Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (2): 51-62.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0783
Previous Articles Next Articles
LI Ling(), YANG Li-xia, GUO Mei
Received:
2020-06-27
Online:
2021-02-26
Published:
2021-02-26
LI Ling, YANG Li-xia, GUO Mei. Function of Transcription Factor CNR in the Ripening Process of Tomato Fruit[J]. Biotechnology Bulletin, 2021, 37(2): 51-62.
基因名称/ID | 引物名称 | 引物序列(5'-3') |
---|---|---|
Actin | Actin F | CTTCCCTCAGCACCTTCCAG |
Actin R | GCATCTCTGGTCCAGTAGGAA | |
Solyc01g008710.2 | 01g008710-F | GTTTCAGGGATTGGATTTTGTG |
01g008710-R | CATCACTTGTTAATTTCTGCCCTC | |
Solyc12g005630.1 | 12g005630-F | GAACCCTCACACAAGGACTAAAG |
12g005630-R | ACGGCACGACACAACCAAG | |
Solyc08g014000.2 | 08g014000-F | CGAGGCGTGGGATAGGATTTA |
08g014000-R | CTCTCCGAGGATACGGGTAGTC | |
Solyc01g103920.2 | 01g103920-F | GCCTATCCACAGTCTGATGTTACC |
01g103920-R | GCGACAAACAAATCTACAAAACAG | |
Solyc05g052390.2 | 05g052390-F | TGGAAGTAAACAACGGGGATA |
05g052390-R | TCTTTCCTGGTCTAATCGGGC | |
Solyc07g064180.2 | 07g064180-F | TCGAGTTGGAGCTGATAAGTCTG |
07g064180-R | GGAATACAACTGCTGCATTACCG | |
Solyc02g068590.2 | 02g068590-F | CTCAGCATTCAGCAGATTACCTAC |
02g068590-R | TGACTGTGTTGTTGTGCCCTT | |
novel.9194 | novel-9194-F | TCTGAATCACTCAATTCCAATCAGC |
novel-9194-R | AGAAGTGAAGGGAAACAAACCT | |
Solyc05g050010.2 | 05g050010-F | AACTAGATTCGCCCAGGCTC |
05g050010-R | AGGCGACACTAAAATCAACATAAA | |
Solyc06g065820.2 | 06g065820-F | AATCTCCTTCCTCAACCAATTTCA |
06g065820-R | ATCTTTGTTGTGCCCTAGCCA | |
Solyc02g084850.2 | 02g084850-F | ATTTGCCACGATCCCGCTAA |
02g084850-R | TGGAGGTTCAGGGAGTAGGG | |
Solyc02g084870.2 | 02g084870-F | TGCTTTCGGTTTACTACACTCAG |
02g084870-R | ATTCCATTCGGAGCCTCCAC | |
Solyc07g064160.2 | 07g064160-F | TCTCATCACTCAGCTCTACACT |
07g064160-R | AGGGCGGAGAAGATTGTGTT | |
Solyc02g079220.2 | 02g079220-F | TGGCAAAGCAACTGTGTAGC |
02g079220-R | TGTATCCAGTGCACAGCTTATG | |
Solyc01g096190.2 | 01g096190-F | ATGCCTTGGAAGGCTGCTT |
01g096190-R | CAGCAACAATAACACTCATTGAGGA | |
Solyc08g029000.2 | 08g029000-F | TTCCTAATCACGGCAGCGTT |
08g029000-R | TCCATCTCCTCTTAAGTTCACTAGC | |
Solyc02g082090.2 | 02g082090-F | ACTGCACCAATTGTCACTGC |
02g082090-R | GGCGTTAACACGGGAACAAG | |
Solyc09g011630.2 | 09g011630-F | CCGCCAAGAGATGAAATACTTGC |
09g011630-R | ACCCACATGCACTCATAAACAA | |
Solyc01g101190.2 | 01g101190-F | GCACTTGCTTTCTCCACTGC |
01g101190-R | TTTGCAAATCGGAGCAGCAC | |
Solyc09g075330.2 | 09g075330-F | TTCAAAAACGGACGGTTGCC |
09g075330-R | CCACTTCCGTCCTGACTCAC | |
Solyc07g063950.2 | 07g063950-F | GAAAAGGCGGATGGGAGGAA |
07g063950-R | CCTCATGGAAGGCCGTTTCT | |
Solyc12g008980.1 | 12g008980-F | GAGATTGAAACCGTTGGTCG |
12g008980-R | ACACAACTGTCACTACCACTACT | |
