Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (5): 117-127.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1140
Previous Articles Next Articles
LI Shang-yun(), WANG Chen(), XUAN Xu-xian, REN Yan-hua, FANG Jing-gui
Received:
2020-09-07
Online:
2021-05-26
Published:
2021-06-11
Contact:
WANG Chen
E-mail:1130246540@qq.com;wangchen@njau.edu.cn
LI Shang-yun, WANG Chen, XUAN Xu-xian, REN Yan-hua, FANG Jing-gui. Research Progress of Grape Seed Dormancy[J]. Biotechnology Bulletin, 2021, 37(5): 117-127.
[1] | 李秀贞. 葡萄杂交育种方法和流程[J]. 陕西农业科学, 2013,59(3):86-89. |
Li XZ. Grape hybrid breeding methods and procedures[J]. Shanxi Journal of Agricultural Sciences, 2013,59(3):86-89. | |
[2] | 秦子禹, 李上云, 王晨, 等. 河北省葡萄育种成果及现状分析[J]. 中外葡萄与葡萄酒, 2019(5):81-84. |
Qing ZY, Li SY, Wang C, et al. Analysis of grape breeding results and present situation in Hebei province[J]. Chinese and Foreign Grapes and Wine, 2019(5):81-84. | |
[3] | 付楠, 宋慧, 王淑君, 等. 种子的休眠与破除研究进展[J]. 安徽农业科学, 2018,46(24):10-12, 15. |
Fu N, Song H, Wang SJ, et al. Research progress on seed dormancy and breaking methods[J]. Anhui Agricultural Sciences, 2018,46(24):10-12, 15. | |
[4] | 付婷婷, 程红焱, 宋松泉. 种子休眠的研究进展[J]. 植物学报, 2009,44(5):629-641. |
Fu TT, Cheng HY, Song SQ. Advances in studies of seed dormancy[J]. Acta Botanica Sinica, 2009,44(5):629-641. | |
[5] | 甘阳英, 宋松泉, 李绍华, 等. 葡萄属种子发育的物候、萌发行为及其对冷层积的反应[J]. 植物学报, 2009,44(2):202-210. |
Gan YY, Song SQ, Li SH, et al. Development phenophase and germination behavior of vitis seeds and their response to cold stratification[J]. Acta Botanica Sinica, 2009,44(2):202-210. | |
[6] | 郭华仁. 种子学[M]. 北京: 北京联合出版公司, 2019. |
Guo HR. Seed Science[M]. Beijing: Beijing United Publishing Company, 2019. | |
[7] |
Wang WQ, Song SQ, Li SH, et al. Quantitatived escription of the effect of stratif ication on dormancy release of grape seeds in response to various temperatures and water contents[J]. Journal of Experimental Botany, 2009,60(12):3397-3406.
doi: 10.1093/jxb/erp178 pmid: 19491305 |
[8] |
Ledbetter CA, Shonnard CB. Improved seed development and germination of stenospermic grapes by plant growth regulators[J]. Journal of Horticultural science, 1990,65(3):269-274.
doi: 10.1080/00221589.1990.11516056 URL |
[9] |
甘阳英, 李绍华, 宋松泉, 等. 不同种源的葡萄种子休眠及其解除的研究[J]. 生物多样性, 2008(6):570-577.
doi: 10.3724/SP.J.1003.2008.08049 |
Gan YY, Li SH, Song SQ, et al. Seed dormancy and release of grapes from different proveniences[J]. Biodiversity, 2008(6):570-577. | |
[10] | Nikolaeva NG. Patterns of seed dormancy and germination as related to plant phylogeny and ecological and geographical conditions of their habitats[J]. Russian Journal of Plant Physiology, 1994,46:369-373. |
[11] |
Baskin CC, Baskin JM. Germination ecophysiology of herbaceous plant species in a temperate region[J]. American Journal of Botany, 1988,75:286-305.
doi: 10.1002/ajb2.1988.75.issue-2 URL |
[12] |
Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid:how ethylene and jasmonates control seed germination[J]. Plant Cell Rep, 2012,31(2):253-270.
doi: 10.1007/s00299-011-1180-1 URL |
[13] | Martínez AC, Pluskota WE, Bassel GW. Mechanisms of hormonal regulation of endosperm cap-specific gene expression in tomato seeds[J]. The Plant Journal:for cell and molecular biology, 2012,71(4):757-786. |
[14] |
Amen RD. A model of seed dormancy[J]. The Botanical Review, 1968,34:1-31.
