Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (1): 123-136.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1409
Previous Articles Next Articles
HUANG Xiao-dan1(), CHEN Meng-yu1,2, HUANG Wen-jie2, ZHANG Ming-wei3(), YAN Shi-juan1,2()
Received:
2020-11-19
Online:
2021-01-26
Published:
2021-01-15
Contact:
ZHANG Ming-wei,YAN Shi-juan
E-mail:huangxiaodan@lzu.edu.cn;mwzhh@vip.tom.com;shijuan@agrogene.ac.cn
HUANG Xiao-dan, CHEN Meng-yu, HUANG Wen-jie, ZHANG Ming-wei, YAN Shi-juan. Progress Based on Metabolomics:Plant Polyphenols and Their Gut Health Benefit[J]. Biotechnology Bulletin, 2021, 37(1): 123-136.
多酚类物质/来源 | 实验模型 | 对肠道微生态的影响 | 参考文献 | ||
---|---|---|---|---|---|
多酚化合物 | 黄酮类 | 槲皮素 | 小鼠 (结肠炎) | 与病例对照相比 (1)菌群的α多样性增加; (2)厚壁菌门(Firmicutes)的相对丰度增加。 | [111] |
花青素 | 大鼠 (结直肠癌) | 与病例对照相比 (1)梭菌科(Clostridiaceae)相对丰度增加; (2)科水平上,脱硫弧菌科(Desulfovibrionaceae),肠杆菌科(Enterobacteriaceae)相对丰度降低;属水平上,沃氏嗜胆菌(Bilophila wadsworthia)相对丰度降低。 | [112] | ||
儿茶素/表儿茶素 | 体外模拟 | (1)儿茶素:抑制溶组织梭状芽胞杆菌(Clostridium histolyticum);促进拟球梭菌(Clostridium coccoides/Eubacterium rectale group)、双歧杆菌(Bifidobacterium)和大肠杆菌(Escherichia coli); (2)表儿茶素:促进拟球梭菌(Clostridium coccoides/Eubacterium rectale group)。 | [91] | ||
芪类 | 白藜芦醇 | 小鼠 (结肠炎) | 与病例对照相比 (1)嗜粘蛋白-艾克曼菌(Akkermansia muciniphila)和活泼瘤胃球菌(Ruminococcus gnavus)相对丰度增加; (2)产酸拟杆菌(Bacteroide sacidifaciens)相对丰度降低。 | [113] | |
酚酸 | 绿原酸 | 小鼠 | (1)厚壁菌门(Firmicutes)对拟杆菌门的比例增加; (2)疣微菌门(Verrucomicrobia)和艾克曼菌(Akkermansia)相对丰度增加。 | [114] | |
丹酚酸A | 大鼠 | (1)艾克曼菌(Akkermansia)、芽孢杆菌属(Bacillus)、Blautia属、乳杆菌属(Lactobacillus)和Lachnoclostridium的相对丰度增加; (2)拟杆菌属(Bacteroides)、罗氏菌属(Roseburia)、瘤胃梭菌属(Ruminiclostridium)相对丰度降低。 | [92] | ||
植物提取物 | 茶 | 红茶 | 体外模拟 | (1)促进嗜粘蛋白-艾克曼菌(Akkermansia muciniphila)、克雷伯氏菌属(Klebsiella)和肠球菌(Enterococci); (2)抑制了食物谷菌属(Victivallis)和Blautia coccoides菌。 | [115] |
绿茶 | 人群 (N=12) | (1)在科水平上,毛螺旋菌科(Lachnospiraceae)和双歧杆菌科(Bifidobactericeae)相对丰度增加; (2)在属水平上,双歧杆菌属(Bifidobacterium)、罗氏菌属(Roseburia)、Feacalibacterium属、Eubacterium属、Blautia属、Coprococcus属和Dorea属相对丰度增加。 | [103] | ||
普洱茶 | 小鼠+人群(N=13) | (1)小鼠:芽孢杆菌纲(Bacilli)和α-变形菌纲(α-Proteobacteria)相对丰度降低,拟杆菌纲(Bacteroidia)相对丰度增加; (2)人群:芽孢杆菌纲(Bacilli)和 梭菌纲(Clostridia)相对丰度降低。 | [116] | ||
水果 | 蓝莓 | 大鼠 | 双歧杆菌属(Bifidobacterium)和乳杆菌属(Lactobacillus)相对丰度增加。 | [106] | |
葡萄 | 人群(N=9) | 双歧杆菌(Bifidobacteria)相对丰度增加。 | [117] | ||
石榴 | 人群,RCT(N=50) | 拟杆菌属(Bacteroides)、Gordonibacter和大肠杆菌(Escherichia coli)相对丰度增加。 | [118] | ||
野樱莓 | 大鼠 | (1)厚壁菌门/拟杆菌门(F/B)比值降低; (2)拟杆菌属(Bacteroides)、普雷沃菌属(Prevotella)和Akkermansia属相对丰度增加。 | [119] | ||
猕猴桃 | 人群,RCT (N=28) | 瘤胃球菌科(Ruminococcaceae)、Dorea属和Akkermansia 属相对丰度增加。 | [120] | ||