Solyc08g080630.2 | 08g080630-F | AGAAGATGTCAAGTAGCCCATGT |
08g080630-R | TACATAGTGCCAAAAGCCGC | |
Solyc07g006900.1 | 07g006900-F | CGCGCTTTTCATCTGGCATC |
07g006900-R | GGGATCCCCATAACTAGAGTGT | |
Solyc01g060020.2 | 01g060020-F | ATCATACACAAGTCTATCTCAGTGT |
01g060020-R | TGATGGCAAGTTGTTCCCCA |
基因名称/ID | 引物名称 | 引物序列(5'-3') |
---|---|---|
Actin | Actin F | CTTCCCTCAGCACCTTCCAG |
Actin R | GCATCTCTGGTCCAGTAGGAA | |
Solyc01g008710.2 | 01g008710-F | GTTTCAGGGATTGGATTTTGTG |
01g008710-R | CATCACTTGTTAATTTCTGCCCTC | |
Solyc12g005630.1 | 12g005630-F | GAACCCTCACACAAGGACTAAAG |
12g005630-R | ACGGCACGACACAACCAAG | |
Solyc08g014000.2 | 08g014000-F | CGAGGCGTGGGATAGGATTTA |
08g014000-R | CTCTCCGAGGATACGGGTAGTC | |
Solyc01g103920.2 | 01g103920-F | GCCTATCCACAGTCTGATGTTACC |
01g103920-R | GCGACAAACAAATCTACAAAACAG | |
Solyc05g052390.2 | 05g052390-F | TGGAAGTAAACAACGGGGATA |
05g052390-R | TCTTTCCTGGTCTAATCGGGC | |
Solyc07g064180.2 | 07g064180-F | TCGAGTTGGAGCTGATAAGTCTG |
07g064180-R | GGAATACAACTGCTGCATTACCG | |
Solyc02g068590.2 | 02g068590-F | CTCAGCATTCAGCAGATTACCTAC |
02g068590-R | TGACTGTGTTGTTGTGCCCTT | |
novel.9194 | novel-9194-F | TCTGAATCACTCAATTCCAATCAGC |
novel-9194-R | AGAAGTGAAGGGAAACAAACCT | |
Solyc05g050010.2 | 05g050010-F | AACTAGATTCGCCCAGGCTC |
05g050010-R | AGGCGACACTAAAATCAACATAAA | |
Solyc06g065820.2 | 06g065820-F | AATCTCCTTCCTCAACCAATTTCA |
06g065820-R | ATCTTTGTTGTGCCCTAGCCA | |
Solyc02g084850.2 | 02g084850-F | ATTTGCCACGATCCCGCTAA |
02g084850-R | TGGAGGTTCAGGGAGTAGGG | |
Solyc02g084870.2 | 02g084870-F | TGCTTTCGGTTTACTACACTCAG |
02g084870-R | ATTCCATTCGGAGCCTCCAC | |
Solyc07g064160.2 | 07g064160-F | TCTCATCACTCAGCTCTACACT |
07g064160-R | AGGGCGGAGAAGATTGTGTT | |
Solyc02g079220.2 | 02g079220-F | TGGCAAAGCAACTGTGTAGC |
02g079220-R | TGTATCCAGTGCACAGCTTATG | |
Solyc01g096190.2 | 01g096190-F | ATGCCTTGGAAGGCTGCTT |
01g096190-R | CAGCAACAATAACACTCATTGAGGA | |
Solyc08g029000.2 | 08g029000-F | TTCCTAATCACGGCAGCGTT |
08g029000-R | TCCATCTCCTCTTAAGTTCACTAGC | |
Solyc02g082090.2 | 02g082090-F | ACTGCACCAATTGTCACTGC |
02g082090-R | GGCGTTAACACGGGAACAAG | |
Solyc09g011630.2 | 09g011630-F | CCGCCAAGAGATGAAATACTTGC |
09g011630-R | ACCCACATGCACTCATAAACAA | |
Solyc01g101190.2 | 01g101190-F | GCACTTGCTTTCTCCACTGC |
01g101190-R | TTTGCAAATCGGAGCAGCAC | |
Solyc09g075330.2 | 09g075330-F | TTCAAAAACGGACGGTTGCC |
09g075330-R | CCACTTCCGTCCTGACTCAC | |
Solyc07g063950.2 | 07g063950-F | GAAAAGGCGGATGGGAGGAA |
07g063950-R | CCTCATGGAAGGCCGTTTCT | |
Solyc12g008980.1 | 12g008980-F | GAGATTGAAACCGTTGGTCG |
12g008980-R | ACACAACTGTCACTACCACTACT | |
Solyc08g080630.2 | 08g080630-F | AGAAGATGTCAAGTAGCCCATGT |
08g080630-R | TACATAGTGCCAAAAGCCGC | |