doi: 10.1007/BF02858619 URL |
[15] |
Khan AA. Primary, preventive and permissive roles of hormones in plant systems[J]. The Botanical Review, 1975,41(4):391-420.
doi: 10.1007/BF02860831 URL |
[16] |
Karssen CM, Brinkhorst-van der Swan DL, Breekl AE, et al. Induction of dormancy during seed development by end ogenous abscisic acid:studies on abscisic acid deficient geno types of Arabidopsis thaliana(L.)Heynh[J]. Planta, 1983,157(2):158-165.
doi: 10.1007/BF00393650 pmid: 24264070 |
[17] |
Tu MX, Wang XH, Feng TY. et al. Expression of a grape(Vitis vinifera)bZIP transcription factor, VlbZIP36, in Arabidopsis thaliana confer stolerance of drought stress during seed germination and seedling establishment[J]. Plant Science, 2016,252:311-323.
doi: 10.1016/j.plantsci.2016.08.011 URL |
[18] |
Ding LN, Guo XJ, Li M. et al. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus[J]. Plant Cell Reports, 2019,38(2):243-253.
doi: 10.1007/s00299-018-2365-7 URL |
[19] |
Bill FS. Seeds:Physiology of development, germination and dormancy(3rd edition)[J]. Seed Science Research, 2013,23(4):289-289.
doi: 10.1017/S0960258513000287 URL |
[20] | 卓小能, 林伯年, 沈德绪. 打破巨峰葡萄种子休眠及实生苗阶段发育中内源激素的研究[J]. 果树科学, 1995(2):79-83. |
Zhuo XN, Lin BN, Shen DX. Studies on the breaking dormancy of kyoho grape seeds and the plant endogenous hormones in grape seeding in different development stage[J]. Fruit Tree Science, 1995(2):79-83. | |
[21] | 刘会宁, 王勇. 药剂处理对葡萄种子发芽的影响[J]. 落叶果树, 2001(5):10-11. |
Liu HN, Wang Y. Effect of pharmaceutical treatment on the germination of grape seeds[J]. Deciduous Fruit Tree, 2001(5):10-11. | |
[22] |
Roberts HA. Changes in the numbers of viable weed seeds in soil under different regimes[J]. Weed Research, 1973,13(3):298-303.
doi: 10.1111/wre.1973.13.issue-3 URL |
[23] | Graeber K, Nakabayashi K, Miatton E, et al. Molecular mechanisms of seed dormancy[J]. Plant Cell & Amp Environment, 2012,35(10):1769-1786. |
[24] |
Hiroyuki N. Seed germination and dormancy:The classic story, new puzzles, and evolution[J]. Journal of Integrative Plant Biology, 2019,61(5):541-563.
doi: 10.1111/jipb.12762 |
[25] |
Roberts EH. Seed dormancy and oxidation processes[J]. Symp Soc Exp Biol, 1969,23:161-92.
pmid: 5367167 |
[26] | Roberts EH. Oxidative processes and the control of seed germina-tion[M]// Heydecker W(ed.). Seed Ecology, London:Butter-worth, 1973, 189-231. |
[27] | Roberts EH. Predicting the storge life of seeds[J]. Seed Science and Technology, 1973,1:499-514. |
[28] |
Eiji N, Masanori O, Kiyoshi T, et al. Abscisic acid and the control of seed dormancy and germination[J]. Seed Science Research, 2010,20(2):55-67.
doi: 10.1017/S0960258510000012 URL |
[29] | 廖卓毅, 黄玲玲, 周健, 等. 种子休眠分子调控机理的研究进展[J]. 种子, 2015,34(9):41-47. |
Liao ZY, Huang LL, Zhou J, et al. The research progress of molecular regulation mechanism of seed dormancy[J]. Seeds, 2015,34(9):41-47. | |
[30] |
Nambara E, Marion-Poll A. Abscisic acid biosynjournal and catabolism[J]. Annu Rev Plant Biol, 2005,56:165-85.