豆类 | 全芸豆 | 大鼠 | (1)放线菌门(Actinobacteria)相对丰度增加; (2)瘤胃球菌属(Ruminococcus)相对丰度增加。 | [121] | |
可可 | 可可 | 人群,RCT(N=22) | (1)促进双歧杆菌属(Bifidobacterium)、乳杆菌属(Lactobacillus)和肠球菌属(Enterococcus); (2)抑制溶组织梭状芽胞杆菌(Clostridium histolyticum) | [108] |
多酚类物质/来源 | 实验模型 | 对肠道微生态的影响 | 参考文献 | ||
---|---|---|---|---|---|
多酚化合物 | 黄酮类 | 槲皮素 | 小鼠 (结肠炎) | 与病例对照相比 (1)菌群的α多样性增加; (2)厚壁菌门(Firmicutes)的相对丰度增加。 | [111] |
花青素 | 大鼠 (结直肠癌) | 与病例对照相比 (1)梭菌科(Clostridiaceae)相对丰度增加; (2)科水平上,脱硫弧菌科(Desulfovibrionaceae),肠杆菌科(Enterobacteriaceae)相对丰度降低;属水平上,沃氏嗜胆菌(Bilophila wadsworthia)相对丰度降低。 | [112] | ||
儿茶素/表儿茶素 | 体外模拟 | (1)儿茶素:抑制溶组织梭状芽胞杆菌(Clostridium histolyticum);促进拟球梭菌(Clostridium coccoides/Eubacterium rectale group)、双歧杆菌(Bifidobacterium)和大肠杆菌(Escherichia coli); (2)表儿茶素:促进拟球梭菌(Clostridium coccoides/Eubacterium rectale group)。 | [91] | ||
芪类 | 白藜芦醇 | 小鼠 (结肠炎) | 与病例对照相比 (1)嗜粘蛋白-艾克曼菌(Akkermansia muciniphila)和活泼瘤胃球菌(Ruminococcus gnavus)相对丰度增加; (2)产酸拟杆菌(Bacteroide sacidifaciens)相对丰度降低。 | [113] | |
酚酸 | 绿原酸 | 小鼠 | (1)厚壁菌门(Firmicutes)对拟杆菌门的比例增加; (2)疣微菌门(Verrucomicrobia)和艾克曼菌(Akkermansia)相对丰度增加。 | [114] | |
丹酚酸A | 大鼠 | (1)艾克曼菌(Akkermansia)、芽孢杆菌属(Bacillus)、Blautia属、乳杆菌属(Lactobacillus)和Lachnoclostridium的相对丰度增加; (2)拟杆菌属(Bacteroides)、罗氏菌属(Roseburia)、瘤胃梭菌属(Ruminiclostridium)相对丰度降低。 | [92] | ||
植物提取物 | 茶 | 红茶 | 体外模拟 | (1)促进嗜粘蛋白-艾克曼菌(Akkermansia muciniphila)、克雷伯氏菌属(Klebsiella)和肠球菌(Enterococci); (2)抑制了食物谷菌属(Victivallis)和Blautia coccoides菌。 | [115] |
绿茶 | 人群 (N=12) | (1)在科水平上,毛螺旋菌科(Lachnospiraceae)和双歧杆菌科(Bifidobactericeae)相对丰度增加; (2)在属水平上,双歧杆菌属(Bifidobacterium)、罗氏菌属(Roseburia)、Feacalibacterium属、Eubacterium属、Blautia属、Coprococcus属和Dorea属相对丰度增加。 | [103] | ||
普洱茶 | 小鼠+人群(N=13) | (1)小鼠:芽孢杆菌纲(Bacilli)和α-变形菌纲(α-Proteobacteria)相对丰度降低,拟杆菌纲(Bacteroidia)相对丰度增加; (2)人群:芽孢杆菌纲(Bacilli)和 梭菌纲(Clostridia)相对丰度降低。 | [116] | ||
水果 | 蓝莓 | 大鼠 | 双歧杆菌属(Bifidobacterium)和乳杆菌属(Lactobacillus)相对丰度增加。 | [106] | |
葡萄 | 人群(N=9) | 双歧杆菌(Bifidobacteria)相对丰度增加。 | [117] | ||
石榴 | 人群,RCT(N=50) | 拟杆菌属(Bacteroides)、Gordonibacter和大肠杆菌(Escherichia coli)相对丰度增加。 | [118] | ||
野樱莓 | 大鼠 | (1)厚壁菌门/拟杆菌门(F/B)比值降低; (2)拟杆菌属(Bacteroides)、普雷沃菌属(Prevotella)和Akkermansia属相对丰度增加。 | [119] | ||
猕猴桃 | 人群,RCT (N=28) | 瘤胃球菌科(Ruminococcaceae)、Dorea属和Akkermansia 属相对丰度增加。 | [120] | ||
豆类 | 全芸豆 | 大鼠 | (1)放线菌门(Actinobacteria)相对丰度增加; (2)瘤胃球菌属(Ruminococcus)相对丰度增加。 | [121] | |
可可 | 可可 | 人群,RCT(N=22) | (1)促进双歧杆菌属(Bifidobacterium)、乳杆菌属(Lactobacillus)和肠球菌属(Enterococcus); (2)抑制溶组织梭状芽胞杆菌(Clostridium histolyticum) | [108] |
[1] |
Saito K, Matsuda F. Metabolomics for functional genomics, systems biology, and biotechnology[J]. Annual Review of Plant Biology, 2010,61:463-489.