Solyc07g006900.1 | 07g006900-F | CGCGCTTTTCATCTGGCATC |
07g006900-R | GGGATCCCCATAACTAGAGTGT | |
Solyc01g060020.2 | 01g060020-F | ATCATACACAAGTCTATCTCAGTGT |
01g060020-R | TGATGGCAAGTTGTTCCCCA |
Sample | Raw Reads | Clean Reads | Clean Bases | Error/% | Q20/% | Q30/% | GC Content/% |
---|---|---|---|---|---|---|---|
AC_1 | 44167720 | 44167720 | 6.63G | 0.03 | 96.21 | 90.56 | 41.70 |
AC_2 | 46900412 | 46900412 | 7.04G | 0.03 | 95.33 | 90.31 | 42.14 |
AC_3 | 53236492 | 53236492 | 7.99G | 0.03 | 95.47 | 90.52 | 42.04 |
Cnr_1 | 56396376 | 56396376 | 8.46G | 0.03 | 96.06 | 90.32 | 41.62 |
Cnr_2 | 53171314 | 53171314 | 7.98G | 0.03 | 95.30 | 90.29 | 41.63 |
Cnr_3 | 47154954 | 47154954 | 7.07G | 0.04 | 94.18 | 88.92 | 41.59 |
Sample | Raw Reads | Clean Reads | Clean Bases | Error/% | Q20/% | Q30/% | GC Content/% |
---|---|---|---|---|---|---|---|
AC_1 | 44167720 | 44167720 | 6.63G | 0.03 | 96.21 | 90.56 | 41.70 |
AC_2 | 46900412 | 46900412 | 7.04G | 0.03 | 95.33 | 90.31 | 42.14 |
AC_3 | 53236492 | 53236492 | 7.99G | 0.03 | 95.47 | 90.52 | 42.04 |
Cnr_1 | 56396376 | 56396376 | 8.46G | 0.03 | 96.06 | 90.32 | 41.62 |
Cnr_2 | 53171314 | 53171314 | 7.98G | 0.03 | 95.30 | 90.29 | 41.63 |
Cnr_3 | 47154954 | 47154954 | 7.07G | 0.04 | 94.18 | 88.92 | 41.59 |
Sample | Total reads | Total mapped | % of reads mapped | Uniquely mapped | % of uniquely mapped | Splice reads |
---|---|---|---|---|---|---|
AC_1 | 44167720 | 41773659 | 94.58 | 41185239 | 93.25 | 16180308 |
AC_2 | 46900412 | 44392160 | 94.65 | 43756611 | 93.30 | 17617378 |
AC_3 | 53236492 | 50451773 | 94.77 | 49710624 | 93.38 | 19968698 |
Cnr_1 | 56396376 | 52928267 | 93.85 | 51634300 | 91.56 | 18711319 |
Cnr_2 | 53171314 | 49935129 | 93.91 | 48982327 | 92.12 | 18216094 |
Cnr_3 | 47154954 | 43817610 | 92.92 | 42981026 | 91.15 | 16053453 |
Sample | Total reads | Total mapped | % of reads mapped | Uniquely mapped | % of uniquely mapped | Splice reads |
---|---|---|---|---|---|---|
AC_1 | 44167720 | 41773659 | 94.58 | 41185239 | 93.25 | 16180308 |
AC_2 | 46900412 | 44392160 | 94.65 | 43756611 | 93.30 | 17617378 |
AC_3 | 53236492 | 50451773 | 94.77 | 49710624 | 93.38 | 19968698 |
Cnr_1 | 56396376 | 52928267 | 93.85 | 51634300 | 91.56 | 18711319 |
Cnr_2 | 53171314 | 49935129 | 93.91 | 48982327 | 92.12 | 18216094 |
Cnr_3 | 47154954 | 43817610 | 92.92 | 42981026 | 91.15 | 16053453 |
基因 ID | 基因描述 | 基因功能 | 样品名称 | Expression(2-ΔΔCt) |
---|---|---|---|---|
Solyc01g008710.2 | 甘露聚糖-1,4-β-甘露糖苷酶基因 | 果糖和甘露糖代谢 | AC | 1.0003±0.0279 |
Cnr | 0.0004±0.0000 | |||
Solyc12g005630.1 | 细胞色素b6-f复合物铁硫亚基 | 电子传递链 | AC | 1.0030±0.0938 |
Cnr | 0.4367±0.0822 | |||
Solyc08g014000.2 | 亚油酸9S -脂氧合酶基因 | 亚油酸代谢 | AC | 1.0113±0.1853 |
