Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (7): 15-22.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0523
Previous Articles Next Articles
MA Jun, XU Tong-da
Received:
2020-05-06
Online:
2020-07-26
Published:
2020-07-28
MA Jun, XU Tong-da. Non-canonical Auxin Signaling Pathway in Plants[J]. Biotechnology Bulletin, 2020, 36(7): 15-22.
[1] Darwin C. The power of movement in plants(1880)[M]. UK:Delphi classics, 2017. [2] Went FW.On growth-accelerating substances in the caleaptile ot Avena sativa[J]. Proc Kon Ned Akad Wet, 1926(30):10-19. [3] Haagen-Smit AJ, Dandliker WB, Wittwer SH, et al.Isolation of 3-indoleacetic acid from immature corn kernels[J]. American Journal of Botany, 1946, 33(2):118-120. [4] Teale WD, Paponov IA, Palme K.Auxin in action:signalling, transport and the control of plant growth and development[J]. Nat Rev Mol Cell Biol, 2006, 7(11):847-859. [5] Salehin M, Bagchi R, Estelle M.SCFTIR1/AFB-based auxin perception:mechanism and role in plant growth and development[J]. Plant Cell, 2015, 27(1):9-19. [6] Zhao Y.Auxin biosynthesis and its role in plant development[J]. Annu Rev Plant Biol, 2010, 61:49-64. [7] Zhao Y.Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes[J]. Annu Rev Plant Biol, 2018, 69:417-435. [8] Petrasek J, Friml J.Auxin transport routes in plant development[J]. Development, 2009, 136(16):2675-2688. [9] Mockaitis K, Estelle M.Auxin receptors and plant development:a new signaling paradigm[J]. Annu Rev Cell Dev Biol, 2008, 24:55-80. [10] Kepinski S, Leyser O.The Arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041):446-451. [11] Dharmasiri N, Dharmasiri S, Estelle M.The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041):441-445. [12] Tan X, Calderon-Villalobos LI, Sharon M, et al.Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007, 446(7136):640-645. [13] Smalle J, Vierstra RD.The ubiquitin 26S proteasome proteolytic pathway[J]. Annu Rev Plant Biol, 2004, 55:555-590. [14] Leyser O.Auxin signaling[J]. Plant Physiol, 2018, 176(1):465-479. [15] Weijers D, Wagner D.Transcriptional responses to the auxin hormone[J]. Annu Rev Plant Biol, 2016, 67:539-574. [16] Chapman EJ, Estelle M.Mechanism of auxin-regulated gene expression in plants[J]. Annu Rev Genet, 2009, 43:265-285. [17] Kubes M, Napier R.Non-canonical auxin signalling:fast and curious[J]. J Exp Bot, 2019, 70(10):2609-2614. [18] Badescu GO, Napier RM.Receptors for auxin:will it all end in TIRs?[J]Trends Plant Sci, 2006, 11(5):217-223. [19] 冯寒骞, 李超. 生长素信号转导研究进展[J]. 生物技术通报, 2018, 34(7):24-30. [20] Arsuffi G, Braybrook SA.Acid growth:an ongoing trip[J]. J Exp Bot, 2018, 69(2):137-146. [21] Fendrych M, Leung J, Friml J.TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls[J]. eLife, 2016, 5:e19048. [22] Falhof J, Pedersen JT, Fuglsang AT, et al.Plasma membrane H(+)-ATPase regulation in the center of plant physiology[J]. Mol Plant, 2016, 9(3):323-337. [23] Uchida N, Takahashi K, Iwasaki R, et al.Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair[J]. Nat Chem Biol, 2018, 14(3):299-305. [24] Spartz AK, Ren H, Park MY, et al.SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis[J]. Plant Cell, 2014, 26(5):2129-2142. [25] Grossmann G, Meier M, Cartwright HN, et al.Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip[J]. J Vis Exp, 2012(65):4290. [26] von Wangenheim D, Hauschild R, Fendrych M, et al. Live tracking of moving samples in confocal microscopy for vertically grown roots[J]. eLife, 2017. 