URL pmid: 19152489 |
[2] | Dixon RA, Strack D. Phytochemistry meets genome analysis, and beyond[J]. Phytochemistry, 2003,62:815-816. |
[3] |
Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants[J]. Plant Journal, 2017,90:764-787.
doi: 10.1111/tpj.2017.90.issue-4 URL |
[4] |
Quideau S, Deffieux D, Douat-Casassus C, et al. Plant polyphenols:chemical properties, biological activities, and synjournal[J]. Angewandte Chemie International Edition, 2011,50(3):586-621.
doi: 10.1002/anie.201000044 URL pmid: 21226137 |
[5] |
An J, Hao D, Zhang Q, et al. Natural products for treatment of bone-erosive diseases:The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption[J]. International Immunopharmacology, 2016,36:118-131.
doi: 10.1016/j.intimp.2016.04.024 URL pmid: 27131574 |
[6] |
Ben Mansour R, Wided MK, Cluzet S, et al. LC-MS identification and preparative HPLC isolation of Frankenia pulverulenta phenolics with antioxidant and neuroprotective capacities in PC12 cell line[J]. Pharmaceutical Biology, 2017,55:880-887.
doi: 10.1080/13880209.2016.1278452 URL pmid: 28152658 |
[7] | Omodanisi EI, Aboua YG, Oguntibeju OO. Assessment of the anti-hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of Moringa oleifera in diabetes-induced nephrotoxic male wistar rats[J]. Molecules, 2017,22:439. |
[8] |
Venkata KC, Bagchi D, Bishayee AA. Small plant with big benefits:fenugreek(Trigonella foenum-graecum Linn.)for disease prevention and health promotion[J]. Molecular Nutrition & Food Research, 2017. https//doi.org/10.1002/mnfr.201600950.
doi: 10.1002/mnfr.202000875 URL pmid: 33300301 |
[9] |
Odongo GA, Schlotz N, Herz C, et al. The role of plant processing for the cancer preventive potential of Ethiopian kale(Brassica carinata)[J]. Food & Nutrition Research, 2017,61:1271527.
URL pmid: 28326001 |
[10] | Miyamoto T, Zhang X, Ueyama Y, et al. Development of novel monoclonal antibodies directed against catechins for investigation of antibacterial mechanism of catechins[J]. Microbiol Methods, 2017,137:6-13. |
[11] | Ganesan K, Xu B. A critical review on polyphenols and health benefits of black soybeans[J]. Nutrients, 2017,9(5):455. |
[12] | White T. Tannins-their occurrence and significance[J]. Journal of the Science of Food and Agriculture, 1957,8(7):377-385. |
[13] |
Haslam E, Cai Y. Plant polyphenols(vegetable tannins):Gallic acid metabolism[J]. Natural Product Reports, 1994,11:41-66.
doi: 10.1039/np9941100041 URL pmid: 15206456 |
[14] |
Manach C, Scalbert A, Morand C, et al. Polyphenols:Food sources and bioavailability[J]. American Journal of Clinical Nutrition, 2004,79:727-747.
doi: 10.1093/ajcn/79.5.727 URL |
[15] | Naikoo MI, Dar MI, Raghib F, et al. Role and regulation of plants phenolics in abiotic stress tolerance :an overview[M/L]//.Khan MIR, Reddy PS, Ferrante A, et al, Plant Signaling Molecules: Woodhead Publishing, 2019: 157-168. |
[16] |
Pérez-Jimenez J, Neveu V, Vos F, et al. Identification of the 100 richest dietary sources of polyphenols:an application of the phenol explorer database[J]. European Journal of Clinical Nutrition, 2010,64:S112-S120.
doi: 10.1038/ejcn.2010.221 URL pmid: 21045839 |
[17] |
Zorraquín-Peña I, Sánchez-Hernández E, Ayuda-Durán B, et al. Current and future experimental approachesin the study of grape and wine polyphenols interacting gut microbiota[J]. Journal of the Science of Food and Agriculture, 2020,100:3789-3802.
doi: 10.1002/jsfa.10378 URL pmid: 32167171 |
[18] |
Zhang RF, Zhang FX, Zhang MW, et al. Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean(Glycine max L. Merr.)varieties[J]. Journal of Agricultural and Food Chemistry, 2011,59:5935-5944.