Cnr | 0.0001±0.0000 | |||
Solyc01g103920.2 | 铁氧化还原蛋白 | 氧化还原状态 | AC | 1.0064±0.1357 |
Cnr | 0.0319±0.0045 | |||
Solyc05g052390.2 | 漆酶基因 | 苯丙素代谢途径 | AC | 1.0296±0.2836 |
Cnr | 0.0498±0.0056 | |||
Solyc07g064180.2 | 果胶酯酶基因 | 细胞壁果胶代谢 | AC | 1.0030±0.0959 |
Cnr | 0.0001± 0.0000 | |||
Solyc02g068590.2 | 钾离子运输体 | 细胞膜完整性 | AC | 1.0137±0.1998 |
Cnr | 0.0497±0.0098 | |||
novel.9194 | 八氢番茄红素合成酶基因 | 番茄红素合成 | AC | 1.0018±0.0729 |
Cnr | 0.0051±0.0009 | |||
Solyc05g050010.2 | 1-氨基环丙烷-1-羧酸合成酶基因 | 乙烯生物合成 | AC | 1.0088±0.1653 |
Cnr | 0.0056±0.0006 | |||
Solyc06g065820.2 | 乙烯响应因子基因 | 乙烯信号转导 | AC | 1.0100±0.1727 |
Cnr | 0.0578±0.0160 | |||
Solyc02g084850.2 | 脱落酸和环境应激诱导蛋白TAS14 | 植物激素 | AC | 1.0010±0.0555 |
Cnr | 0.0600±0.0144 | |||
Solyc02g084870.2 | 促分裂原活化蛋白激酶基因 | MAPK信号通路 | AC | 1.0009±0.0526 |
Cnr | 0.0697±0.0088 | |||
Solyc07g064160.2 | 硫胺素噻唑合酶基因 | 硫胺素代谢 | AC | 1.0055±0.1295 |
Cnr | 0.0587±0.0062 | |||
Solyc02g079220.2 | 已糖载体基因 | 糖代谢 | AC | 1.0139±0.2043 |
Cnr | 101.6403±3.8381 | |||
Solyc01g096190.2 | 钙转运ATP合成酶基因 | ATP合成 | AC | 1.0111±0.2115 |
Cnr | 6.5974±0.9319 | |||
Solyc08g029000.2 | 脂氧合酶基因 | 亚油酸代谢 | AC | 1.0073±0.1442 |
Cnr | 278384.7233±2942.6274 | |||
Solyc02g082090.2 | 过氧化物酶 | 氧化还原状态 | AC | 1.0040±0.1085 |
Cnr | 1238.4386±119.1986 | |||
Solyc09g011630.2 | 谷胱甘肽S-转移酶基因 | 谷胱甘肽代谢 | AC | 1.0034±0.0999 |
Cnr | 5383.8082±256.6478 | |||
Solyc01g101190.2 | 萜烯合成基因 | 次生代谢 | AC | 1.0029±0.0939 |
Cnr | 657.8201±37.0882 | |||
Solyc09g075330.2 | 果胶酯酶 | 细胞壁果胶代谢 | AC | 1.0006±0.0410 |
Cnr | 1027.0771±46.2803 | |||
Solyc07g063950.2 | 钙调受体激酶基因 | 细胞膜完整性 | AC | 1.0085±0.1552 |
Cnr | 23.2684±2.0102 | |||
Solyc12g008980.1 | 番茄红素ε-环化酶基因 | 番茄红素代谢 | AC | 1.0026±0.0897 |
Cnr | 15.6913±0.9797 | |||
Solyc08g080630.2 | 乙烯响应蛋白抑制因子1基因 | 乙烯信号转导 | AC | 1.0096±0.1706 |
Cnr | 222.4534±8.4002 | |||
Solyc07g006900.1 | 植物生长素载体组分基因 | 植物激素代谢 | AC | 1.0019±0.0748 |
Cnr | 254.2376±29.3262 | |||
Solyc01g060020.2 | 葡聚糖-1,3-β-葡萄糖苷酶B基因 | 防御应答 | AC | 1.0078±0.1579 |
Cnr | 71.8750±2.8547 |
基因 ID | 基因描述 | 基因功能 | 样品名称 | Expression(2-ΔΔCt) |
---|---|---|---|---|
Solyc01g008710.2 | 甘露聚糖-1,4-β-甘露糖苷酶基因 | 果糖和甘露糖代谢 | AC | 1.0003±0.0279 |
Cnr | 0.0004±0.0000 | |||
Solyc12g005630.1 | 细胞色素b6-f复合物铁硫亚基 | 电子传递链 | AC | 1.0030±0.0938 |
Cnr | 0.4367±0.0822 | |||
Solyc08g014000.2 | 亚油酸9S -脂氧合酶基因 | 亚油酸代谢 | AC | 1.0113±0.1853 |
Cnr | 0.0001±0.0000 | |||
Solyc01g103920.2 | 铁氧化还原蛋白 | 氧化还原状态 | AC | 1.0064±0.1357 |
Cnr | 0.0319±0.0045 | |||
Solyc05g052390.2 | 漆酶基因 | 苯丙素代谢途径 | AC | 1.0296±0.2836 |
Cnr | 0.0498±0.0056 | |||
Solyc07g064180.2 | 果胶酯酶基因 | 细胞壁果胶代谢 | AC | 1.0030±0.0959 |
Cnr | 0.0001± 0.0000 | |||
Solyc02g068590.2 | 钾离子运输体 | 细胞膜完整性 | AC | 1.0137±0.1998 |
Cnr | 0.0497±0.0098 | |||