pmid: 15862093 |
[31] | 赖晓辉, 李群. 种子休眠与萌发分子机制研究进展[J]. 种子, 2014,33(5):53-58. |
Lai XH, Li Q. Molecular mechanisms of seed dormancy and germination progress[J]. Seeds, 2014,33(5):53-58. | |
[32] | 伍静辉, 谢楚萍, 田长恩, 等. 脱落酸调控种子休眠和萌发的分子机制[J]. 植物学报, 2018,53(4):542-555. |
Wu JH, Xie CP, Tian CE, et al. Molecular mechanism of abscisic acid regulation during seed dormancy and germination[J]. Acta Botanica Sinica, 2018,53(4):542-555. | |
[33] | Cotado A, Garcia MB, Sergi MB. Physiological seed dormancy increases at high altitude in Pyrenean saxifrage(Saxifraga longifolia Lapey.)[J]. Environmental and Experimental Botany, 2020. DOI: 10.1016/j.envexpbot.2019.103929. |
[34] | Nonogaki H. Seed dormancy and germination-emerging mechanisms and new hypotheses[J]. Frontiers in Plant Science, 2014,5:233. |
[35] | 郭丽萍. 种子休眠原因及休眠解除方法研究[D]. 杨凌:西北农林科技大学, 2016 . |
Guo LP. Study on dormancy and dormancy breaking of tree peony seeds[D]. Yangling:Northwest A &F University, 2016. | |
[36] | 杨文秀, 杨忠仁, 李红艳, 等. 促进植物种子萌发及解除休眠方法的研究[J]. 内蒙古农业大学学报:自然科学版, 2008(2):221-224. |
Yang WX, Yang ZR, Li HY, et al. Study on seed dormarybreaking[J]. Journal of Inner Mongolia Agricultural University:Natural Science Edition, 2008(2):221-224. | |
[37] | 崛内昭作作, 牛建新. 关于葡萄胚休眠的研究[J]. 葡萄栽培与酿酒, 1992(3):35-40. |
Ku NZZ, Niu JX. Research on grape embryo dormancy[J]. Viticulture and Winemaking, 1992(3):35-40. | |
[38] | 于桉. 山葡萄种子休眠和解除的初步研究[J]. 中国林副特产, 1993(2):7-9. |
Yu A. A preliminary study on dormancy and release of mountain grape seeds[J]. Forest By-product and Speciality in China, 1993(2):7-9. | |
[39] | 林玲, 张瑛, 黄羽, 等. 不同葡萄品种实生种子萌芽率比较试验[J]. 广西农业科学, 2009,40(12):1590-1592. |
Lin L, Zhang Y, Huang Y, et al. A comparative study on seed germination in different grape cultivars[J]. Guangxi Agricultural Sciences, 2009,40(12):1590-1592. | |
[40] | 李伟东, 程杰山, 高营营, 等. 不同倍性葡萄种子萌芽力研究[J]. 中外葡萄与葡萄酒, 2018(4):50-53. |
Li WD, Cheng JS, Gao YY, et al. The study on seeds germination ability of different ploidies grape varieties[J]. Chinese and Foreign Grapes and Wine, 2018(4):50-53. | |
[41] | Heo JY, Park KS, Yun H, et al. Degree of abortion and germination percentage in seeds derived from interploid crosses between diploid and tetraploid grape cultivars[J]. Horticulture, Environmentand Biotechnology, 2007,48(2):115-121. |
[42] | 罗尧幸, 高飞, 高美英, 等. 8个不同品种葡萄种子萌发力差异分析[J]. 山西农业科学, 2017,45(3):350-353. |
Luo YX, Gao F, Gao MY, et al. The difference analysis of 8 different varieties grape seeds germination ability[J]. Shanxi Agricultural Sciences, 2017,45(3):350-353. | |
[43] | 潘学军, 李德燕, 张文娥. 贵州野生刺葡萄和腺枝葡萄种子萌发生理特性的研究[J]. 北方园艺, 2010(6):15-17. |
Pan XJ, Li DY, Zhang WE. The germinating physiological characteristic of wild Vitis(V. davidii and V. adenoclada)native in Guizhou province[J]. Northern Horticulture, 2010(6):15-17. | |
[44] |
Huseyin C. Effect of bottom heating, germination medium and gibberellic acid treatments on germination of isabella(Vitis labrusca L.)grape seeds[J]. Pakistan Journal of Biological Sciences, 2001,4(8):953-957.