doi: 10.1021/jf201593n URL |
[19] | Redovnikovic IR, Delonga K, Mazor S, et al. Polyphenolic content and composition and antioxidative activity of different cocoa liquors[J]. Czech Journal of Food Sciences, 2009,27:330-337. |
[20] | Martín MA, Ramos S. Cocoa polyphenols in oxidative stress:Potential health implications[J]. Journal of Functional Foods, 2016,27:570-588. |
[21] | Li P, Dai W, Lu M, et al. Metabolomic analysis reveals the composition differences in 13 Chinese tea cultivars of different manufacturing suitabilities[J], Journal of Agricultural and Food Chemistry, 2018,98(3):1153-1161. |
[22] |
Oliver SG, Winson MK, Kell DB, et al. Systematic func-tional analysis of the yeast genome[J]. Trends Biotechnol, 16:373-378.
doi: 10.1016/s0167-7799(98)01214-1 URL pmid: 9744112 |
[23] |
Yang MD, Chiang YM, Higashiyama R, et al. Rosmarinic acid and baicalin epigenetically derepress peroxisomal proliferator-activated receptor gamma in hepatic stellate cells for their antifibrotic effect[J]. Hepatology, 2012,55:1271-1281.
doi: 10.1002/hep.24792 URL pmid: 22095555 |
[24] |
Peng Y, Liu H, Chen J, et al. Genome-wide association studies of free amino acid levels by six multi-locus models in bread wheat[J]. Frontiers in Plant Science, 2018,9:1196.
doi: 10.3389/fpls.2018.01196 URL pmid: 30154817 |
[25] | Salabei JK, Lorkiewicz PK, Mehra P, et al. Type 2 diabetes dysregulates glucose metabolism in cardiac progenitor cells[J]. Journal of Biological Chemistry, 2016,291(26):13634. |
[26] |
Chen C, Chen G, Wan P, et al. Characterization of bovine serum albumin and(-)-epigallocatechin gallate/3, 4-O-dicaffeoylquinic acid/tannic acid layer-by-layer assembled microcapsule for protecting immunoglobulin G in stomach digestion and releasing in small intestinal tract[J]. Journal of Agricultural and Food Chemistry, 2018,66(42):11141-11150.
doi: 10.1021/acs.jafc.8b04381 URL pmid: 30277397 |
[27] |
Fraser K, Lane GA, Otter DE, et al. Non-targeted analysis by LC-MS of major metabolite changes during the oolong tea manufacturing in New Zealand[J]. Food Chemistry, 2014,151:394-403.
doi: 10.1016/j.foodchem.2013.11.054 URL pmid: 24423549 |
[28] |
Ulaszewska MM, Weinert CH, Trimigno A, et al. Nutrimetabolomics:an integrative action for metabolomic analyses in human nutritional studies[J]. Molecular Nutrition and Food Research, 2019,63(1):e1800384.
doi: 10.1002/mnfr.201800384 URL pmid: 30176196 |
[29] |
Rao G, Zhang J, Liu X, et al. Identification of putative genes for polyphenol biosynjournal in olive fruits and leaves using full-length transcriptome sequencing[J]. Food Chemistry, 2019,300:125246.
doi: 10.1016/j.foodchem.2019.125246 URL pmid: 31357017 |
[30] |
Regueiro J, Sánchez-González C, Vallverdú-Queralt A, et al. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap-Orbitrap mass spectrometry[J]. Food Chemistry, 2014,152:340-348.
doi: 10.1016/j.foodchem.2013.11.158 URL pmid: 24444946 |
[31] |
Liu P, Li L, Song L, et al. Characterisation of phenolics in fruit septum of Juglans regia Linn. by ultra performance liquid chromatography coupled with Orbitrap mass spectrometer[J]. Food Chemistry, 2019,286:669-677.
doi: 10.1016/j.foodchem.2019.02.054 URL pmid: 30827662 |
[32] | Song L, Zheng J, Zhang L, et al. Phytochemical profiling and fingerprint analysis of Chinese Jujube(Ziziphus jujuba Mill.)leaves of 66 cultivars from Xinjiang province[J]. Molecules, 2019,24:4528. |
[33] |
Jia QQ, Zhang SD, Zhang HY, et al. A comparative study on polyphenolic composition of berries from the Tibetan Plateau by UPLC-Q-Orbitrap MS system[J]. Chemistry & Biodiversity, 2020,17(4):e2000033.
doi: 10.1002/cbdv.202000033 URL pmid: 32119759 |
[34] |
Berland H, Albert N, Stavland A, et al. Auronidins are a previously unreported class of flavonoid pigments that challenges when anthocyanin biosynjournal evolved in plants[J]. PNAS, 2019,116:20232-20239.
doi: 10.1073/pnas.1912741116 URL pmid: 31527265 |
[35] |
Cheynier V, Comte G, Davies KM, et al. Plant phenolics:Recent advances on their biosynjournal, genetics, and ecophysiology[J]. Plant Physiology & Biochemistry, 2013,72:1-20.
doi: 10.1016/j.plaphy.2013.05.009 URL pmid: 23774057 |
[36] | Saltveit ME. Synbook and metabolism of phenolic compounds in fruit and vegetable phytochemicals chemistry, nutritional value, and stability[M]. Hoboken:Wiley-Blackwell, 2010. |
[37] |
Brunetti C, Sebastiani F, Tattini M. Review:ABA, flavonols, and the evolvability of land plants[J]. Plant Science, 2019,280:448-454.