novel.9194 | 八氢番茄红素合成酶基因 | 番茄红素合成 | AC | 1.0018±0.0729 |
Cnr | 0.0051±0.0009 | |||
Solyc05g050010.2 | 1-氨基环丙烷-1-羧酸合成酶基因 | 乙烯生物合成 | AC | 1.0088±0.1653 |
Cnr | 0.0056±0.0006 | |||
Solyc06g065820.2 | 乙烯响应因子基因 | 乙烯信号转导 | AC | 1.0100±0.1727 |
Cnr | 0.0578±0.0160 | |||
Solyc02g084850.2 | 脱落酸和环境应激诱导蛋白TAS14 | 植物激素 | AC | 1.0010±0.0555 |
Cnr | 0.0600±0.0144 | |||
Solyc02g084870.2 | 促分裂原活化蛋白激酶基因 | MAPK信号通路 | AC | 1.0009±0.0526 |
Cnr | 0.0697±0.0088 | |||
Solyc07g064160.2 | 硫胺素噻唑合酶基因 | 硫胺素代谢 | AC | 1.0055±0.1295 |
Cnr | 0.0587±0.0062 | |||
Solyc02g079220.2 | 已糖载体基因 | 糖代谢 | AC | 1.0139±0.2043 |
Cnr | 101.6403±3.8381 | |||
Solyc01g096190.2 | 钙转运ATP合成酶基因 | ATP合成 | AC | 1.0111±0.2115 |
Cnr | 6.5974±0.9319 | |||
Solyc08g029000.2 | 脂氧合酶基因 | 亚油酸代谢 | AC | 1.0073±0.1442 |
Cnr | 278384.7233±2942.6274 | |||
Solyc02g082090.2 | 过氧化物酶 | 氧化还原状态 | AC | 1.0040±0.1085 |
Cnr | 1238.4386±119.1986 | |||
Solyc09g011630.2 | 谷胱甘肽S-转移酶基因 | 谷胱甘肽代谢 | AC | 1.0034±0.0999 |
Cnr | 5383.8082±256.6478 | |||
Solyc01g101190.2 | 萜烯合成基因 | 次生代谢 | AC | 1.0029±0.0939 |
Cnr | 657.8201±37.0882 | |||
Solyc09g075330.2 | 果胶酯酶 | 细胞壁果胶代谢 | AC | 1.0006±0.0410 |
Cnr | 1027.0771±46.2803 | |||
Solyc07g063950.2 | 钙调受体激酶基因 | 细胞膜完整性 | AC | 1.0085±0.1552 |
Cnr | 23.2684±2.0102 | |||
Solyc12g008980.1 | 番茄红素ε-环化酶基因 | 番茄红素代谢 | AC | 1.0026±0.0897 |
Cnr | 15.6913±0.9797 | |||
Solyc08g080630.2 | 乙烯响应蛋白抑制因子1基因 | 乙烯信号转导 | AC | 1.0096±0.1706 |
Cnr | 222.4534±8.4002 | |||
Solyc07g006900.1 | 植物生长素载体组分基因 | 植物激素代谢 | AC | 1.0019±0.0748 |
Cnr | 254.2376±29.3262 | |||
Solyc01g060020.2 | 葡聚糖-1,3-β-葡萄糖苷酶B基因 | 防御应答 | AC | 1.0078±0.1579 |
Cnr | 71.8750±2.8547 |
[1] |
Giovannoni JJ. Fruit ripening mutants yield insights into ripening control[J]. Curr Opin Plant Biol, 2007,10(3):283-289.
doi: 10.1016/j.pbi.2007.04.008 URL pmid: 17442612 |
[2] |
Martin RC, Asahina M, Liu PP, et al. The microRNA156 and micro-RNA172 gene regulation cascades at post-germinative stages in Arabidopsis[J]. Seed Sci Res, 2010,20:79-87.
doi: 10.1017/S0960258510000085 URL |
[3] |
Huijser P, Schmid M. The control of developmental phase transitions in plants[J]. Development, 2011,138:4117-4129.
doi: 10.1242/dev.063511 URL |
[4] | Jung JH, Seo PJ, Kang SK, et al. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions[J]. Plant Mol, 2011, Biol 76: 35-45. |
[5] |
Jung JH, Ju Y, Seo PJ, et al. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis[J]. Plant J, 2012,69:577-588.
doi: 10.1111/j.1365-313X.2011.04813.x URL pmid: 21988498 |
[6] |
Xu ZD, Sun LD, Zhou YZ, et al. Identification and expression analysis of the SQUAMOSA promoter-binding protein(SBP)-box gene family in Prunus mume[J]. Mol Genet Genomics, 2015,290(5):1701-1715.
