Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (7): 57-65.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0211
Previous Articles Next Articles
WANG Shuo1, DING Lan1, LIU Jian-xiang1,2, HAN Jia-jia2
Received:
2018-03-13
Online:
2018-07-26
Published:
2018-08-01
WANG Shuo, DING Lan, LIU Jian-xiang, HAN Jia-jia. PIF4-Regulated Thermo-responsive Genes in Arabidopsis[J]. Biotechnology Bulletin, 2018, 34(7): 57-65.
[1] IPCC. Climate Change 2001:The Scientific Basis[M]. The Third Assessment Report of Working Group. Cambridge:Cambridge Univ Press, 2001. [2] Meinshausen M, Meinshausen N, Hare W, et al.Greenhouse-gas emission targets for limiting global warming to 2 degrees C[J]. Nature, 2009, 458(7242):1158-U96. [3] Proveniers MCG, Van Zanten M.High temperature acclimation through PIF4 signaling[J]. Trends in Plant Science, 2013, 18(2):59-64. [4] Castillon A, Shen H, Huq E.Phytochrome interacting factors:central players in phytochrome-mediated light signaling networks[J]. Trends in Plant Science, 2007, 12(11):514-521. [5] Ma D, Li X, Guo Y, et al.Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(1):224-229. [6] Jung J H, Domijan M, Klose C, et al.Phytochromes function as thermosensors in Arabidopsis[J]. Science, 2016, 354(6314):886-889. [7] Gangappa SN, Kumar SV.DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms[J]. Cell Reports, 2017, 18(2):344-351. [8] Park YJ, Lee HJ, Ha JH, et al.COP1 conveys warm temperature information to hypocotyl thermomorphogenesis[J]. New Phytologist, 2017, 215(1):269-280. [9] Delker C, Sonntag L, James GV, et al.The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis[J]. Cell Reports, 2014, 9(6):1983-1989. [10] Osterlund MT, Hardtke CS, Wei N, et al.Targeted destabilization of HY5 during light-regulated development of Arabidopsis[J]. Nature, 2000, 405(6785):462-466. [11] Gray WM, Ostin A, Sandberg G, et al.High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12):7197-7202. [12] Stavang JA, Gallego-Bartolome J, Gomez MD, et al.Hormonal regulation of temperature-induced growth in Arabidopsis[J]. Plant J, 2009, 60(4):589-601. [13] Sun J, Qi L, Li Y, et al.PIF4-Mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth[J]. PLoS Genetics, 2012, 8(3):e1002594. [14] Franklin KA, Lee SH, Patel D, et al.PHYTOCHROME-INTERACTING FACTOR 4(PIF4)regulates auxin biosynthesis at high temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50):20231-20235. [15] Oh E, Zhu JY, Wang ZY.Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses[J]. Nature Cell Biology, 2012, 14(8):802-U64. [16] Oh E, Zhu JY, Bai MY, et al.Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl[J]. Elife, 2014, 3. [17] Bai MY, Shang JX, Oh E, et al.Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis[J]. Nature Cell Biology, 2012, 14(8):810-U78. [18] Tian T, Liu Y, Yan H, et al.agriGO v2. 0:a GO analysis toolkit for the agricultural community, 2017 update[J]. Nucleic Acids Research, 2017, 45(W1):W122-W129. [19] Huq E, Quail PH.PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis[J]. Embo Journal, 2002, 21(10):2441-2450. [20] Koini M A, Alvey L, Allen T, et al.High temperature-medated adaptations in plant architecture require the bHLH transcription factor PIF4[J]. Current Biology, 2009, 19(5):408-413. [21] Leivar P, Quail PH.PIFs:pivotal components in a cellular signaling hub[J]. Trends in Plant Science, 2011, 16(1):19-28. [22] Bae G, Choi G.Decoding of light signals by plant phytochromes and their interacting proteins[J]. Annual Review of Plant Biology, 2008, 59:281-311. [23] Quint M, Delker C, Franklin KA, et al.Molecular and genetic control of plant thermomorphogenesis[J]. Nature Plants, 2016:15190. [24] Nusinow DA, Helfer A, Hamilton EE, et al.The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth[J]. Nature, 2011, 475(7356):398-U161. [25] Lorrain S, Allen T, Duek PD, et al.Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors[J]. Plant J, 2008, 53(2):312-323. [26] Bernardo-Garcia S, De Lucas M, Martinez C, et al.BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth[J]. Genes & Development, 2014, 28(15):1681-1694. [27] Foreman J, Johansson H, Hornitschek P, et al.Light receptor action is critical for maintaining plant biomass at warm ambient temperatures[J]. Plant J, 2011, 65(3):441-452. [28] Roig-Villanova I, Bou-Torrent J, Galstyan A, et al.Interaction of shade avoidance and auxin responses:a role for two novel atypical bHLH proteins[J]. Embo Journal, 2007, 26(22):4756-4767. [29] Hao Y, Oh E, Choi G, et al.Interactions between HLH and bHLH factors modulate light-regulated plant development[J]. Molecular Plant, 2012, 5(3):688-697. |
[1] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[4] | KANG Ling-yun, CHEN Jian-sheng, GAN Han-ling, HAN Lu-lu, FENG Hai-xia, DIAO Qi-yu, XING Kai, CUI Kai. Effects of Dietary Protein Deficiency Followed by Realimentation on the Antioxidation of Lamb Based on Transcriptomics Analysis [J]. Biotechnology Bulletin, 2021, 37(6): 171-180. |
[5] | HUANG Hai-chen, WU Wen-ya, QI Meng, XUE Fan-zheng, WU Xiao-ping, ZHANG Jun-li, FU Jun-sheng. RNA-Seq Analysis of Cordycepin Against Triple-negative Breast Cancer [J]. Biotechnology Bulletin, 2021, 37(11): 72-80. |
[6] | DAI Wen-shuang, LIU Hui-yun, DU Qing-guo, ZOU Cheng, WANG Ke. Effect of Histone Deacetylase Inhibitor(HDACi)on CRISPR Editing Efficiency of Wheat and Transcriptomics Analysis [J]. Biotechnology Bulletin, 2021, 37(1): 2-14. |
[7] | LI Yi, SUN Chao. Research Progress in Single-Cell RNA-Seq of Plant [J]. Biotechnology Bulletin, 2021, 37(1): 60-66. |
[8] | ZHAI Nan-xin, CHI Hui, XIA Yue-lin, LIU Cai-yue, PEI Xin-wu, YUAN Qian-hua. Transcriptome Analysis of Drought-resistant Genes in Hainan Shanlan Upland Rice [J]. Biotechnology Bulletin, 2020, 36(12): 12-20. |
[9] | JIA Feng-lian, LI Ze, LIANG Ying-bo, LI Guang-yue, YANG Xiu-fen. Verticillium dahliae Elicitor PevD1 Activates MAPKs in Nicotiana benthamiana [J]. Biotechnology Bulletin, 2020, 36(10): 15-24. |
[10] | CUI Kai, WU Wei-wei, DIAO Qi-yu. Application and Research Progress on Transcriptomics [J]. Biotechnology Bulletin, 2019, 35(7): 1-9. |
[11] | BAO Jing-jing, PU Ya-bin, MA Yue-hui, ZHAO Qian-jun. Identification and Analysis of Alternative Splicing in Longissimus dorsi of Sheep at Different Development Stages [J]. Biotechnology Bulletin, 2019, 35(7): 33-38. |
[12] | WEI Kang-ning, CUI Jun-xia, WANG Meng-lei, WANG Li, LI Yong-fang. Advances in the Techniques of Studying Translatome [J]. Biotechnology Bulletin, 2019, 35(7): 222-229. |
[13] | XU Jun, WANG Rui, LI Rui, GAO Hai-xia, ZHANG Rui-liang, WANG Wen-jing, ZHAO Xia, LI Lin. RNA-seq Analysis of Drug-resistant Genes Associated with baeSR and acrB Double Gene Deletion Strains of Salmonella typhimurium [J]. Biotechnology Bulletin, 2019, 35(12): 76-84. |
[14] | YU Hai-liang, ZOU Wen-bin, WANG Xiao-hui, LIN Yu-xin, DAI Guo-jun, ZHANG Tao, ZHANG Gen-xi, XIE Kai-zhou, WANG Jin-yu, SHI Hui-qiang. RNA Sequencing Analysis of Cecum Tissues of Jinghai Yellow Chickens Infected by E. tenella [J]. Biotechnology Bulletin, 2019, 35(11): 64-71. |
[15] | TANG Xian, DING Xiang, DONG Ming-ming, ZHU Miao, SONG Zhi-qiang, HOU Yi-ling. Transcriptome Analysis of Clavariadelphus pistillaris Fruiting Bodies at Different Development Stages [J]. Biotechnology Bulletin, 2019, 35(10): 119-129. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 273
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 450
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||