doi: 10.1016/j.plantsci.2018.12.010 URL pmid: 30824025 |
[38] |
Agati G, Tattini M. Multiple functional roles of flavonoids in photoprotection[J]. New Phytologist, 2010,186:786-793.
doi: 10.1111/j.1469-8137.2010.03269.x URL |
[39] |
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynjournal by MYB-bHLH-WDR complexes[J]. Trends in Plant Science, 2015,20:176-185.
doi: 10.1016/j.tplants.2014.12.001 URL pmid: 25577424 |
[40] |
Jian W, Cao H, Yuan S, et al. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits[J]. Horticulture Research, 2019,6:22.
doi: 10.1038/s41438-018-0098-y URL pmid: 30729012 |
[41] |
Wei K, Wang L, Zhang Y, et al. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea[J]. The Plant Journal, 2019,97:825-840.
doi: 10.1111/tpj.14161 URL pmid: 30447121 |
[42] |
Wang P, Zhang L, Jiang X, et al. Evolutionary and functional characterization of leuco anthocyanidin reductases from Camellia sinensis[J]. Planta, 2018,247:139-154.
doi: 10.1007/s00425-017-2771-z URL pmid: 28887677 |
[43] |
Tohge T, Watanabe M, Hoefgen R, et al. The evolution of phenylpropanoid metabolism in the green lineage[J]. Critical Reviews in Biochemistry & Molecular Biology, 2013,48:123-152.
doi: 10.3109/10409238.2012.758083 URL pmid: 23350798 |
[44] |
Wen W, Alseekh S, Fernie AR. Conservation and diversification of flavonoid metabolism in the plant kingdom[J]. Current Opinion in Plant Biology, 2020,55:100-108.
URL pmid: 32422532 |
[45] | Wink M. Compartmentation of secondary metabolites and xenobiotics in plant vacuoles[J]. Advances in Botanical Research, 1997,25:141-69. |
[46] |
Ghasemi S, Kumleh HH, Kordrostami M. Changes in the expression of some genes involved in the biosynjournal of secondary metabolites in Cuminum cyminum L. under UV stress[J]. Protoplasma, 2019,256:279-290.
doi: 10.1007/s00709-018-1297-y URL pmid: 30083789 |
[47] | Sarker U, Oba S. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress[J]. Scientific Reports, 2018,8:12349. |
[48] | Rezayian M, Niknam V, Ebrahimzadeh H. Differential responses of phenolic compounds of Brassica napus under drought stress[J]. Journal of Plant Physiology, 2018,8:2417-2425. |
[49] | Wang J, Yuan B, Huang B. Differential heat-induced changes in phenolic acids associated with genotypic variations in heat tolerance for hard fescue[J]. Crop Science, 2019,59:667-674. |
[50] | Sharma A, Shahzad B, Rehman A, et al. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic Stress[J]. Molecules, 2019,24:2452. |
[51] | Tohge T, Wendenburg R, Ishihara H, et al. Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae[J]. Nature Communication. 2016,7:12399. |
[52] | 莫运才, 曾令杰, 黄涵 . 等. UV-B辐射对铁皮石斛叶片光合色素、类黄酮及PAL酶活性的影响[J]. 贵州农业科学, 2015,43(7):34-37. |
Mo YC, Zeng LJ, Huang H, et al. Effects of UV-B radiation on photosynthetic pigments, flavonoids and PAL activities in Dendrobium officinale[J]. Guizhou Agricultural Sciences, 2015,43(7):34-37. | |
[53] |
Zhou P, Li Q, Liu G, et al. Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynjournal in Nicotiana tabacum under chilling stress[J]. Functional Plant Biology, 2018,46(1):30-43.
URL pmid: 30939256 |
[54] | Nakabayashi R, Yonekura-Sakakibara K, Urano K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. Plant Journal, 2014,77:367-379. |
[55] | Gharibi S, Sayed Tabatabaei BE, Saeidi G, et al. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynjournal related genes in Achillea pachycephala[J]. Phytochemistry, 2019,162:90-98. |
[56] | Handa N, Kohli SK, Sharma A, et al. Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants[J]. Environ Exp Botany, 2019,161:180-192. |
[57] | Xiao JB. Stability of dietary polyphenols:It’s never too late to mend?[J]. Food and Chemical Toxicology, 2018,119:3-5. |
[58] | Fu C, Wang T, Wang Y, et al. Metabonomics study of the protective effects of greentea polyphenols on aging rats induced by d-galactose[J]. Journal of Pharmaceutical & Biomedical Analysis, 2011,55:1067-1074. |
[59] | Zhou J, Tang L, Shen C, et al. Green tea polyphenols modify gut-microbiota dependent metabolisms of energy, bile constituents and micronutrients in female Sprague-Dawley rats[J]. Journal of Nutritional Biochemistry, 2018,61:68-81. |
[60] | Szekeres T, Saiko P, Fritzer-Szekeres M, et al. Chemopreventive effects of resveratrol and resveratrol derivatives[J]. Annals of the New York Academy of Sciences, 2011,1215:89-95. |
[61] |
Su D, Zhang R, Hou F, et al. Lychee pulp phenolics ameliorate hepatic lipid accumulation by reducing miR-33 and miR-122 expression in mice fed a high-fat diet[J]. Food & Function, 2017,8(2):808.