URL pmid: 25810323 |
[7] |
Zhang SD, Ling LZ. Genome-wide identification and evolutionary analysis of the SBP-box gene family in castor bean[J]. PLoS One, 2014,9(1):e86688.
URL pmid: 24466202 |
[8] |
Tan HW, Song XM, Duan WK, et al. Genome-wide analysis of the SBP-box gene family in Chinese cabbage(Brassica rapa subsp pekinensis)[J]. Genome, 2015,58(11):463-477.
doi: 10.1139/gen-2015-0074 URL pmid: 26599708 |
[9] | Zeng RF, Zhou JJ, Liu SR, et al. Genome-wide identification and characterization of SQUAMOSA-promoter-binding protein(SBP)genes involved in the flowering development of citrus clementina[J]. Biomolecules, 2019,9(2):66. |
[10] |
Zhang SD, Ling LZ, Yi TS. Evolution and divergence of SBP-box genes in land plants[J]. BMC Genomics, 2015,16:787-796.
URL pmid: 26467431 |
[11] |
Zhang W, Li B, Yu B. Genome-wide identification, phylogeny and expression analysis of the SBP-box gene family in maize(Zea mays)[J]. J Integr Agr, 2016,15(1):29-41.
doi: 10.1016/S2095-3119(14)60955-2 URL |
[12] |
Gou JY, Felippes F, Liu CJ, et al. Negative regulation of anthocyanin biosynjournal in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011,23:1512-1522.
doi: 10.1105/tpc.111.084525 URL |
[13] | 陈婉冰, 周波. SPL调控因子在植物生长调控的研究进展[J]. 分子植物育种, 2020,18(5):1505-1512. |
Chen WB, Zhou B. Research progress of SPL regulatory factor in plant[J]. Molecular Plant Breeding, 2020,18(5):1505-1512. | |
[14] | 田晶, 赵雪媛, 谢隆聖, 等. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报:自然科学版, 2018,42(3):159-166. |
Tian J, Zhao XY, Xie LS, et al. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2018,42(3):159-166. | |
[15] |
Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets[J]. Cell, 2002,110(4):513-520.
doi: 10.1016/s0092-8674(02)00863-2 URL pmid: 12202040 |
[16] |
Schwab R, Palatnik JF, Riester M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Dev Cell, 2005,8(4):517-527.
doi: 10.1016/j.devcel.2005.01.018 URL pmid: 15809034 |
[17] |
Gandikota M, Birkenbihl RP, Höhmann S, et al. The miRNA156/157 recognition element in the 3’ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. Plant J, 2010,49(4):683-693.
doi: 10.1111/j.1365-313X.2006.02983.x URL pmid: 17217458 |
[18] |
Salinas M, Xing SP, Höhmann S, et al. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato[J]. Planta, 2012,235:1171-1184.
doi: 10.1007/s00425-011-1565-y URL pmid: 22160465 |
[19] |
Wang Y, Hu ZL, Yang YX, et al. Function annotation of an SBP-box gene in Arabidopsis based on analysis of co-expression networks and promoters[J]. Int J Mol Sci, 2009,10:116-132.
doi: 10.3390/ijms10010116 URL pmid: 19333437 |
[20] |
Manning K, Tör M, Poole M, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nat Genet, 2006,38(8):948-952.
doi: 10.1038/ng1841 URL pmid: 16832354 |
[21] |
Fraser P, Bramley P, Seymour GB. Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening[J]. Phytochemistry, 2001,58:75-79.
doi: 10.1016/s0031-9422(01)00175-3 URL pmid: 11524116 |
[22] |
Orfila C, Huisman MMH, Willats WGT, et al. Altered cell wall disassembly during ripening of Cnr tomato fruit implications for cell adhesion and fruit softening[J]. Planta, 2002,215:440-447.
doi: 10.1007/s00425-002-0753-1 URL pmid: 12111226 |
[23] |
Eriksson EM, Bovy A, Manning K, et al. Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening[J]. Plant Physiol, 2004,136:4184-4197.
doi: 10.1104/pp.104.045765 URL pmid: 15563627 |
[24] |
Karlova R, Rosin FM, Busscher-Lange J, et al. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening[J]. Plant Cell, 2011,23:923-941.
doi: 10.1105/tpc.110.081273 URL pmid: 21398570 |
[25] |
Chen WW, Kong JH, Lai TF, et al. Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening[J]. Scientific Reports, 2015,5:7852.
