J, et al.ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis[J]. PLoS Genetics, 2011, 7(3):e1001358. [29] Maunoury N, Vaucheret H.AGO1 and AGO2 act redundantly in miR408-mediated plantacyanin regulation[J]. PLoS One, 2011, 6(12):e28729. [30] Zhu H, Hu F, Wang R, et al.Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J]. Cell, 2011, 145(2):242-256. [31] Hutvagner G, Simard MJ.Argonaute proteins:key players in RNA silencing[J]. Nature Reviews Molecular Cell Biology, 2008, 9(1):22-32. [32] Elbashir SM, Lendeckel W, Tuschl T.RNA interference is mediated by 21- and 22-nucleotide RNAs[J]. Genes & Development, 2001, 15(2):188-200. [33] Souret FF, Kastenmayer JP, Green PJ.AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets[J]. Molecular Cell, 2004, 15(2):173-183. [34] Ibrahim F, Rohr J, Jeong WJ, et al.Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts[J]. Science, 2006, 314(5807):1893-1893. [35] Ren G, Xie M, Zhang S, et al.Methylation protects microRNAs from an AGO1-associated activity that uridylates 5' RNA fragments generated by AGO1 cleavage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17):6365-6370. [36] Wang X, Zhang S, Dou Y, et al.Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs in Arabidopsis[J]. PLoS Genetics, 2015, 11(4):e1005091. [37] Zhang Z, Hu F, Sung MW, et al.RISC-interacting clearing 3'-5' exoribonucleases(RICEs)degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana[J]. eLife, 2017, 6:e24466. [38] Branscheid A, Marchais A, Schott G, et al.SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis[J]. Nucleic Acids Research, 2015, 43(22):10975-10988. [39] Orban TI, Izaurralde E.Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome[J]. RNA, 2005, 11(4):459-469. [40] Alonso-Peral MM, Li J, Li Y, et al.The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis[J]. Plant Physiology, 2010, 154(2):757-771. [41] Li S, Liu L, Zhuang X, et al.MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis[J]. Cell, 2013, 153(3):562-574. [42] Liu MJ, Wu SH, Wu JF, et al.Translational landscape of photomorphogenic Arabidopsis[J]. The Plant Cell, 2013, 25(10):3699-3710. [43] Reis RS, Hart-Smith G, Eamens AL, et al.Gene regulation by translational inhibition is determined by Dicer partnering proteins[J]. Nature Plants, 2015, 1:14027. [44] Zekri L, Kuzuoğlu-Öztürk D, Izaurralde E. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation[J]. The EMBO Journal, 2013, 32(7):1052-1065. [45] Huntzinger E, Izaurralde E.Gene silencing by microRNAs:contributions of translational repression and mRNA decay[J]. Nature Reviews Genetics, 2011, 12(2):99-110. [46] Iki T, Yoshikawa M, Nishikiori M, et al.In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90[J]. Molecular Cell, 2010, 39(2):282-291. [47] Iki T, Yoshikawa M, Meshi T, et al.Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants[J]. The EMBO Journal, 2012, 31(2):267-278. [48] Cui Y, Fang X, Qi Y.TRANSPORTIN1 promotes the association of microRNA with ARGONAUTE1 in Arabidopsis[J]. The Plant Cell, 2016, 28(10):2576-2585. [49] Yang L, Wu G, Poethig RS.Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(1):315-320. [50] Pomeranz M, Lin PC, Finer J, et al.AtTZF gene family localizes to cytoplasmic foci[J]. Plant Signaling & Behavior, 2010, 5(2):190-192. [51] Weber C, Nover L, Fauth M.Plant stress granules and mRNA processing bodies are distinct from heat stress granules[J]. The Plant Journal, 2008, 56(4):517-530. [52] Rogers K, Chen X.Biogenesis, turnover, and mode of action of plant microRNAs[J]. The Plant Cell, 2013, 25(7):2383-2399. [53] Lanet E, Delannoy E, Sormani R, et al.Biochemical evidence for translational repression by Arabidopsis microRNAs[J]. The Plant Cell, 2009, 21(6):1762-1768. [54] Ma X, Ibrahim F, Kim EJ, et al.An ortholog of the Vasa intronic gene is required for small RNA-mediated translation repression in Chlamydomonas reinhardtii[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1):761-770. [55] Van Dyke N, Pickering BF, Van Dyke MW.Stm1p alters the ribosome association of eukaryotic elongation factor 3 and affects translation elongation[J]. Nucleic Acids Research, 2009, 37(18):6116-6125. [56] Bolger GB.The RNA-binding protein SERBP1 interacts selectively with the signaling protein RACK1[J]. Cell Signaling, 2017, 35:256-263. [57] Jannot G, Bajan S, Giguère NJ, et al.The ribosomal protein RACK1 is required for microRNA function in both C. elegans and humans[J]. EMBO Reports, 2011, 12(6):581-586. [58] Speth C, Willing EM, Rausch S, et al.RACK1 scaffold proteins influence miRNA abundance in Arabidopsis[J]. The Plant Journal, 2013, 76(3):433-445. [59] Yekta S, Shih IH, Bartel DP.MicroRNA-directed cleavage of HOXB8 mRNA[J]. Science, 2004, 304(5670):594-596. [60] Hausser J, Syed AP, Bilen B, et al.Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation[J]. Genome Research, 2013, 23(4):604-615. [61] Yamasaki T, Voshall A, Kim EJ et al. Complementarity to an miRNA seed region is sufficient to induce moderate repression of a target transcript in the unicellular green alga Chlamydomonas reinhardtii[J]. The Plant Journal, 2013, 76(6):1045-1056. [62] Liu Q, Wang F, Axtell MJ.Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay[J]. The Plant Cell, 2014, 26(2):741-753. [63] Li JF, Chung HS, Niu Y, et al.Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants[J]. The Plant Cell, 2013, 25(5):1507-1522. [64] Hou CY, Lee WC, Chou HC, et al.Global analysis of truncated RNA ends reveals new insights into ribosome stalling in plants[J]. The Plant Cell, 2016, 28(10):2398-2416. [65] Fei Q, Xia R, Meyers BC.Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks[J]. The Plant Cell, 2013, 25(7):2400-2415. [66] Johnson C, Kasprzewska A, Tennessen K, et al.Clusters and superclusters of phased small RNAs in the developing inflorescence of rice[J]. Genome Research, 2009, 19(8):1429-1440. [67] International Brachypodium Initiative.Genome sequencing and analysis of the model grass Brachypodium distachyon[J]. Nature, 2010, 463(7282):763-768. [68] Song X, Li P, Zhai J, et al.Roles of DCL4 and DCL3b in rice phased small RNA biogenesis[J]. The Plant Journal, 2012, 69(3):462-474. [69] Yoshikawa M.A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis[J]. Genes & Development, 2005, 19(18):2164-2175. [70] Allen E, Xie Z, Gustafson AM, et al.MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants[J]. Cell, 2005, 121(2):207-221. [71] Axtell M J, Jan C, Rajagopalan R, et al.A two-hit trigger for siRNA biogenesis in plants[J]. Cell, 2006, 127(3):565-577. [72] Zhai J, Jeong DH, De Paoli E, et al.MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs[J]. Genes & Development, 2011, 25(23):2540-2553. [73] Xia R, Meyers BC, Liu Z, et al.MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA Biogenesis in Eudicots[J]. The Plant Cell, 2013, 25(5):1555-1572. [74] Chen HM, Chen LT, Patel K, et al.22-nucleotide RNAs trigger secondary siRNA biogenesis in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34):15269-15274. [75] Cuperus JT, Carbonell A, Fahlgren N, et al.Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis[J]. Nature Structural & Molecular Biology, 2010, 17(8):997-1003. [76] Zhai J, Zhao Y, Simon SA, et al.Plant microRNAs display differential 3' truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species[J]. The Plant Cell, 2013, 25(7):2417-2428. [77] Manavella P, Hagmann J, Ott F, et al.Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1[J]. Cell, 2012, 151(4):859-870. [78] Zhang C, Ng WK, Lu J, et al.Roles of target site location and sequence complementarity in trans-acting siRNA formation in Arabidopsis[J]. The Plant Journal, 2012, 69(2):217-226. [79] Yoshikawa M, Iki T, Numa H, et al.A short open reading frame encompassing the microRNA173 target site plays a role in trans-acting small interfering RNA biogenesis[J]. Plant Physiology, 2016, 171(1):359-368. [80] Li S, Le B, Ma X, et al.Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis[J]. eLife, 2016, 5:e22750. [81] Arribas-Hernandez L, Marchais A, Poulsen C, et al.The slicer activity of ARGONAUTE1 is required specifically for the phasing, not production, of trans-acting short interfering RNAs in Arabidopsis[J]. The Plant Cell, 2016, 28(7):1563-1580. [82] Bajczyk M, Bhat SS, Szewc L, et al.Novel nuclear functions of Arabidopsis ARGONAUTE1:beyond RNA interference[J]. Plant Physiology, 2019, 179(3):1030-1039. [83] Derrien B, Baumberger N, Schepetilnikov M, et al.Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39):15942-15946. [84] Xu J, Chua NH.Processing bodies and plant development[J]. Current Opinion in Plant Biology, 2011, 14(1):88-93. [85] Teixeira D, Sheth U, Valencia-Sanchez MA, et al.Processing bodies require RNA for assembly and contain nontranslating mRNAs[J]. RNA, 2005, 11(4):371-382. [86] Brodersen P, Sakvarelidzeachard L, Schaller H, et al.Isoprenoid biosynthesis is required for miRNA function and affects membrane association of ARGONAUTE 1 in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5):1778-1783. [87] Yu X, Willmann MR, Anderson SJ, et al.Genome-wide mapping of uncapped and cleaved transcripts reveals a role for the nuclear mRNA cap-binding complex in cotranslational RNA decay in Arabidopsis[J]. The Plant Cell, 2016, 28(10):2385-2397. [88] Liu L, Chen X.Intercellular and systemic trafficking of RNAs in plants[J]. Nature Plants, 2018, 4(11):869-878. [89] Wilczynska A, Bushell M.The complexity of miRNA-mediated repression[J]. Cell Death and Differentiation, 2015, 22(1):22-33. [90] Earley K, Smith M, Weber R, et al.An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana[J]. Silence, 2010, 1(1):15. [91] Csorba T, Lózsa R, Hutvágner G, et al.Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1[J]. The Plant Journal, 2010, 62(3):463-472. [92] Beauclair L, Yu A, Bouché N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis[J]. The Plant Journal, 2010, 62(3):454-462. [93] Bhattacharyya SN, Habermacher R, Martine U, et al.Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71:513-521. [94] Muddashetty RS, Nalavadi VC, Gross C, et al.Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling[J]. Molecular Cell, 2011, 42(5):673-688. [95] Mazumder A, Bose M, Chakraborty A, et al.A transient reversal of miRNA-mediated repression controls macrophage activation[J]. EMBO Report, 2013, 14(11):1008-1016. [96] Voinnet O.Origin, biogenesis, and activity of plant microRNAs[J]. Cell, 2009, 136(4):669-687. [97] Reynoso E, Nesci A, Allegretti P, et al.Kinetic and mechanistic aspects of sensitized photodegradation of β-lactam antibiotics:microbiological implications[J]. Redox Report, 2012, 17(6):275-283. |
[1] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[2] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[3] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[4] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[5] | WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2022, 38(8): 1-11. |
[6] | LIU Chao, CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong. Regulation Mechanism of Phosphate Homeostasis in Plants [J]. Biotechnology Bulletin, 2022, 38(2): 184-194. |
[7] | LI Xiao-fan, GENG Dan-dan, BI Yu-lin, JIANG Yong, WANG Zhi-xiu, CHANG Guo-bin, CHEN Guo-hong, BAI Hao. Research Progress in Unconventional miRNA Functions [J]. Biotechnology Bulletin, 2022, 38(12): 1-10. |
[8] | CHEN Li-jie, YANG Fan, FAN Hai-yan, ZHAO Di, WANG Yuan-yuan, ZHU Xiao-feng, LIU Xiao-yu, DUAN Yu-xi. Advances of Non-coding RNA in Interactions Among Biocontrol Bacteria and Plant Nematodes and Host [J]. Biotechnology Bulletin, 2021, 37(7): 65-70. |
[9] | LI Ze-qing, LIU Cai-xian, XING Wen, WEN Ya-feng. Research Progress on Regulation of miRNA in the Heat Stress Response of Plants [J]. Biotechnology Bulletin, 2020, 36(2): 149-157. |
[10] | ZHENG Wen-qing, ZHANG Qian, DU Liang. Short Tandem Target Mimic and Its Application in Analyzing Plant miRNA Functions [J]. Biotechnology Bulletin, 2020, 36(12): 256-264. |
[11] | YANG Li-juan, LI Shi-fang, LU Mei-guang. miRNA-mediated Regulation Involved in Plant Pathogen [J]. Biotechnology Bulletin, 2020, 36(1): 101-109. |
[12] | YAN Wu-ping, WU You-gen, YU Jing ,YANG Dong-mei, ZHANG Jun-feng. Research Progress and Prospect of microRNA in Medicinal Plants [J]. Biotechnology Bulletin, 2019, 35(8): 178-185. |
[13] | KONG Chun-yan, CHEN Yong-kun, WANG Sha-sha, HAO Da-hai, YANG Yu, GONG Ming. Screening and Comparison of Reference Genes for microRNA Quantitative Real-time PCR in Jatropha curcas Under Chilling Stress [J]. Biotechnology Bulletin, 2019, 35(7): 25-32. |
[14] | CHANG Yun-jian, KANG Ran, XUE Xuan, WANG Shao-chang, ZHAO Qing-wen, GUO Zhi-yun. Identification and Functional Analysis of Enhancers-regulated miRNA Feed-forward Loops in Hepatocellular Carcinoma [J]. Biotechnology Bulletin, 2019, 35(5): 140-145. |
[15] | HUANG Jun-jun, LIU Wen-wen, GUO Ya-ru, JIANG Tian-hui, REN Qing, WANG Hua-hua, LIANG Wei-hong. Research Progress of microRNA in Plant Development [J]. Biotechnology Bulletin, 2019, 35(11): 141-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||