doi: 10.1039/c6fo01507g URL pmid: 28121324 |
[62] | Altamemi I, Murphy EA, Catroppo JF, et al. Role of microRNAs in resveratrol-mediated mitigation of colitis-associated tumorigenesis in Apc(Min/+)mice[J]. Journal of Pharmacology & Experimental Therapeutics, 2014,350(1):99-109. |
[63] | Masumoto S, Terao A, Yamamoto Y, et al. Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes[J]. Scientific Reports, 2016,6:31208. |
[64] |
Franke AA, Lai JF, Halm BM . Absorption, distribution, metabolism, and excretion of isoflavonoids after soy intake[J]. Archives of Biochemistry and Biophysics, 2014,559:24-28.
doi: 10.1016/j.abb.2014.06.007 URL pmid: 24946051 |
[65] | Urpi-Sarda M, Monagas M, Khan N, et al. Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry[J]. J Chrom A, 2009,1216(43):7258-7267. |
[66] | Gurukar MSA, Chilkunda ND. Morus alba leaf bioactives modulate peroxisome proliferator activated receptor gamma in the kidney of diabetic rat and impart beneficial effect[J]. Journal of Agricultural and Food Chemistry, 2018,66(30):7923-7934. |
[67] | Rechner AR, Smith MA, Kuhnle G, et al. Colonic metabolism of dietary polyphenols:influence of structure on microbial fermentation products[J]. Free Radical Biology and Medicine, 2003,2(36):212-225. |
[68] | Gibson GR, Hutkins R, Sanders ME, et al. The International Scientific Association for Probiotics and Prebiotics(ISAPP)consensus statement on the definition and scope of prebiotics[J]. Nature Reviews Gastroenterology & Hepatology, 2020,17(11):687-701. |
[69] | Moorthy M, Chaiyakunapruk N, Jacob SA, et al. Prebiotic potential of polyphenols, its effect on gut microbiota and anthropometric/clinical markers:A systematic review of randomised controlled trials[J]. Trends Food Sci Technol, 2020,99:634-649. |
[70] | Serra A, Macià A, Romero MP, et al. Metabolic pathways of the colonic metabolism of flavonoids(flavonols, flavones and flavanones)and phenolic acids[J]. Food Chemistry, 2012,130(2):383-393. |
[71] | Chiou YS, Wu JC, Huang Q, et al. Metabolic and colonic microbiota transform- ation may enhance the bioactivities of dietary polyphenols[J]. Journal of Functional Foods, 2014,7:3-25. |
[72] | Lesjak M, Beara I, Simin N, et al. Antioxidant and anti-inflammatory activities of quercetin and its derivatives[J]. Journal of Functional Foods, 2017,40:68-75. |
[73] | Maruo T, Sakamoto M, Ito C, et al. Adlercreutzia equolfaciens gen. nov. , sp. nov. , an equol-producing bacterium isolated from human faeces, and emended description of the genus eggerthella[J]. Int J Syst Evol Microbiol, 2008,58(5):1221. |
[74] | Déprez S, Brezillon C, Rabot S, et al. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids[J]. J Nutr, 2000,130(11):2733-2738. |
[75] | Li S, Li X, Shpigelman A, et al. Direct and indirect measurements of enhanced phenolic bioavailability from litchi pericarp procyanidins by Lactobacillus casei-01[J]. Food & Function, 2017,8:2760. |
[76] | Selma MV, Beltrán D, García-Villalba R, et al. Description of urolithin production capacity from ellagic acid of two human intestinal gordonibacter species[J]. Food & Funct, 2014,5(8):1779-1784. |
[77] | Urpi-Sarda M, Zamora-Ros R, Lamuela-Raventos R, et al. HPLC-tandem mass spectrometric method to characterize resveratrol metabolism in Humans[J]. Clinical Chemistry, 2007,53(2):292-299. |
[78] | Bode LM, Bunzel D, Huch M, et al. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota[J]. The American Journal of Clinical Nutrition, 97(2):295-309. |
[79] | Gambini J, Inglés M, Olaso G, et al. Properties of resveratrol:in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans[J]. Oxidative Medicine and Cellular Longevity, 2015: 837042. |
[80] | Lin S, Wang Z, Lam KL, et al. Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites[J]. Food & Nutrition Research, 2019,63:1518. |
[81] | Ozdal T, Sela DA, Xiao J, et al. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility[J]. Nutrients, 2016,8(2):78. |
[82] | Vrieze A, Holleman F, Zoetendal EG, et al. The environment within:how gut microbiota may influence metabolism and body composition[J]. Diabetologia, 2010,53(4):606-613. |
[83] | Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006,124(4):837-848. |
[84] | Backhed F. Host-bacterial mutualism in the human intestine[J]. Science, 2005,307(5717):1915-1920. |
[85] | Eckburg PB, Elisabeth MB, Charles NB, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005,308(5728):1635-1638. |