URL pmid: 25597857 |
[26] | 李玲, 白娟娟, 郭梅, 等. 番茄果实转录因子CNR的原核表达与纯化及其抗体的制备[J]. 生物技术通报, 2019,35(2):76-83. |
Li L, Bai JJ, Guo M, et al. Prokaryotic expression, purification and antibody preparation of transcription factor CNR in tomato fruit[J]. Biotechnology Bulletin, 2019,35(2):76-83. | |
[27] | Sambrook J, Fritsch EF, Maniatis T. A guide to molecular cloning experiments(Jin DY, Li MF, translation)[M]. 2nd end. Beijing: Science Press, 1992. |
[28] |
Bemer M, Karlova R, Ballester AR, et al. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening[J]. Plant Cell, 2012,24(11):4437-4451.
URL pmid: 23136376 |
[29] |
Brown RL, Kazan K, Mcgrath KC, et al. A role for the GCC-box in jasmonate-mediated activation of the PDF1. 2 gene of Arabidopsis[J]. Plant Physiol, 2003,132(2):1020-1032.
doi: 10.1104/pp.102.017814 URL pmid: 12805630 |
[30] |
Li L, Zhu BZ, Fu DQ, et al. RIN transcription factor plays an important role in ethylene biosynjournal of tomato fruit ripening[J]. J Sci Food Agric, 2011,91:2308-2314.
doi: 10.1002/jsfa.4475 URL pmid: 21910125 |
[31] |
Li L, Wang XG, Zhang XH, et al. Unraveling the target genes of RIN transcription factor during tomato fruit ripening and softening[J]. J Sci Food Agric, 2017,97(3):991-1000.
doi: 10.1002/jsfa.7825 URL pmid: 27247090 |
[32] |
Zhu HL, Zhu BZ, Li YC, et al. Expression and DNA binding activity of the tomato transcription factor RIN(ripening inhibitor)[J]. Biosci Biotechnol Biochem, 2008,72:250-252.
doi: 10.1271/bbb.70577 URL pmid: 18175904 |
[33] | 曹嵩晓, 张冲, 汤雨凡, 等. 植物脂氧合酶蛋白特性及其在果实成熟衰老和逆境胁迫中的作用[J]. 植物生理学报, 2014,50(8):1096-1108. |
Cao SX, Zhang C, Tang YF, et al. Protein characteristic of the plant lipoxygenase and the function on fruit ripening and senescence and adversity stress[J]. Plant Physiology Journal, 2014,50(8):1096-1108. | |
[34] |
Caldelari D, Wang GG, Farmer EE, et al. Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest[J]. Plant Molecular Biology, 2011,75(1-2):25-33.
doi: 10.1007/s11103-010-9701-9 URL pmid: 21052784 |
[35] |
Brummell DA, Dal Cin V, Crisosto CH, et al. Cell wall metabolism during maturation, ripening and senescence of peach fruit[J]. Journal of Experimental Botany, 2004,55(405):2029-2039.
doi: 10.1093/jxb/erh227 URL pmid: 15286150 |
[36] |
Wang Z, Huang SZ, Jia CH, et al. Molecular cloning and expression of five glutathione S-transferase(GST)genes from Banana(Musa acuminata L. AAA group, cv. Cavendish)[J]. Plant Cell Reports, 2013,32(9):1373-1380.
doi: 10.1007/s00299-013-1449-7 URL |
[37] |
Aust O, Ale-Agha N, Zhang L, et al. Lycopene oxidation product enhances gap junctional communication[J]. Food Chem Toxicol, 2003,41(10):1399-1407.