6:e26792. [27] von Wangenheim D, Hauschild R, Friml J. Light sheet fluorescence microscopy of plant roots growing on the surface of a gel[J]. J Vis Exp, 2017(119):55044. [28] Fendrych M, Akhmanova M, Merrin J, et al.Rapid and reversible root growth inhibition by TIR1 auxin signalling[J]. Nat Plants, 2018, 4(7):453-459. [29] Monshausen GB, Miller ND, Murphy AS, et al.Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis[J]. Plant J, 2011, 65(2):309-318. [30] Shih HW, DePew CL, Miller ND, et al. The Cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana[J]. Curr Biol, 2015, 25(23):3119-3125. [31] Dindas J, Scherzer S, Roelfsema MRG, et al.AUX1-mediated root hair auxin influx governs SCF(TIR1/AFB)-type Ca2+ signaling[J]. Nat Commun, 2018, 9(1):1174. [32] Retzer K, Singh G, Napier RM.It starts with TIRs[J]. Nat Plants, 2018, 4(7):410-411. [33] Simonini S, Mas PJ, Mas C, et al.Auxin sensing is a property of an unstructured domain in the auxin response factor ETTIN of Arabidopsis thaliana[J]. Sci Rep, 2018, 8(1):13563. [34] Simonini S, Deb J, Moubayidin L, et al.A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis[J]. Genes Dev, 2016, 30(20):2286-2296. [35] Simonini S, Bencivenga S, Trick M, et al.Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis[J]. Plant Cell, 2017, 29(8):1864-1882. [36] Simonini S, Stephenson P, Ostergaard L. A molecular framework controlling style morphology in Brassicaceae[J]. Development, 2018, 145(5):dev158105. [37] Kuhn A, Ramans HS, McLaughlin HM, et al. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development[J]. eLife, 2020, 9:e51787. [38] Krogan NT, Hogan K, Long JA.APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19[J]. Development, 2012, 139(22):4180-4190. [39] Mutte SK, Kato H, Rothfels C, et al.Origin and evolution of the nuclear auxin response system[J]. eLife, 2018, 7:e33399. [40] Jing H, Yang X, Zhang J, et al.Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling[J]. Nat Commun, 2015, 6:7395. [41] Xu F, He S, Zhang J, et al.Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis[J]. Mol Plant, 2018, 11(4):523-541. [42] Yang BJ, Han XX, Yin LL, et al.Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling[J]. Nat Commun, 2016, 7:11388. [43] Cao M, Chen R, Li P, et al.TMK1-mediated auxin signalling regulates differential growth of the apical hook[J]. Nature, 2019. [44] Lv B, Yu Q, Liu J, et al.Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling[J]. EMBO J, 2020, 39(1):e101515. [45] Yang Z.Cell polarity signaling in Arabidopsis[J]. Annu Rev Cell Dev Biol, 2008, 24:551-575. [46] Molendijk AJ, Bischoff F, Rajendrakumar CS, et al.Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth[J]. EMBO J, 2001, 20(11):2779-2788. [47] Jones MA, Shen JJ, Fu Y, et al.The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth[J]. Plant Cell, 2002, 14(4):763-776. [48] Li X, Cai W, Liu Y, et al.Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes[J]. Proc Natl Acad Sci USA, 2017, 114(10):2765-2770. [49] Xu T, Wen M, Nagawa S, et al.Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis[J]. Cell, 2010, 143(1):99-110. [50] Xu T, Dai N, Chen J, et al.Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling[J]. Science, 2014. 343(6174):1025-1028. [51] Xu T, Nagawa S, Yang Z.Uniform auxin triggers the Rho GTPase-dependent formation of interdigitation patterns in pavement cells[J]. Small GTPases, 2011, 2(4):227-232. [52] Gao Y, Zhang Y, Zhang D, et al.Auxin binding protein 1(ABP1)is not required for either auxin signaling or Arabidopsis development[J]. Proc Natl Acad Sci USA, 2015, 112(7):2275-2280. [53] Michalko J, Dravecka M, Bollenbach T, et al.Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene[J]. F1000Res, 2015, 4:1104. [54] Enders TA, Oh S, Yang Z, et al.Genome sequencing of Arabidopsis abp1 5 reveals second-site mutations that may affect phenotypes[J]. Plant Cell, 2015, 27(7):1820-1826. [55] Platre MP, Bayle V, Armengot L, et al.Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine[J]. Science, 2019, 364(6435):57-62. [56] Pan X, Fang L, Liu J, et al.Auxin-induced nanoclustering of membrane signaling complexes underlies cell polarity establishment in Arabidopsis[J]. bioRxiv, 2019:734665. [57] Li J, Chory J.A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction[J]. Cell, 1997, 90(5):929-938. [58] Huang R, Zheng R, He J, et al.Noncanonical auxin signaling regulates cell division pattern during lateral root development[J]. Proc Natl Acad Sci USA, 2019, 116(42):21285-21290. [59] Wang Q, Qin G, Cao M, et al.A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants[J]. Nat Commun, 2020, 11(1):679. [60] Dai N, Wang W, Patterson SE, et al.The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin[J]. PLoS One, 2013, 8(4):e60990. |
[1] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[2] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[3] | DONG Hai-jiao, YANG Xiao-yu, MO Bei-xin, CHEN Xue-mei, CUI Jie. Research Progress in NAD+ Cap Modification at the 5' End of RNA [J]. Biotechnology Bulletin, 2022, 38(2): 245-251. |
[4] | CHEN Chen, HUANG Zhi-yang, YU Hai-yan, YUAN Hai-bin, TIAN Huai-xiang. Research Technology and Progress in Transcriptional Regulation in Prokaryotes [J]. Biotechnology Bulletin, 2022, 38(10): 54-65. |
[5] | YANG Wei, WU Xi, CHENG Jian-guo, LUO Yan, WANG Yin, YANG Ze-xiao, YAO Xue-ping. Cloning,Expression and Transcriptional Regulation of Interferon-α in Forest Musk Deer [J]. Biotechnology Bulletin, 2022, 38(1): 194-204. |
[6] | ZHENG Ye-zi, WANG Dan, PAN Mi, WANG Yan-ling, AN Li-jun. Isolation and Characterization of Two New GLABROUS1 Alleles in Arabidopsis [J]. Biotechnology Bulletin, 2021, 37(2): 15-23. |
[7] | XU Nan, XU Yu-juan, SUN Pan, ZONG Ren-jie, GUO Min-liang. Exploration of the Transcriptional Regulation of Agrobacterium tumefaciens vbp2 Promoter [J]. Biotechnology Bulletin, 2021, 37(12): 41-49. |
[8] | LIU Wen-hao, WANG Rui-feng, LIU Wan-lin, XU Jie. Effects of Different Regulatory Elements and Their Combinations on Transient Expressions of Exogenous Proteinsin Nicotiana benthamiana [J]. Biotechnology Bulletin, 2020, 36(7): 62-71. |
[9] | ZHAO Lin, WANG Pu, WU Qi, SONG Rui-rui, LAN Tao, YUN Zhen-yu. Research Progress in Histone Modification of Plant Involved in the Regulation of Gene Expression Response to Abiotic Stress [J]. Biotechnology Bulletin, 2020, 36(7): 182-189. |
[10] | LI Xiao-pei, WANG Si-ning, SHI Jing-jing, GAO Zhi-min. Progress of Plant Cuticular Wax Synthesis and Its Regulatory Factor WIN/SHN [J]. Biotechnology Bulletin, 2020, 36(12): 129-136. |
[11] | FENG Han-qian, LI Chao. Research Advances of Auxin Signal Transduction [J]. Biotechnology Bulletin, 2018, 34(7): 24-30. |
[12] | TAN Yu-rong, WANG Dan, GAO Xuan, LIU Jin-ping. Research Advance on Plant Long Noncoding RNAs [J]. Biotechnology Bulletin, 2018, 34(10): 1-10. |
[13] | Wang Yanli, Wu Maosen, Tian Fang, Chen Huamin, He Chenyang . Transcriptional Regulation Analysis and Prokaryotic Expression ofahpC Gene Putatively-encoding Alkyl Hydroperoxide Reductase inXanthomonas oryzae pv. oryzae [J]. Biotechnology Bulletin, 2012, 0(12): 114-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||