[86] | Liu K, Zhang Y, Li Q, et al. Ethnic differences shape the alpha but not beta diversity of gut microbiota from school children in the absence of environmental differences[J]. Microorganisms, 2020,8:254. |
[87] | Gerritsen J, Smidt H, Rijkers GT, et al. Intestinal microbiota in human health and disease:the impact of probiotics[J]. Genes & Nutrition, 2011,6(3):209-240. |
[88] | Lee HC, Jenner AM, Low CS, et al. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota[J]. Research in Microbiology, 2006,157:876-884. |
[89] | Luca SV, Macovei I, Bujor A, et al. Bioactivity of dietary polyphenols:The role of metabolites[J]. Critical Reviews in Food Technology, 2020,60(4):626-659. |
[90] | Duda-Chodak A. The inhibitory effect of polyphenols on human gut microbiota[J]. J Physiol Pharmacol, 2012,63(5):497-503. |
[91] | Tzounis X, Vulevic J, Kuhnle GG, et al. Flavanol monomer-induced changes to the human faecal microflora[J]. British Journal of Nutrition, 2008,99(4):782-792. |
[92] | Wang K, Yang Q, Ma Q, et al. Protective effects of salvianolic acid against dextran sodium sulfate-induced acute colitis in rats[J]. Nutrients, 2018,10(6):791. |
[93] | Routy B, Chatelier EL, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2017,91:3706. |
[94] | Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers:a proof-of-concept exploratory study[J]. Nature Medicine, 2019,25(7):1096. |
[95] | Grander C, Adolph TE, Wieser V, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease[J]. Gut, 2017,67(5):891-901. |
[96] | Larrosa M, Yaéz-Gascón MJ, Selma MV, Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model[J]. Journal of Agriculture and Food Chemistry, 2009,57:2211-2220. |
[97] | Kim N, Kunisawa J, Kweon MN, et al. Oral feeding of Bifidobacterium bifidum(BGN4)prevents CD4+ CD45RBhigh T cell-mediated inflammatory bowel disease by inhibition of disordered T cell activation[J]. Clinical Immunology, 2007,123(1):30-39. |
[98] | Marteau PR, Michael DV, Christophe JC, et al. Protection from gastrointestinal diseases with the use of probiotics[J]. The American Journal of Clinical Nutrition, 2001,73(2):430-436. |
[99] | Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermans iamuciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nature Medicine, 2017,23(1):107. |
[100] | Chung JY, Huang C, Meng X, et al. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells[J]. Cancer Research, 1999,59:4610-4617. |
[101] | Bose M, Lambert JD, Ju J, et al. The major green tea polyphenol, -epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice[J]. Journal of Nutrition, 2008,138:1677-1683. |
[102] | Kim S, Lee MJ, Hong J, et al. Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols[J]. Nutrition & Cancer, 2000,37:41-48. |
[103] | Yuan X, Long Y, Ji Z, et al. Green tea liquid consumption alters the human intestinal and oral microbiome[J]. Molecular Nutrition & Food Research, 2018,62(12):1800178. |
[104] | Janssens P, Penders J, Hursel R, et al. Long-term green tea supplementation does not change the human gut microbiota[J]. PLoS One, 2016,11(4):e0153134. |
[105] | Vendrame S, Guglielmetti S, Riso P, et al. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut[J]. Journal of Agricultural and Food Chemistry, 2011,59(24):12815-12820. |
[106] | Molan AL, Lila MA, Mawson J, et al. In vitro and in vivo evaluation of the prebiotic activity of water-soluble blueberry extracts[J]. World J Microb Biot, 2009,25(7):1243-1249. |
[107] | Vincenzo S. Cocoa polyphenols and gut microbiota interplay:bioavailability, prebiotic effect, and impact on human health[J]. Nutrients, 2020,12:1908. |
[108] | Tzounis X, Rodriguez-Mateos A, Vulevic J, et al. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study[J]. Am J Clin Nutr, 2011,93(1):62-72. |
[109] | Zhang X, Dong L, Jia X, et al. Bound phenolics ensure the antihyperglycemic effect of rice bran dietary fiber in db/db mice via activating the insulin signaling pathway in skeletal muscle and altering gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2020,68(15):4387-4398. |
[110] | Chan CL, Gan RY, Shah NP, et al. Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria[J]. Food Control, 2018,92:437-443. |
[111] | Hong Z, Piao M. Effect of quercetin monoglycosides on oxidativestress and gut microbiota diversity in mice with dextran sodium sulphate-induced colitis[J]. BioMed Research International, 2018: 8343052. |