doi: 10.3923/pjbs.2001.953.957 URL |
[45] | 张艳, 宋建伟, 闫锋. GA3对新鲜葡萄种子发芽影响的初步研究[J]. 河南科技学院学报:自然科学版, 2008(3):36-37. |
Zhang Y, Song JW, Yan F. A preliminary study on the effect of GA3 on the germination of fresh grape seeds[J]. Journal of Henan University of Science and Technology:Natural Science Edition, 2008(3):36-37. | |
[46] | 王庆莲, 吴伟民, 赵密珍, 等. GA3处理对欧亚种葡萄种子发芽的影响[J]. 江苏农业科学, 2015,43(11):244-246. |
Wang QL, Wu WM, Zhao MZ, et al. The effect of GA3 treatment on the germination of Eurasian grape seeds[J]. Jiangsu Agricultural Sciences, 2015,43(11):244-246. | |
[47] | Huang LL, Zhang DF, Xia T. Research progress of molecular regulation mechanism of seed dormancy[J]. Agricultural Science & Technology, 2016,17(4):786-791, 848. |
[48] |
Dimitra P, Eleni L, Aliki K, et al. Epigenetic chromatin modifiers in barley:III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA[J]. Plant Physiology and Biochemistry, 2010,48(2):98-107.
doi: 10.1016/j.plaphy.2010.01.002 URL |
[49] |
Liu YX, Geyer R, Martijn VZ, et al. Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy[J]. PLoS One, 2011,6(7):e22241.
doi: 10.1371/journal.pone.0022241 URL |
[50] |
Zheng J, Chen FY, Wang Z, et al. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy[J]. New Phytologist, 2012,193(3):605-616.
doi: 10.1111/nph.2012.193.issue-3 URL |
[51] | 宋松泉, 刘军, 黄荟, 等. 赤霉素代谢与信号转导及其调控种子萌发与休眠的分子机制[J]. 中国科学:生命科学, 2020,50(6):599-615. |
Song SQ, Liu J, Huang H, et al. Gibberellin metabolism and signal transduction and the molecular mechanisms regulating seed germination and dormancy[J]. Science in China:Life Science, 2020,50(6):599-615. | |
[52] | 刘晏, 李俊德, 李家儒. 脱落酸和赤霉素调控种子休眠与萌发研究进展[J]. 生物资源, 2020,42(2):157-163. |
Liu Y, Li JD, Li JR. Advances in research on abscisic acid and gibberellin regulating seed dormancy and germination[J]. Biological Resources, 2020,42(2):157-163. | |
[53] |
Shu K, Xie Q, Zhang HW, et al. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis[J]. PLoS Genet, 2013,9(6):e1003577 .
doi: 10.1371/journal.pgen.1003577 URL |
[54] | 张士财. 棉花新型锌指蛋白GhBCL功能鉴定[D]. 泰安:山东农业大学, 2016. |
Zhang SC. Functional identification of a novel zine finger protein GhBCL from cotton[D]. Tai'an: Shandong Agricultural University, 2016. | |
[55] |
Cao H, Han Y, Li JY, et al. Arabidopsis thaliana seed dormancy 4-like regulates dormancy and germina-tion by mediating the gibberellin pathway[J]. J Exp Bot, 2020,71(3):919-933.
doi: 10.1093/jxb/erz471 URL |
[56] |
Miyako UT, Motoyuki A, Masatoshi N, et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005,437:693-698.
doi: 10.1038/nature04028 URL |
[57] |
Dai MQ, Zhao Y, Ma Q, et al. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism[J]. Plant Physiology, 2007,144(1):121-133.
doi: 10.1104/pp.107.096586 URL |
[58] | Giacomelli L, Rota-Stabelli O, Masuero D, et al. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set:functional characterization and evolution of grapevine gibberellin oxidases[C]. Journal of Experimental Botany, 2013,64(14):4403-4419. |
[59] |
Sun TP. Gibberellin metabolism, perception and signaling pathways in Arabidopsis[J]. The Arabidopsis Book, 2008,6:e0103.
doi: 10.1199/tab.0103 URL |
[60] | Uzun H, Özer N, Akkurt M, et al. Crossing of alphonse lavallee and regent grape cultivars for downy mildew resistant genotypes. 1. seed germination and seedling growth[J]. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 2019,29(zel):72-78. |
[61] | 牛晓雪, 李保华, 李霞, 等. 不同激素和化学试剂处理对石刁柏种子萌发的影响[J]. 中药材, 2020(4):807-812. |
Niu XX, Li BH, Li X, et al. Effects of different hormone and chemical reagent treatments on seed germination of Shi Diaobai[J]. Chinese Medicinal Materials, 2020(4):807-812. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[3] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[4] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[5] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[6] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[7] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[8] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[9] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[10] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[11] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[12] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[13] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[14] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[15] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||