doi: 10.1016/S0278-6915(03)00148-0 URL |
[38] | 左进华, 陈安均, 孙爱东, 等. 番茄果实成熟衰老相关因子研究进展[J]. 中国农业科学, 2010,43(13):2724-2734. |
Zuo JH, Chen AJ, Sun AD, et al. Research progress on the factors related to tomato fruit ripening and senescence[J]. Scientia Agricultura Sinica, 2010,43(13):2724-2734. | |
[39] | 王贵章. 乙烯对采后低温冷藏桃果实香气合成调控的分子机理研究[D]. 北京:中国林业科学研究院, 2014. |
Wang GZ. Study on the molecular mechanism of aroma synthesis regulated by ethylene in cold storage peach fruit[D]. Beijing:The Institute of China Forestry Research, 2014. | |
[40] | 梁馨元, 郭星秀, 齐红岩. 乙烯与脂氧合酶在番茄果实香气合成中的作用[J]. 园艺学报, 2017,44(11):2117-2125. |
Liang XY, Guo XX, Qi HY. Role of lipoxygenase and ethylene in tomato fruit aroma synjournal[J]. Acta Horticulturae Sinica, 2017,44(11):2117-2125. |
[1] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[2] | WAN Qi-wu, BAO Xu-dong, DING Ke, MOU Hua-ming, LUO Yang. Research Progress in Microfluidic Technology in the Detection of Pathogenic Microorganisms [J]. Biotechnology Bulletin, 2023, 39(10): 107-114. |
[3] | SHI Jia, ZHU Xiu-mei, XUE Meng-yu, YU Chao, WEI Yi-ming, YANG Feng-huan, CHEN Hua-min. Optimization and Application of the Chromatin Immunoprecipitation Based on Rice Protoplast [J]. Biotechnology Bulletin, 2022, 38(7): 62-69. |
[4] | HONG Jun, WEI Xia-yi, JI Bing-jie, YE Yan-xin, CHENG Tian-ci. Change of Differentially Expressed Genes and SNP Before or After Pseudomonas aeruginosa Resistance to Tachyplesin I [J]. Biotechnology Bulletin, 2021, 37(9): 191-202. |
[5] | MA Ya-nan, LU Xu, WEI Yun-chun, LI Kang, WEI Ruo-nan, LI Sheng, MA Shao-ying. Identification and Tissue Specific Expression Analysis of AKR Gene Family in Grape [J]. Biotechnology Bulletin, 2021, 37(8): 141-151. |
[6] | XU Hong-yun, ZHANG En-hui, Yu Cun. Tamarix hispida Transcription Factor ThWRKY4 Binds to ARR1AT Motif to Regulate Gene Expression [J]. Biotechnology Bulletin, 2021, 37(3): 18-26. |
[7] | ZHANG Ting-huan, LONG Xi, GUO Zong-yi, CHAI Jie. miR-378 Promoting Lipogenesis and Identification of Target Genes [J]. Biotechnology Bulletin, 2021, 37(2): 80-87. |
[8] | FAN Yu-chen, LU Yao, LIU Xiang-nan, ZHAO Bo. Construction of Mutants Swapping Ubiquitin E3 Ligase CHIP and E4B U-box Domain and Verification of Ubiquitination Activity [J]. Biotechnology Bulletin, 2021, 37(12): 191-197. |
[9] | ZHAO Rui-xiao, HAN Fei, JIANG Ming-feng, ZENG Lian, HAN Jia-yu, HUANG Ying, ZHOU Hang. Application of PCR-membrane Chip Technology in the Identification of Yak and Yak-cattle Meat [J]. Biotechnology Bulletin, 2020, 36(1): 202-208. |
[10] | WANG Shuo, DING Lan, LIU Jian-xiang, HAN Jia-jia. PIF4-Regulated Thermo-responsive Genes in Arabidopsis [J]. Biotechnology Bulletin, 2018, 34(7): 57-65. |
[11] | WANG Wei-xuan, SUN Jing-yi, LIU Wei-na , HOU Ling-yu, YU Wang-ning, HE Xiang-wei, XIE Xiang-ming. The Application Progress of Microfluidic Chips in Studying Plant Cells [J]. Biotechnology Bulletin, 2016, 32(6): 19-29. |
[12] | ZHAI Xu-zhao, WANG Guang-bin, ZHAO Liang-tao, ZENG Hai-juan, LI Jian-wu, DING Cheng-chao, SONG Chun-mei, LIU Qing. An Overview of High Throughput Biological Screening Methods and Its Application [J]. Biotechnology Bulletin, 2016, 32(6): 38-46. |
[13] | TAO Hong,ZHANG Shao-ping,ZHANG Lin-na,ZHANG Man,HU Qi-kuan,. Screening of Stem Genes Regulated by H3K9me2 in Tumor Stem Cells [J]. Biotechnology Bulletin, 2016, 32(12): 195-202. |
[14] | Lü Xuefeng, Abliz Ablimit Pa Naer, Tao Weidong, Xing Weiting, Cai Fula, Zheng Wenxin. Identification of Cashmere and Sheep down by Microarray Technology [J]. Biotechnology Bulletin, 2014, 0(1): 196-200. |
[15] | Wu Chengfei, Guo Shuangsheng, Zhao Qi, Sun Jianfeng. Biological Effects of Simulated Microgravity on Arabidopsis Seedlings [J]. Biotechnology Bulletin, 2013, 0(5): 58-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||