[112] | Fernandez J, Garcia L, Monte J, et al. Functional anthocyanin-rich sausages diminish colorectal cancer in an animal model and reduce pro-inflammatory bacteria in the intestinal microbiota[J]. Genes, 2018,9(3):133. |
[113] | Li F, Han Y, Cai X, et al. Dietary resveratrol attenuated colitis and modulated gut microbiota in dextransulfatesodium-treated mice[J]. Food Function, 2020,11(1):1063-1073. |
[114] | Zhang Z, Wu X, Cao S, et al. Chlorogenic acid ameliorates experimental colitis by promoting growth of Akkermansia in mice[J]. Nutrients, 2017,9(7):677. |
[115] | Kemperman RA, Gross G, Mondot S, et al. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome[J]. Food Res Int, 2013,53(2):659-669. |
[116] | Huang F, Zheng X, Ma X, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nature Communication, 2019,10:4971. |
[117] | Yamakoshi J, Tokutake S, Kikuchi M, et al. Effect of proanthocyanidin-rich extract from grape seeds on human fecal flora and fecal odor[J]. Microbial Ecology in Health and Disease, 2001,13:25-31. |
[118] | Gonzalez-Sarrias A, Garcia-Villalba R, Romo-Vaquero M, et al. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate:A randomized clinical trial[J]. Molecular Nutrition & Food Research, 2017,61(5):1600830. |
[119] | Zhu Y, Zhang J, Wei Y, et al. The polyphenol-rich extract from chokeberry(Aronia melanocarpa L.)modulates gut microbiota and improves lipid metabolism in diet-induced obese rats[J]. Nutrition & Metabolism, 2020,17:54. |
[120] | Blatchford P, Stoklosinski H, Eady S, et al. Consumption of kiwifruit capsules increases Faecalibacterium prausnitzii abundance in functionally constipated individuals:a randomised controlled human trial[J]. J Nutri Sci, 2017,6:10. |
[121] | Kilua A, Chihiro H, Han K, et al. Whole kidney bean(Phaseolus vulgaris)and bean hull reduce the total serum cholesterol, modulate the gut microbiota and affect the caecal fermentation in rats[J]. Bioactive Carbohydrates and Dietary Fibre, 2020,24:100232. |
[1] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
[2] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
[3] | HAN Hua-rui, YANG Yu-lu, MEN Yi-han, HAN Shang-ling, HAN Yuan-huai, HUO Yi-qiong, HOU Si-yu. SiYABBYs Involved in Rhamnoside Biosynthesis During the Flower Development of Setaria italica, Based on Metabolomics [J]. Biotechnology Bulletin, 2023, 39(6): 189-198. |
[4] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[5] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[6] | GULJAMAL·Aisa , XING Jun, LI An, ZHANG Rui. Non-targeted Metabolomics Analysis of Benzo(α)pyrene by Microorganisms in Kefir Grains [J]. Biotechnology Bulletin, 2022, 38(5): 123-135. |
[7] | HE Ya-lun, ZENG Li-rong, LIU Xiong, ZHANG Ling, WANG Qiong. Effects of High-dose Tannic Acid on the Intestinal Barrier Function and Gut Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(4): 278-287. |
[8] | YANG Yu-ping, ZHANG Xia, WANG Chong-chong, WANG Xiao-yan. Study on Urine Metabolomics in Rats of Different Ages [J]. Biotechnology Bulletin, 2022, 38(2): 166-172. |
[9] | WU Yu-ping, ZHOU Yong, PU Juan, LI Hui, ZHANG Jin-gang, ZHU Yan-ping. Application Progress of Metabolomics in Tumor Drug Target Screening [J]. Biotechnology Bulletin, 2022, 38(1): 311-318. |
[10] | ZHANG Feng, CHEN Wei. Research Progress of Metabolomics in Plant Stress Biology [J]. Biotechnology Bulletin, 2021, 37(8): 1-11. |
[11] | LI Hai-chao, XIE Fei, ZHANG Yuan-qi, GUAN Ruo-bing. Effects of Resistant and Sensitive Rice Varieties on Gut Microbiota of Nilaparvata lugens [J]. Biotechnology Bulletin, 2021, 37(3): 1-9. |
[12] | TIAN He, SHUI Guang-hou. Advances in Analysis Methods of Mass Spectrometry-based Metabolomics [J]. Biotechnology Bulletin, 2021, 37(1): 24-32. |
[13] | YIN Zhi-bin, HUANG Wen-jie, WU Xin-zhou, YAN Shi-juan. Spatially Resolved Metabolomics:Progress and Challenges [J]. Biotechnology Bulletin, 2021, 37(1): 32-51. |
[14] | LIU Yu, DING Qian-wen, RAN Chao, YANG Ya-lin, WANG An-ran, ZHANG Hong-ling, ZHANG Jin-xiong, LI Jie, Rolf Erik OLSEN, Einar RINGØ, ZHANG Zhen, ZHOU Zhi-gang. Research Advances on Short-chain Fatty Acids of Metabolites of Gut Microbiota in Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 58-64. |
[15] | WU Qin, XU Zi-yang, LIU Li-ping, ZHANG Wen-ying, SONG Si-yuan. Role of Gut Microbiota in Stress-induced Hypertension in Rats [J]. Biotechnology Bulletin, 2020, 36(2): 83-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||